• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of the genome editing tool CRISPR/Cas9 in non-human primates

    2016-09-14 02:14:24XinLUOMinLIBingSUStateKeyLaboratoryofGeneticResourcesandEvolutionKunmingInstituteofZoologyChineseAcademyofSciencesKunmingYunnan6503ChinaKunmingCollegeofLifeScienceUniversityofChineseAcademyofSciencesBeijing00049China
    Zoological Research 2016年4期

    Xin LUO, Min LI, Bing SUState Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 6503, ChinaKunming College of Life Science, University of Chinese Academy of Sciences, Beijing 00049, China

    ?

    Application of the genome editing tool CRISPR/Cas9 in non-human primates

    Xin LUO1,2, Min LI1,2, Bing SU1,*
    1State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
    2Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China

    ABSTRACT

    In the past three years, RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system has been used to facilitate efficient genome editing in many model and non-model animals. However, its application in nonhuman primates is still at the early stage, though in view of the similarities in anatomy, physiology, behavior and genetics, closely related nonhuman primates serve as optimal models for human biology and disease studies. In this review, we summarize the current proceedings of gene editing using CRISPR/Cas9 in nonhuman primates.

    CRISPR/Cas9; Non-human primates;Transgene; paCas9; Animal ethics

    lNTRODUCTlON

    The emergence of recombinant DNA technology in the 1970s marked the beginning of a new era for biology. With advances in recent years, however, a series of programmable nucleasebased genome editing technologies have been developed,which enable targeted and efficient modification of the genomes of a variety of species. The most rapidly developing genome editing technique is the RNA-guided endonucleases known as Cas9, originally derived from the microbial adaptive immune system CRISPR (clustered regularly interspaced short palindromic repeats), which can target virtually any genomic location of choice (Brouns et al., 2008; Cong et al., 2013). CRISPR nuclease Cas9 is targeted by a short guide RNA,which recognizes the target DNA via Watson-Crick base pairing,and can generate DNA double-strand breaks (DSB) (Nishimasu et al., 2013). Cas9-induced DSBs have been used to introduce non-homologous end joining (NHEJ)-mediated insertiondeletion (indel) mutations as well as to stimulate homologous DNA recombination (HDR) with both double-stranded plasmid DNA and single-stranded oligonucleotide donor templates (Ran et al., 2013).

    Compared with mice, nonhuman primates are genetically and phenotypically closer to humans, particularly in regards to anatomy, physiology, cognition and gene sequences (Zhang et al., 2014). They are, therefore, optimal animal models for genetic modification in an attempt to understand human biology,especially in neurobiology and human evolution. At the same time, however, we must address the potential ethical issues involved due to the potential off-target effect when using the CRISPR/Cas9 tool for genome editing.1

    GENERATlON OF GENETlCALLY MODlFlED MONKEYS VlA CRlSPR/CAS9

    In 2001, the first transgenic monkey (rhesus, Macaca mulatta)was born in the USA, thus demonstrating the plausibility of modifying the primate genome (Chan et al., 2001). Until 2013,however, progress in regards to the generation of transgenic monkeys was rather slow. Firstly, compared with the widely used gene editing tools in model species (e.g., mice), few techniques existed for genetically manipulating embryonic stem cells or germline cells of monkeys. Furthermore, it was difficult to use traditional gene targeting technology to establish primate animal models. In 2014, however, thanks to the emergence of the Cas9-RNA-mediated gene targeting technique, Chinese scientists generated the first gene knockout cynomolgus monkey via targeting one-cell embryos using CRISPR/Cas9 (Niu et al., 2014), opening the door to primate genome manipulation. Now, the use of the CRISPR/Cas9 tool to generate genetically modified nonhuman primates has greatly intensified.

    In rodents, the CRISPR/Cas9 system has achieved highly-efficient directed modification of the genome and regulation of gene expression (Perez-Pinera et al., 2013; Sander & Joung,2014; Wang et al., 2013; Yang et al., 2013; Yin et al., 2014). In monkeys, however, genome targeting efficiency is still low. Several gene knockout studies in monkeys have been published, but successful gene replacement in monkeys via the CRISPR/Cas9 system remains elusive, possibly due to the complexity of DNA repair mechanisms in monkeys. In this review, we summarize the previous work done and discuss the existing problems in current primate genome modification and the potential direction for future research.

    Recent research in generating gene knockout monkeys has shown considerable progress, with gene knockout efficiency becoming similar to that achieved in mice. However, there are still limitations in regards to monkey species (Guo & Li, 2015). First of all, the genome sequences of published monkey species (e.g., rhesus macaque, cynomolgus monkey and common marmoset) are still of low quality, thereby hindering the design of sgRNAs based on genome sequences. For example,when using genome sequence data from the NCBI or Ensemble databases, -AGG must be selected as the PAM sequence, despite the real read being -ATG, which results in failed sgRNA. Second, nonhuman primates require much more time to reach sexual maturity than that required by mice. For example, rhesus macaques need 4-5 years to obtain sexual maturity. Hence, it is not plausible to use the breeding strategies of mice to generate homozygous genetically modified monkeys. To overcome this problem, researchers have tried to improve efficiency by increasing the concentrations of Cas9 mRNA and sgRNA components when they inject primate embryos. While certain increases in the injection concentration can indeed improve gene targeting efficiency, high concentrations can also produce toxicity, and thus interfere with embryonic development (Table 1). In the DMD gene targeting case, the efficiency of embryos developing into morulae or blastocysts is only 23.9% (Chen et al., 2015).

    Table 1 Reported CRlSPR/Cas9 edited genes in monkey embryos

    The efficiency of gene replacement (or knockin) in primate embryos also remains very low. Because primate embryos are very expensive, and difficult to obtain in large numbers, we need to learn from practice with other animal species. To improve the efficiency of gene replacement or gene homologous recombination, a growing number of methods have been developed. Researchers have tried inhibitors of the NHEJ-repair pathway enzyme to inhibit DNA repair in order to,in theory, raise the efficiency of homologous recombination through the HDR-repair pathway. Recently, Dr. Ploegh's team discovered inhibitor Scr7, which significantly improved homologous repair efficiency in mice, exhibiting 19 times greater efficiency compared with that of the control group (Maruyama et al., 2015). Based on the same strategy,researchers have also tested inhibitors that hinder key enzymes of the NHEJ-repair pathway, including KU70, KU80 and DNA ligase IV, to improve the efficiency of homologous recombination. Furthermore, Dr. Rajewsky's team used shRNA and Ad4s or shRNA, Ad4s and Scr7 to improve the efficiency of homologous recombination (Chu et al., 2015). In monkeys, we tested inhibitor Scr7, and although it inhibited NHEJ repair, we did not observe an increase in homologous recombination for improving replacement efficiency, implying that different enzymes or mechanisms might be involved in embryos of different species.

    It was recently reported that small molecules (e.g., L755507 and Brefeldin A) can enhance CRISPR-mediated HDR efficiency, 3-fold for large fragment insertions and 9-fold for point mutations (Yu et al., 2015). As these small molecules are generally non-toxic, they may serve as a better choice for gene replacement manipulation in monkeys.

    Alternatively, the concentration of the homologous repair template can be adjusted to achieve an optimal ratio between the repair template and target genomic segment, and therefore improve homologous recombination efficiency. A recent study found that a higher concentration of ssODN remarkably reduced HDR-derived mutations in pig zygotes, suggesting a possible balance for optimal HDR-derived mutations in zygotes between the excessive accessibility to HDR templates and the activities of HDR relative to NHEJ, which are negatively correlated to ssODN concentration (Zhou et al., 2016). In the previous case, the efficiency of homologous recombination achieved 80% following injection of the homologous repair template at a low concentration in the pig embryos. Again,these data suggest between-species differences for improving homologous recombination.

    The CRISPR/Cas9 system consisting of Cas9 nuclease and sgRNA is the most commonly used approach in genome editing due to its high convenience and robust targeting (Doudna & Charpentier, 2014). However, it is still unknown whether sgRNA works more efficiently than dual-crRNA: tracrRNA, especiallyfor the production of knockin animals. The highly efficient generation of knockin mice carrying a functional gene cassette using a cloning-free CRISPR/Cas9 system was achieved by combining the Cas9 protein with chemically synthesized dualcrRNA: tracrRNA, with conventional mRNA pronuclear injection or Cas9 protein injection combined with sgRNA being unsuccessful (Aida et al., 2015). Additionally, chemically modified guide RNAs were found to enhance CRISPR/Cas9 genome editing in human primary cells (Hendel et al., 2015),especially 2'-O-methyl 3' phosphorothioate (MS) or 2'-O-methyl 3' thioPACE (MSP) modified sgRNAs. Besides sgRNA,modified ssODNs have demonstrated superior genome editing efficacy (Renaud et al., 2016), possibly by protecting ssODNs from degradation.

    Figure 1 Establishment of nonhuman primate models via CRlSPR/Cas9

    Figure 2 Schematic of the TALEN-LlTE system (A, B) and photoactivatable Cas9 (paCas9) (C, D)LITE: light-inducible transcriptional effectors.

    Researchers have also optimized the structure of Cas9 to improve knockin efficiency. Dr. Xue and colleagues from Tsinghua University added a “GGSGP” linker and HA tag to the C-terminal of Cas9, which had a profound effect on both editing efficiency and accuracy (Zhao et al., 2016). They also developed a structurally optimized sgRNA, sgRNA(F+E), in which “F” is an A-U base pair flip that can destroy a potential polymerase III terminator (UUUU) and “E” is a 5-bp extension of the Cas9-binding hairpin structure that likely improves the assembly of the sgRNA/Cas9 complex. Furthermore, they showed that using sgRNA(F+E)with modified Cas9 led to a 32-fold increase in editing efficiency in the Caenorhabditis elegans genome. Similar strategies may be used to improve the knockin efficiency in monkeys.

    Collectively, the newly developed CRISPR/Cas9 systems hold great promise for application in nonhuman primates togenerate knockin models of human diseases or to modify specific genes.

    OFF-TARGET EFFECTS AND MOSAlC MUTATlONS CAUSED BY CSRlSP/CAS9

    The specificity of CRISPR/Cas9 targeting relies on 20 bp guide RNA and PAM. There are many guide RNA-like sequences in the genome. Consequently, CRISPR/Cas9 may generate a number of nonspecific mutations, leading to off-target effects. Although the published data has not reported detectable offtarget effects in the CRISPR/Cas9 derived gene knockout monkeys, this might be due to the limited number of genes studied. Human tripronuclear zygotes injected with CRISPR/Cas9 showed an off-target effect (Liang et al., 2015),which could confound the phenotypes of founder animals. Hence, many methods have been developed to reduce offtarget effects (Koo et al., 2015).

    The off-target effect of Cas9 can be reduced to the detection limit of deep sequencing by choosing unique target sequences in the genome and modifying both guide RNA and Cas9. For example, paired Cas9 nickases, composed of D10A Cas9 and guide RNA, which generate two single-strand breaks (SSBs) or nicks on different DNA strands, are highly specific in human cells, thus avoiding off-target mutations without sacrificing genome-editing efficiency (Cho et al., 2014). sgRNAs with 5'-GG- can greatly reduce the off-target effect. In addition, using truncated guide RNAs can also improve CRISPR/Cas9 specificity (Fu et al., 2014). The off-target effect can be induced by the high concentration of Cas9 and sgRNA, suggesting that an optimal concentration of Cas9 and sgRNA should be considered for reducing off-target effect.

    Another important issue with CRISPR/Cas9 is mosaic mutations. The CRISPR/Cas9 system can repeatedly target genes at different stages of embryonic development, which could lead to mosaicism of the introduced mutation(s). It was speculated that mosaicism might result from a prolonged expression of Cas9 mRNA. However, direct injection of the Cas9 protein rather than Cas9 mRNA into cells can also lead to mosaic mutations (Kim et al., 2014; Sung et al., 2014). To understand its mechanism, however, rigorous quantification of mosaicism from one-cell to multiple-cell embryos is required.

    PACAS9: CRlSPR/CAS9 MEETS OPTOGENETlCS

    Compared with rodents, nonhuman primates have bigger and more complex brains, and their neurogenesis is more similar to that of humans. For example, during neurogenesis, macaques have an outer subventricular zone (OSVZ) like humans, but rodents do not have this cell layer in their developing brains (Betizeau et al., 2013). Researchers have been hoping to manipulate the brains of living nonhuman primates by changing the expression of certain genes under controlled spatial and temporal conditions in order to observe the brain's neural network connections. The pathogenesis of human brain diseases can be clearly revealed via this approach; however, traditional technology has thus far been unable to complete this task.

    In 2013, Dr. Zhang and colleagues from the Broad Institute combined the TALENs gene targeting technology and optogenetics, and developed a new system for manipulating living brain gene expression in mice (Konermann et al., 2013). Furthermore, they also developed light-inducible transcriptional effectors (LITEs), an optogenetic two-hybrid system integrating the customizable TALEN DNA-binding domain with the lightsensitive cryptochrome 2 protein (CRY2) and its interacting partner CIB1 from Arabidopsis thaliana (Kennedy et al., 2010;Liu et al., 2008). LITEs do not require additional exogenous chemical cofactors, and can be easily customized to target and activate many endogenous genomic loci within minutes. This process is also reversible and LITEs can also be packaged into viral vectors and target specific cell populations.

    Similarly, Dr. Sato and colleagues from the University of Tokyo attempted to combine the Cas9 protein with CRY2 to modify the genome of living cells or animals; however, they found that Cas9 could not work when combined with CRY2. They next developed the paCas9 system using pairs of photoswitching proteins called Magnets that use electrostatic interactions to join proteins when activated by light (Kawano et al., 2015; Nihongaki et al., 2015a, b). They first created paCas9 by splitting the Cas9 protein into two inactive fragments, and then coupled each fragment with one Magnet protein of a pair. When irradiated with blue light, the Magnets come together so that the split Cas9 fragments merge to reconstitute the nuclease's RNA-guided activity. Importantly, this process is reversible, and when the light is turned off, the paCas9 nuclease splits again, and nuclease activity is halted.

    The spatiotemporal and reversible properties of paCas9 are well suited for the dissection of causal gene functions in diverse biological processes and for medical applications, such as in vivo and ex vivo gene therapies. Furthermore, paCas9 also has the potential of reducing off-target indel frequencies in Cas9-based genome editing. There have been several studies showing that transient introduction of a Cas9: sgRNA complex prepared in vitro can improve the specificity of genome editing (Kim et al., 2014; Ramakrishna et al., 2014; Zuris et al., 2015). Because paCas9 can be switched off by stopping light irradiation, optically controlling the duration of paCas9 activation would contribute to reducing off-target effects. Some scientists have also combined dCas9, an epigenetic effector, with paCas9 to expand the application of this system, making it more useful in studies of the brain.

    ETHlCAL CONSlDERATlONS lN GENETlC MODlFlCATlON OF NONHUMAN PRlMATES

    The CRISPR/Cas9 technology has gained considerable attention recently due to debate among scientists about the possibility of genetically modifying the human germ line and the ethical implications of doing so (Caplan et al., 2015; Holdren et al., 2015; Lanphier et al., 2015). Researchers in China have used CRISPR/Cas9 to alter a gene in a human embryo that can cause a blood disorder when mutated. The US National Institutes of Health (NIH), however, has reaffirmed its ban on research that involves genetic editing of human embryos due totheir concern about the safety of the technique and the ethical implications of altering genes that will be passed to future generations. It has been pointed out that there are few clinical situations in which gene editing would be the only way to prevent the passage of a genetic disease from parent to child. Instead, parents with a genetic disease could create embryos in vitro and screen them for the presence of the defect gene.

    Similarly, we must consider the potential ethical issues when we generate genetically modified nonhuman primates using CRISPR/Cas9. The use of animals in research must be justified in terms of the value of the research for understanding fundamental biological processes and ameliorating devastating human diseases. Scientists must consider whether experimental alternatives exist and whether the species used are appropriate to the specific problem being studied (Blakemore et al., 2012; Belmonte et al., 2015). For example,the genetic and mechanistic determination of certain human neurological and psychiatric diseases might be better approximated by nonhuman primate models.

    Bearing these considerations in mind, we see the weight of the argument in favor of moving forward on transgenic nonhuman primate disease models with due care, responsibility and transparency.

    CONCLUSlONS

    Nonhuman primates and humans share many anatomical,perceptual, cognitive and behavioral traits. Recent advances in CRISPR/Cas9 gene-editing techniques have made it possible to create genetically modified nonhuman primates, opening up new and exciting ways to gain insight into the primate brain. However, many problems remain to be solved. The efficiency of homozygous knockout and homologous recombination is still low, and off-target effects and mosaic mutations caused by the CRISPR/Cas9 system need to be improved. In future studies,researchers should attempt to understand the potentially primate-specific aspects to optimize the gene targeting system. China has rich nonhuman primate resources, which could allow for the full use of the latest technological advancements. China is positioning itself as a world leader in primate research, with a new national monkey facility currently being constructed at the Kunming Institute of Zoology, Chinese Academy of Sciences,and similar projects being launched in Shanghai, Beijing,Guangzhou and Shenzhen (Cyranoski, 2016).

    REFERENCES

    Aida T, Chiyo K, Usami T, Ishikubo H, Imahashi R, Wada Y, Tanaka KF,Sakuma T, Yamamoto T, Tanaka K. 2015. Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice. Genome Biology, 16:87.

    Belmonte JCI, Callaway EM, Caddick SJ, Churchland P, Feng G, Homanics GE, Lee KF, Leopold DA, Miller CT, Mitchell JF, Mitalipov S, Moutri AR,Movshon JA, Okano H, Reynolds JH, Ringach D, Sejnowski TJ, Silva AC,Strick PL, Wu J, Zhang F. 2015. Brains, genes, and primates. Neuron,86(3): 617-631.

    Betizeau M, Cortay V, Patti D, Pfister S, Gautier E, Bellemin-Ménard A, Afanassieff M, Huissoud C, Douglas RJ, Kennedy H, Dehay C. 2013.

    Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. Neuron, 80(2): 442-457.

    Blakemore C, Clark JM, Nevalainen T, Oberdorfer M, Sussman A. 2012. Implementing the 3Rs in neuroscience research: a reasoned approach. Neuron, 75(6): 948-950.

    Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL, Dickman MJ, Makarova KS, Koonin EV, van der Oost J. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 321(5891):960-964.

    Caplan AL, Parent B, Shen M, Plunkett C. 2015. No time to waste-the ethical challenges created by CRISPR: CRISPR/Cas, being an efficient,simple, and cheap technology to edit the genome of any organism, raises many ethical and regulatory issues beyond the use to manipulate human germ line cells. EMBO Reports, 16(11): 1421-1426.

    Chan AWS, Chong KY, Martinovich C, Simerly C, Schatten G. 2001. Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science, 291(5502): 309-312.

    Chen YC, Zheng YH, Kang Y, Yang WL, Niu YY, Guo XY, Tu ZC, Si CY,Wang H, Xing RX, Pu XQ, Yang SH, Li SH, Ji WZ, Li XJ. 2015. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Human Molecular Genetics, 24(13): 3764-3774.

    Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS. 2014. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Research, 24(1): 132-141.

    Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kühn R. 2015. Increasing the efficiency of homology-directed repair for CRISPRCas9-induced precise gene editing in mammalian cells. Nature Biotechnology, 33(5): 543-548.

    Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB,Jiang WY, Marraffini LA, Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121): 819-823.

    Cyranoski D. 2016. Monkey kingdom-China is positioning itself as a world leader in primate research. Nature, 532(7599): 300-302.

    Doudna JA, Charpentier E. 2014. The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213): 1258096.

    Fu YF, Sander JD, Reyon D, Cascio VM, Joung JK. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology, 32(3): 279-284.

    Guo XY, Li XJ. 2015. Targeted genome editing in primate embryos. Cell Research, 25(7): 767-768.

    Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I,Lunstad BD, Kaiser RJ, Wilkens AB, Bacchetta R, Tsalenko A, Dellinger D,Bruhn L, Porteus MH. 2015. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nature Biotechnology,33(9): 985-989.

    Holdren JP, Shelanski H, Vetter D, Goldfuss C. 2015. Improving transparency and ensuring continued safety in biotechnology. Office of Science and Technology Policy.

    Kawano F, Suzuki H, Furuya A, Sato M. 2015. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nature Communications, 6: 6256.

    Kennedy MJ, Hughes RM, Peteya LA, Schwartz JW, Ehlers MD, Tucker CL. 2010. Rapid blue-light-mediated induction of protein interactions in livingcells. Nature Methods, 7(12): 973-975.

    Kim S, Kim D, Cho SW, Kim J, Kim JS. 2014. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Research, 24(6): 1012-1019.

    Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L,Platt RJ, Scott DA, Church GM, Zhang F. 2013. Optical control of mammalian endogenous transcription and epigenetic states. Nature,500(7463): 472-476.

    Koo T, Lee J, Kim JS. 2015. Measuring and reducing off-target activities of programmable nucleases including CRISPR-Cas9. Molecules and Cells,38(6): 475-481.

    Lanphier E, Urnov F, Haecker SE, Werner M, Smolenski J. 2015. Don't edit the human germ line. Nature, 519(7544): 410-411.

    Liang PP, Xu YW, Zhang XY, Ding CH, Huang R, Zhang Z, Lv J, Xie XW,Chen YX, Li YJ, Sun Y, Bai YF, Zhou SY, Ma WB, Zhou CQ, Huang JJ. 2015. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & Cell, 6(5): 363-372.

    Liu HT, Yu XH, Li KW, Klejnot J, Yang HY, Lisiero D, Lin CT. 2008. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science, 322(5907): 1535-1539.

    Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. 2015. Increasing the efficiency of precise genome editing with CRISPRCas9 by inhibition of nonhomologous end joining. Nature Biotechnology,33(5): 538-542.

    Nihongaki Y, Kawano F, Nakajima T, Sato M. 2015a. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nature Biotechnology, 33(7):755-760.

    Nihongaki Y, Yamamoto S, Kawano F, Suzuki H, Sato M. 2015b. CRISPRCas9-based photoactivatable transcription system. Chemistry & Biology,22(2): 169-174.

    Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N,Ishitani R, Zhang F, Nureki O. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 156(5): 935-949.

    Niu YY, Shen B, Cui YQ, Chen YC, Wang JY, Wang L, Kang Y, Zhao XY, Si W, Li W, Xiang AP, Zhou JK, Guo XJ, Bi Y, Si CY, Hu B, Dong GY, Wang H,Zhou ZM, Li TQ, Tan T, Pu XQ, Wang F, Ji SH, Zhou Q, Huang XX, Ji WZ,Sha JH. 2014. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 156(4): 836-843.

    Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR,Thakore PI, Glass KA, Ousterout DG, Leong KW, Guilak F, Crawford GE,Reddy TE, Gersbach CA. 2013. RNA-guided gene activation by CRISPRCas9-based transcription factors. Nature Methods, 10(10): 973-976.

    Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H. 2014. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Research, 24(6): 1020-1027.

    Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. 2013. Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 8(11):2281-2308.

    Renaud JB, Boix C, Charpentier M, De Cian A, Cochennec J, Duvernois-Berthet E, Perrouault L, Tesson L, Edouard J, Thinard R, Cherifi Y, Menoret S, Fontaniere S, de Crozé N, Fraichard A, Sohm F, Anegon I, Concordet JP,Giovannangeli C. 2016. Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases. Cell Reports, 14(9): 2263-2272.

    Sander JD, Joung JK. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32(4): 347-355.

    Sung YH, Kim JM, Kim HT, Lee J, Jeon J, Jin Y, Choi JH, Ban YH, Ha SJ,Kim CH, Lee HW, Kim JS. 2014. Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Research, 24(1): 125-131.

    Wan HF, Feng CJ, Teng F, Yang SH, Hu BY, Niu YY, Xiang AP, Fang WZ, Ji WZ, Li W, Zhao XY, Zhou Q. 2015. One-step generation of p53 gene biallelic mutant Cynomolgus monkey via the CRISPR/Cas system. Cell Research, 25(2): 258-261.

    Wang HY, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F,Jaenisch R. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell,153(4): 910-918.

    Yang H, Wang HY, Shivalila CS, Cheng AW, Shi LY, Jaenisch R. 2013. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell, 154(6): 1370-1379.

    Yin H, Xue W, Chen SD, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG. 2014. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nature Biotechnology, 32(6): 551-553.

    Yu C, Liu YX, Ma TH, Liu K, Xu SH, Zhang Y, Liu HL, Russa ML, Xie M,Ding S, Qi LS. 2015. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell, 16(2): 142-147.

    Zhang XL, Pang W, Hu XT, Li JL, Yao YG, Zheng YT. 2014. Experimental primates and non-human primate (NHP) models of human diseases in China: current status and progress. Zoological Research, 2014, 35(6): 447-464.

    Zhao P, Zhang Z, Lv XY, Zhao X, Suehiro SJ, Jiang YN, Wang XQ, Mitani SH, Gong HP, Xue D. 2016. One-step homozygosity in precise gene editing by an improved CRISPR/Cas9 system. Cell Research, 26(5): 633-636.

    Zhou XY, Wang LL, Du Y, Xie F, Li L, Liu Y, Liu CH, Wang SQ, Zhang SB,Huang XX, Wang Y, Wei H. 2016. Efficient generation of gene modified pigs harboring precise orthologous human mutation via CRISPR/Cas9-induced homology-directed repair in zygotes. Human Mutation, 37(1): 110-118.

    Zuris JA, Thompson DB, Shu YL, Guilinger JP, Bessen JL, Hu JH, Maeder ML, Joung JK, Chen ZY, Liu DR. 2015. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nature Biotechnology, 33(1): 73-80.

    10.13918/j.issn.2095-8137.2016.4.214

    10 December 2015; Accepted: 20 May 2016

    Foundation items: the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB13010000) and the National Natural Science Foundation of China (31130051)

    *Corresponding author, E-mail: sub@mail.kiz.ac.cn

    在线 av 中文字幕| 手机成人av网站| 国产亚洲av高清不卡| 亚洲少妇的诱惑av| 成年人免费黄色播放视频| 交换朋友夫妻互换小说| 精品久久蜜臀av无| 久久久久网色| 午夜影院在线不卡| 亚洲国产精品一区二区三区在线| 又粗又硬又长又爽又黄的视频| 午夜日韩欧美国产| 十八禁高潮呻吟视频| 19禁男女啪啪无遮挡网站| 十八禁人妻一区二区| www.精华液| 一本大道久久a久久精品| 亚洲国产欧美日韩在线播放| 日本黄色日本黄色录像| 别揉我奶头~嗯~啊~动态视频 | 黑人猛操日本美女一级片| 欧美乱码精品一区二区三区| 嫩草影视91久久| www.999成人在线观看| 婷婷色麻豆天堂久久| av网站在线播放免费| 99国产精品99久久久久| 国产在线一区二区三区精| 一二三四社区在线视频社区8| 亚洲人成电影观看| 色视频在线一区二区三区| 亚洲精品日本国产第一区| 精品亚洲成a人片在线观看| 女人久久www免费人成看片| 如日韩欧美国产精品一区二区三区| 久久ye,这里只有精品| 下体分泌物呈黄色| 国产av一区二区精品久久| 一级毛片黄色毛片免费观看视频| 性少妇av在线| 欧美性长视频在线观看| 亚洲成人免费av在线播放| 成人免费观看视频高清| 99香蕉大伊视频| 两个人看的免费小视频| 晚上一个人看的免费电影| 久久av网站| 又大又爽又粗| 午夜免费鲁丝| 国产精品久久久久久精品古装| 亚洲精品久久成人aⅴ小说| 满18在线观看网站| 一本色道久久久久久精品综合| 亚洲中文日韩欧美视频| 欧美 日韩 精品 国产| 中文字幕人妻丝袜一区二区| 国产精品一国产av| 美女福利国产在线| 国产日韩一区二区三区精品不卡| 美女视频免费永久观看网站| 国产一区二区激情短视频 | 久久综合国产亚洲精品| 国产日韩欧美视频二区| 精品人妻熟女毛片av久久网站| 欧美精品一区二区免费开放| 国产视频首页在线观看| 秋霞在线观看毛片| 午夜福利视频在线观看免费| 亚洲国产欧美一区二区综合| 久久国产精品人妻蜜桃| 飞空精品影院首页| 黑丝袜美女国产一区| 欧美日韩成人在线一区二区| 亚洲国产欧美在线一区| 国产亚洲午夜精品一区二区久久| 亚洲黑人精品在线| 欧美人与善性xxx| 日本a在线网址| 麻豆国产av国片精品| 少妇的丰满在线观看| 国产成人av激情在线播放| 精品福利观看| 国产深夜福利视频在线观看| 91麻豆精品激情在线观看国产 | 每晚都被弄得嗷嗷叫到高潮| 免费看不卡的av| 日本a在线网址| 日韩制服骚丝袜av| 国产成人欧美在线观看 | 欧美乱码精品一区二区三区| 久久国产精品影院| 亚洲伊人色综图| 久久久欧美国产精品| 欧美av亚洲av综合av国产av| 久久精品熟女亚洲av麻豆精品| 精品少妇黑人巨大在线播放| 黄片小视频在线播放| 尾随美女入室| 欧美变态另类bdsm刘玥| a级片在线免费高清观看视频| h视频一区二区三区| 一区二区三区四区激情视频| 99九九在线精品视频| 一级黄色大片毛片| 午夜精品国产一区二区电影| 成人国产一区最新在线观看 | 永久免费av网站大全| 69精品国产乱码久久久| 大片电影免费在线观看免费| 啦啦啦中文免费视频观看日本| 欧美 亚洲 国产 日韩一| 欧美亚洲日本最大视频资源| 在线观看一区二区三区激情| 两个人免费观看高清视频| 亚洲人成77777在线视频| 日韩av在线免费看完整版不卡| 婷婷色综合大香蕉| 啦啦啦在线观看免费高清www| 婷婷丁香在线五月| 亚洲国产中文字幕在线视频| 久久久久久亚洲精品国产蜜桃av| 亚洲av日韩在线播放| 麻豆国产av国片精品| 伦理电影免费视频| 黄色视频在线播放观看不卡| 免费黄频网站在线观看国产| 视频区欧美日本亚洲| 美女主播在线视频| 欧美精品av麻豆av| 黄色毛片三级朝国网站| 又黄又粗又硬又大视频| 日韩一区二区三区影片| 精品亚洲乱码少妇综合久久| 欧美黑人欧美精品刺激| 亚洲人成电影观看| 高清av免费在线| 99久久综合免费| 色播在线永久视频| 五月天丁香电影| 777久久人妻少妇嫩草av网站| 一区二区三区激情视频| 婷婷色av中文字幕| 亚洲精品国产av蜜桃| 免费看不卡的av| 久久精品国产亚洲av高清一级| 欧美日韩福利视频一区二区| 亚洲欧洲精品一区二区精品久久久| av电影中文网址| 亚洲专区中文字幕在线| 少妇被粗大的猛进出69影院| 中文字幕人妻丝袜制服| 婷婷色综合大香蕉| 亚洲av电影在线观看一区二区三区| 色婷婷久久久亚洲欧美| av天堂在线播放| 国产在线视频一区二区| 久久精品成人免费网站| 亚洲国产欧美网| 国产精品麻豆人妻色哟哟久久| 天天操日日干夜夜撸| 男女国产视频网站| 国产深夜福利视频在线观看| 天天躁夜夜躁狠狠久久av| 欧美大码av| 999精品在线视频| 亚洲人成77777在线视频| xxx大片免费视频| 狂野欧美激情性bbbbbb| 欧美精品人与动牲交sv欧美| 高潮久久久久久久久久久不卡| 国产成人欧美| 大话2 男鬼变身卡| 亚洲色图综合在线观看| 国产精品香港三级国产av潘金莲 | 国产精品久久久久成人av| 两个人免费观看高清视频| 国产精品一国产av| 夜夜骑夜夜射夜夜干| 国产午夜精品一二区理论片| e午夜精品久久久久久久| 美女国产高潮福利片在线看| 国产精品.久久久| 国产成人欧美在线观看 | 久久精品久久久久久噜噜老黄| 我要看黄色一级片免费的| 午夜福利一区二区在线看| 国产黄色免费在线视频| 91精品伊人久久大香线蕉| 欧美在线黄色| 精品熟女少妇八av免费久了| 超碰成人久久| 十八禁网站网址无遮挡| 久久久久视频综合| 建设人人有责人人尽责人人享有的| 国产一区二区激情短视频 | 亚洲一区中文字幕在线| 黄色视频不卡| 黑人猛操日本美女一级片| 午夜视频精品福利| 国产成人精品久久二区二区91| 我的亚洲天堂| 国产淫语在线视频| 亚洲伊人久久精品综合| 久久久精品区二区三区| 亚洲欧美精品自产自拍| 久久久久久久精品精品| 国产淫语在线视频| 操美女的视频在线观看| 亚洲欧美日韩另类电影网站| 国产高清不卡午夜福利| 一级毛片女人18水好多 | 国产视频首页在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲五月婷婷丁香| 最近手机中文字幕大全| 国产欧美日韩一区二区三 | 黄频高清免费视频| 久久精品久久精品一区二区三区| 久久久精品免费免费高清| 伊人亚洲综合成人网| 久久久久视频综合| 男人舔女人的私密视频| 亚洲av电影在线进入| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久久精品电影小说| 亚洲国产日韩一区二区| www.熟女人妻精品国产| 天天躁狠狠躁夜夜躁狠狠躁| 免费高清在线观看视频在线观看| 老司机影院成人| 国产一区二区三区综合在线观看| 男女边吃奶边做爰视频| 精品亚洲成a人片在线观看| 欧美日韩成人在线一区二区| 国产片特级美女逼逼视频| 国产精品二区激情视频| 多毛熟女@视频| 三上悠亚av全集在线观看| 永久免费av网站大全| 日日摸夜夜添夜夜爱| 国产淫语在线视频| 成人国产av品久久久| 丰满迷人的少妇在线观看| 亚洲av在线观看美女高潮| 亚洲一区二区三区欧美精品| 亚洲自偷自拍图片 自拍| 在线精品无人区一区二区三| 男女边吃奶边做爰视频| 午夜影院在线不卡| 色婷婷av一区二区三区视频| 晚上一个人看的免费电影| 纵有疾风起免费观看全集完整版| 午夜91福利影院| 国产91精品成人一区二区三区 | 亚洲美女黄色视频免费看| 无限看片的www在线观看| 亚洲久久久国产精品| 成人三级做爰电影| 无遮挡黄片免费观看| 波多野结衣一区麻豆| 欧美日韩精品网址| 成年美女黄网站色视频大全免费| 热re99久久国产66热| 热99久久久久精品小说推荐| 2018国产大陆天天弄谢| 丝袜喷水一区| 国产成人av教育| 秋霞在线观看毛片| 纵有疾风起免费观看全集完整版| 婷婷色综合www| 国产欧美日韩精品亚洲av| 日本猛色少妇xxxxx猛交久久| av线在线观看网站| 欧美人与性动交α欧美精品济南到| 国产老妇伦熟女老妇高清| 亚洲中文av在线| av一本久久久久| 免费黄频网站在线观看国产| 日本午夜av视频| 午夜激情av网站| 久久国产精品大桥未久av| 黄片播放在线免费| 男人添女人高潮全过程视频| 首页视频小说图片口味搜索 | 成年女人毛片免费观看观看9 | 1024视频免费在线观看| 亚洲成人手机| 19禁男女啪啪无遮挡网站| 久久久久精品国产欧美久久久 | 男女午夜视频在线观看| 美女脱内裤让男人舔精品视频| 国产成人一区二区三区免费视频网站 | 久久99精品国语久久久| 亚洲中文av在线| 国产精品一区二区在线观看99| 操美女的视频在线观看| 午夜激情av网站| 高清视频免费观看一区二区| 日本av免费视频播放| 中国国产av一级| 精品国产超薄肉色丝袜足j| 亚洲成av片中文字幕在线观看| 99精品久久久久人妻精品| 99国产精品一区二区三区| 亚洲久久久国产精品| 狂野欧美激情性xxxx| 亚洲精品成人av观看孕妇| 精品人妻在线不人妻| 母亲3免费完整高清在线观看| 伦理电影免费视频| 97精品久久久久久久久久精品| 九草在线视频观看| 18禁裸乳无遮挡动漫免费视频| 日韩中文字幕欧美一区二区 | 精品欧美一区二区三区在线| 中文乱码字字幕精品一区二区三区| 日韩电影二区| 成人黄色视频免费在线看| 欧美乱码精品一区二区三区| h视频一区二区三区| 成人手机av| 一区二区三区乱码不卡18| 国产av一区二区精品久久| 99精品久久久久人妻精品| 好男人视频免费观看在线| av在线app专区| 亚洲精品自拍成人| 丝袜美足系列| 男女无遮挡免费网站观看| 电影成人av| 亚洲精品国产色婷婷电影| 亚洲精品在线美女| 亚洲中文av在线| 国产97色在线日韩免费| 又紧又爽又黄一区二区| 性高湖久久久久久久久免费观看| 日本猛色少妇xxxxx猛交久久| 男人舔女人的私密视频| 亚洲精品久久久久久婷婷小说| 精品卡一卡二卡四卡免费| 在线观看免费视频网站a站| 国产欧美日韩综合在线一区二区| 亚洲午夜精品一区,二区,三区| 黄片小视频在线播放| 亚洲精品乱久久久久久| 黄色 视频免费看| 成年美女黄网站色视频大全免费| 午夜免费鲁丝| 男人添女人高潮全过程视频| 99精品久久久久人妻精品| 国产精品一区二区精品视频观看| 国产一区二区激情短视频 | 国产精品欧美亚洲77777| 国产精品国产三级国产专区5o| 叶爱在线成人免费视频播放| 制服人妻中文乱码| 丝瓜视频免费看黄片| 天天添夜夜摸| 久久久久视频综合| 免费在线观看日本一区| 性色av一级| 人人妻人人澡人人爽人人夜夜| 2018国产大陆天天弄谢| 亚洲专区中文字幕在线| 人成视频在线观看免费观看| 亚洲情色 制服丝袜| 韩国高清视频一区二区三区| 国产免费现黄频在线看| 国产成人免费观看mmmm| 一本大道久久a久久精品| 久热这里只有精品99| 又大又爽又粗| 色播在线永久视频| 成人午夜精彩视频在线观看| 99香蕉大伊视频| 亚洲欧美中文字幕日韩二区| 国产亚洲欧美在线一区二区| 国产亚洲午夜精品一区二区久久| 亚洲 国产 在线| 日韩av在线免费看完整版不卡| 精品少妇内射三级| av视频免费观看在线观看| 国产成人一区二区三区免费视频网站 | av国产久精品久网站免费入址| 午夜福利一区二区在线看| 国产国语露脸激情在线看| 欧美日韩av久久| 午夜福利在线免费观看网站| 欧美乱码精品一区二区三区| 欧美xxⅹ黑人| 久久久久网色| 中国美女看黄片| 水蜜桃什么品种好| 亚洲人成电影观看| 国产精品久久久久久精品古装| 亚洲色图 男人天堂 中文字幕| 免费看av在线观看网站| 在线观看免费午夜福利视频| 亚洲伊人色综图| 操美女的视频在线观看| 亚洲欧美色中文字幕在线| 久久久久国产一级毛片高清牌| 亚洲欧美色中文字幕在线| 日韩中文字幕视频在线看片| 在线观看免费视频网站a站| 亚洲欧洲日产国产| 热99久久久久精品小说推荐| 天堂8中文在线网| 十八禁网站网址无遮挡| 精品少妇内射三级| 免费观看av网站的网址| 女性被躁到高潮视频| 欧美精品一区二区大全| 又紧又爽又黄一区二区| 亚洲人成电影观看| 午夜两性在线视频| 欧美日韩视频精品一区| 日韩制服丝袜自拍偷拍| 99久久精品国产亚洲精品| 涩涩av久久男人的天堂| 大码成人一级视频| 少妇被粗大的猛进出69影院| 青青草视频在线视频观看| 国产欧美日韩精品亚洲av| 高清不卡的av网站| 色网站视频免费| 老司机深夜福利视频在线观看 | 成人三级做爰电影| 免费看不卡的av| 国产成人av激情在线播放| 国产欧美亚洲国产| 人妻人人澡人人爽人人| 国产女主播在线喷水免费视频网站| 亚洲欧美一区二区三区国产| 国产黄频视频在线观看| 三上悠亚av全集在线观看| 亚洲国产av新网站| 亚洲欧美色中文字幕在线| 久久99热这里只频精品6学生| 国产在线视频一区二区| 少妇猛男粗大的猛烈进出视频| 性高湖久久久久久久久免费观看| 夜夜骑夜夜射夜夜干| 男女下面插进去视频免费观看| 国产黄色视频一区二区在线观看| 久久精品亚洲av国产电影网| 亚洲精品国产av蜜桃| 国产成人91sexporn| 亚洲国产毛片av蜜桃av| 黑人猛操日本美女一级片| 国产精品香港三级国产av潘金莲 | 国产三级黄色录像| 无限看片的www在线观看| 国产女主播在线喷水免费视频网站| 亚洲专区国产一区二区| 一区在线观看完整版| 国产深夜福利视频在线观看| 精品欧美一区二区三区在线| kizo精华| 日日夜夜操网爽| 国产av精品麻豆| 中文乱码字字幕精品一区二区三区| 亚洲精品自拍成人| 黄色 视频免费看| 国产一区二区在线观看av| 搡老岳熟女国产| 亚洲av日韩精品久久久久久密 | 在线精品无人区一区二区三| 精品国产国语对白av| 在线看a的网站| 久久人人爽人人片av| 麻豆国产av国片精品| 精品亚洲乱码少妇综合久久| 国产男女内射视频| www.999成人在线观看| 大片免费播放器 马上看| 成年美女黄网站色视频大全免费| 秋霞在线观看毛片| 18禁黄网站禁片午夜丰满| 午夜福利视频在线观看免费| 国产高清videossex| 日本黄色日本黄色录像| 婷婷色综合www| 男女边摸边吃奶| 亚洲精品国产区一区二| e午夜精品久久久久久久| avwww免费| 欧美日韩视频高清一区二区三区二| 国产在线免费精品| 老司机亚洲免费影院| 国产成人影院久久av| 久久久久久久大尺度免费视频| 最新在线观看一区二区三区 | 最黄视频免费看| 97在线人人人人妻| 免费av中文字幕在线| 亚洲精品美女久久av网站| 丰满少妇做爰视频| 中国美女看黄片| 国产欧美日韩一区二区三区在线| 国产精品人妻久久久影院| 欧美老熟妇乱子伦牲交| 亚洲av片天天在线观看| 一级片免费观看大全| 999精品在线视频| 日本午夜av视频| 欧美成人精品欧美一级黄| 制服诱惑二区| 热re99久久精品国产66热6| 汤姆久久久久久久影院中文字幕| 一级黄色大片毛片| 亚洲av欧美aⅴ国产| 欧美人与性动交α欧美软件| 国产精品一区二区在线观看99| 人人澡人人妻人| 久久av网站| 精品第一国产精品| 91麻豆精品激情在线观看国产 | 精品福利永久在线观看| 黄色视频在线播放观看不卡| 亚洲精品久久久久久婷婷小说| 建设人人有责人人尽责人人享有的| 日韩大码丰满熟妇| 少妇 在线观看| 一级,二级,三级黄色视频| 国产精品99久久99久久久不卡| av网站免费在线观看视频| 亚洲精品日本国产第一区| 亚洲av日韩在线播放| 夜夜骑夜夜射夜夜干| 99精国产麻豆久久婷婷| 青春草亚洲视频在线观看| 国产精品麻豆人妻色哟哟久久| 在线av久久热| 午夜免费成人在线视频| xxx大片免费视频| 日韩视频在线欧美| 亚洲欧洲日产国产| 国产在线视频一区二区| 在现免费观看毛片| 久久久亚洲精品成人影院| 国产精品免费视频内射| 欧美精品一区二区免费开放| 波多野结衣av一区二区av| 青春草亚洲视频在线观看| 99精国产麻豆久久婷婷| 国产精品国产三级国产专区5o| 极品人妻少妇av视频| 热99久久久久精品小说推荐| 精品国产国语对白av| 亚洲av国产av综合av卡| 国产深夜福利视频在线观看| av一本久久久久| 免费高清在线观看日韩| 麻豆乱淫一区二区| 国产97色在线日韩免费| 亚洲av美国av| 高清欧美精品videossex| 中文欧美无线码| 欧美精品高潮呻吟av久久| 人人澡人人妻人| 男女之事视频高清在线观看 | 欧美精品一区二区大全| 狠狠精品人妻久久久久久综合| 国产激情久久老熟女| 成人免费观看视频高清| 97精品久久久久久久久久精品| 国产一区二区在线观看av| 1024香蕉在线观看| 欧美日韩国产mv在线观看视频| 亚洲精品自拍成人| 极品少妇高潮喷水抽搐| 国产精品一区二区免费欧美 | 日韩中文字幕视频在线看片| 十八禁网站网址无遮挡| 国产精品久久久久久精品电影小说| 欧美日韩一级在线毛片| 一区二区日韩欧美中文字幕| 大片免费播放器 马上看| 又大又爽又粗| 无遮挡黄片免费观看| 日本av手机在线免费观看| 亚洲一码二码三码区别大吗| 亚洲专区中文字幕在线| 国产片内射在线| 亚洲九九香蕉| 国产亚洲av高清不卡| 国产精品亚洲av一区麻豆| 亚洲精品美女久久久久99蜜臀 | 国产一区二区三区av在线| 国产日韩欧美在线精品| 日日爽夜夜爽网站| 亚洲激情五月婷婷啪啪| 丁香六月天网| 亚洲精品久久午夜乱码| 国产成人精品久久二区二区91| 国产爽快片一区二区三区| 国产高清videossex| 中文字幕另类日韩欧美亚洲嫩草| 丝袜在线中文字幕| 国产精品 欧美亚洲| 99国产综合亚洲精品| 蜜桃国产av成人99| 国产精品三级大全| 国产精品一区二区在线观看99| 日韩一区二区三区影片| 中文字幕色久视频| 大香蕉久久网| 99热全是精品| 一本—道久久a久久精品蜜桃钙片| 亚洲精品美女久久av网站| 亚洲欧美一区二区三区国产| 亚洲免费av在线视频| 99国产精品免费福利视频| 亚洲欧美中文字幕日韩二区|