• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular cloning and anti-HIV-1 activities of APOBEC3s from northern pig-tailed macaques (Macaca leonina)

    2016-09-14 02:14:26XiaoLiangZHANGJiaHaoSONGWeiPANGYongTangZHENGKeyLaboratoryofAnimalModelsandHumanDiseaseMechanismsoftheChineseAcademyofSciencesYunnanProvinceKunmingInstituteofZoologyChineseAcademyofSciencesKunmingYunnan650ChinaInstitu
    Zoological Research 2016年4期

    Xiao-Liang ZHANG, Jia-Hao SONG, Wei PANG, Yong-Tang ZHENG,,*Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650, ChinaInstitute of Health Sciences, Anhui University, Hefei Anhui 060, ChinaFaculty of Life Science and Technology, Kunming University of Science and Technology, Kunming Yunnan 650500, ChinaKunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences,Kunming Yunnan 650, China

    ?

    Molecular cloning and anti-HIV-1 activities of APOBEC3s from northern pig-tailed macaques (Macaca leonina)

    Xiao-Liang ZHANG1,3, Jia-Hao SONG1,2, Wei PANG1, Yong-Tang ZHENG1,3,4,*
    1Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
    2Institute of Health Sciences, Anhui University, Hefei Anhui 230601, China
    3Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming Yunnan 650500, China
    4Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences,Kunming Yunnan 650223, China

    ABSTRACT

    Northern pig-tailed macaques (NPMs, Macaca leonina) are susceptible to HIV-1 infection largely due to the loss of HIV-1-restricting factor TRIM5α. However, great impediments still exist in the persistent replication of HIV-1 in vivo, suggesting some viral restriction factors are reserved in this host. The APOBEC3 proteins have demonstrated a capacity to restrict HIV-1 replication, but their inhibitory effects in NPMs remain elusive. In this study, we cloned the NPM A3A-A3H genes, and determined by BLAST searching that their coding sequences (CDSs) showed 99% identity to the corresponding counterparts from rhesus and southern pig-tailed macaques. We further analyzed the anti-HIV-1 activities of the A3A-A3H genes, and found that A3G and A3F had the greatest anti-HIV-1 activity compared with that of other members. The results of this study indicate that A3G and A3F might play critical roles in limiting HIV-1 replication in NPMs in vivo. Furthermore, this research provides valuable information for the optimization of monkey models of HIV-1 infection.

    Macaca leonina; Northern pig-tailed macaques; APOBEC3; HIV-1

    lNTRODUCTlON

    The lack of effective HIV-1-infected animal AIDS models hinders our understanding of HIV-1 pathogenesis and the development of AIDS vaccines and drugs (Hatziioannou & Evans, 2012; Zhang et al., 2007). The ideal animal model is one that can be infected by HIV-1 and progress to an AIDS-like disease. However, HIV-1 shows a narrow host range and only infects humans and a handful of nonhuman primates (Kuang et al., 2009). Among them, the pig-tailed macaques (PTMs), which consist of northern pig-tailed macaques (NPMs, Macaca leonina),southern pig-tailed macaques (M. nemestrina) and Mentawai macaques (M. pagensis) (Groves, 2001), are the only Old World monkeys susceptible to HIV-1 infection. To date, however, the mechanism of this susceptibility remains largely unclear.1

    TRIM5-Cyclophilin A (TRIMCyp) fusion in NPMs, identified in our previous research, might account for the susceptibility of NPMs to HIV-1 infection (Kuang et al., 2009; Liao et al., 2007). Thus, NPMs might present fewer impediments to HIV-1 infection and replication than that of other macaques, such as the widely used rhesus and cynomolgus macaques. In addition,we previously reported on many basic biological parameters of NPMs (Lian et al., 2016; Pang et al., 2013; Zhang et al., 2014,2016; Zheng et al., 2014; Zhu et al., 2015), which will help in the promotion of NPMs in AIDS and biomedical research.

    Though HIV-1 can infect PTMs, considerable obstacles exist in regards to persistent replication in these hosts (Agy et al.,1992; Bosch et al., 2000; Hu, 2005). This has limited the application of the PTM animal model of HIV-1 infection in the field of vaccine and drug testing. Furthermore, although APOBEC3 proteins have the capacity to restrict HIV-1 replication (Jia et al., 2015; Simon et al., 2015; Stavrou & Ross,2015), it is unclear whether such proteins play an important rolein restricting the replication of HIV-1 in NPMs.

    The APOBEC3 family, comprised of seven members (APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F,APOBEC3G, and APOBEC3H) in primates (Prohaska et al.,2014), can inhibit the replication and spread of various retroviruses by inducing C-to-U hypermutation in newly synthesized viral minus DNA, ultimately leading to G-to-A hypermutation in the viral genome. The activity of APOBEC3 proteins, particularly that of APOBEC3G, is inhibited by vif, an accessory protein encoded by lentiviruses. Interestingly, the degradation of APOBEC3 proteins by different vifs shows pronounced species-specificity (Zennou & Bieniasz, 2006),although this is not absolute. The species-specific interaction between vifs and APOBEC3s suggests that APOBEC3s are important obstacles to cross-species transmission of lentiviruses.

    The rate of viral hypermutation mediated by APOBEC3s is associated with viral transmission and disease progression. In recent years APOBEC3s have been treated as potential targets of future therapeutic strategies against HIV-1 (Pillai et al., 2012).

    Recently, PTMs were shown to develop AIDS following infection with adapted macaque-tropic HIV-1 (Hatziioannou et al., 2014), which is considered a major step forwards in AIDS research. To explore whether APOBEC3 proteins play a role in restricting the replication of HIV-1 in NPMs, we cloned A3A-A3H genes from NPMs and analyzed their anti-HIV-1 activity. The aim of this study was to provide valuable information for optimizing nonhuman primate models for AIDS research.

    MATERlALS AND METHODS

    Animals, cells and viruses

    The NPMs used in this study were obtained from the Kunming Institute of Zoology, Chinese Academy of Sciences (KIZ, CAS),and were maintained in accordance with the regulations and recommendations of the Animal Care Committee of KIZ, CAS, and the Guide to the Care and Use of Experimental Animals, as described previously (Zhang et al., 2014).

    Peripheral blood mononuclear cells (PBMCs) in NPM blood samples were isolated using Ficoll density centrifugation (Dai et al., 2013). The isolated PBMCs were cultured for 72 h in RPMI 1640 medium (10% fetal bovine serum (FBS) containing interleukin-2 (IL-2, 50 U/mL) and Con A (1 mg/mL). In addition,293T cells (Type Culture Collection (TCC), CAS) and TZM-bl cells (Medical Research Council, AIDS Reagent Project, UK)were grown in Dulbecco's modified Eagle's medium (DMEM)with 10% FBS (Lei et al., 2014). HIV-1NL4-3was made by transfection of 293T cells using Lipofectamine TM 2000 according to the manufacturer's instructions (Invitrogen Carlsbad, CA). HIV-1NL4-3proviral plasmids were kindly donated by Prof. Guang-Xia Gao (Institute of Biophysics, CAS, China).

    PCR of APOBEC3 mRNA

    Total RNA from PBMCs was extracted using TRIzol reagent (Invitrogen, Carlsbad, CA) and then reverse transcribed into cDNA using the PrimeScript? RT reagent kit with gDNA Eraser (Takara, Dalian, China). The primers used were synthesized by Generay Biotech (Shanghai, China), and the sequences and PCR conditions are listed in Table 1. The PCR products were analyzed on a 2% agarose gel, visualized by ethidium bromide staining, and purified using a DNA gel extraction kit (Generay Biotech, Shanghai, China). The purified fragments were cloned into pMD19-T simple vector (Takara, Dalian, China) and finally sequenced (Majorbio, Shanghai, China). Sequences were analyzed by MEGA5.0 software and the NCBI's online BLAST server (http: //www.ncbi.nlm.nih.gov/blast/blast.cgi).

    Table 1 Primer sequences and PCR conditions for APOBEC3 mRNA

    Molecular cloning of NPM A3s

    For expression studies, FLAG primers were designed based on the CDSs of the NPM APOBEC3s, with the sequences and PCR conditions listed in Table 2. The flag-APOBEC3samplicons were cloned into the pcDNA3.1 (+) vector (Invitrogen, Carlsbad, CA) using the XbaI and HindIII restriction sites and then sequenced (Majorbio, Shanghai, China). Finally, the constructs of these recombinant plasmids were verified by restriction mapping of XbaI and HindIII.

    Table 2 Primer sequences and PCR conditions for molecular cloning of NPM A3s

    Western blot analysis

    The 293T cells were transfected with pcDNA3.1-npmA3s-Flag (pcDNA3.1-npmA3A-Flag, pcDNA3.1-npmA3B-Flag, pcDNA3.1-npmA3C-Flag, pcDNA3.1-npmA3D-Flag, pcDNA3.1-npmA3F-Flag,pcDNA3.1-npmA3G-Flag, pcDNA3.1-npmA3H-Flag), pcDNA3.1-humanA3G-Flag, and pcDNA3.1-empty vector in 6-well plates with Lipo2000 (Invitrogen, Carlsbad, CA), and were lysed with cell lysis buffer (Beyotime, , Shanghai, China after 48 h transfection. The extracted proteins were denatured in SDS/PAGE loading buffer by boiling for 15 min and separated by SDS/PAGE. The flagtagged proteins were detected using mouse monoclonal antiflag antibody (Abmart, Shanghai, China) and then HRP-conjugated secondary antibody, followed by light staining with chemiluminescent detection reagents (Millipore, Bedford, MA).

    Co-transfection

    The HIV-1NL4-3 proviral plasmid (3 μg) was transiently cotransfected with the NPM A3A-A3G and human-A3G expression plasmid (1 μg) and pcDNA3.1 (+) control plasmid (1 μg) in the 293T cells with Lipo2000, according to the manufacturer's protocols (Invitrogen , Carlsbad, CA). The cell culture medium was replaced with fresh medium 8 h after transfection. On day 2 after transfection, the cell supernatant containing the virus was collected, filtered, and then treated by DNase I (Takara, Dalian, China) at 37 °C for 1 h to prevent plasmid carryover.

    Single-round viral infectivity assays

    The amount of viral particles harvested from the co-transfection supernatants was assayed by p24 antigen enzyme-linked immunosorbent assay (ELISA) (ZeptoMetrix Corp., Buffalo, NY,USA). The TZM-bl cells seeded at a density of 1×104cells per well in 96-well plates were infected with equal amounts of virus. The infection was performed in triplicate for 48 h. After incubation,luminescence was measured by Bright-Glo luciferase assay reagent (Promega , Madison, WI). Statistical differences between mean percentages were compared by Student's t-tests (two-tailed,P<0.05) using GraphPad Prism software v5.0.

    RESULTS

    PCR amplification and sequence analysis of NPM A3s

    Total RNA was extracted from PBMCs and reverse transcribed into cDNAs, which were used as PCR templates. The sizes of the A3A to A3H amplicons were 665 bp, 1 205 bp, 629 bp, 1 181 bp,1 178 bp, 1 208 bp, and 689 bp, respectively (Figure 1).

    The purified amplicons were cloned into pMD19-T simple vector and finally sequenced. Sequences were analyzed by MEGA5.0 software and BLAST online. BLAST analysis of the NPM A3A-A3H CDSs showed 94%-99% nucleotide identity with those of rhesus, crab-eating, and southern pig-tailed macaques,and 89%-93% of nucleotides were identical to those of humans. Among them, the identities of NPM cDNA sequences with those of rhesus and southern pig-tailed macaques reached 99%(Table 3). To explore the clustering of NPM A3A-A3H sequences with specific primate lineages, we constructed a phylogenetic tree (Figure 2). Amino acid sequence alignment was subjected to phylogenetic analyses using the neighbor joining method. The results showed that NPM A3A-A3H sequences clustered according to the corresponding A3A-A3H sequences from different primate taxa. These analyses demonstrated that the cloned NPM A3A-A3H gene classifications were correct. GenBank accession numbers of the NPM A3A-A3H CDSs are KX583650, KX583652,KX583655, KX583653, KX583651, KX583654, and KX583656,respectively.

    Figure 1 Analysis of PCR products of NPM A3A-A3H with agarose gel electrophoresisLane 1: DNA marker; Lane 2-8: PCR product of NPM A3A-A3H genes.

    Table 3 Nucleotide identity of A3A-A3H genes from NPMs compared with other primate species

    Enzyme digestion and expression product identification of NPM A3A-A3H expression plasmids

    Positive colonies containing non-mutated target fragments were picked and identified by double digestion with restriction enzymes HindIII and XbaI. Agarose gel electrophoresis showed a series of DNA bands, which were in accordance with the expected sizes (Figure 3).

    Figure 2 Phylogenetic tree of APOBEC3 proteins

    Figure 3 ldentification of pcDNA3.1-NPM A3A-A3H by restriction analysisLane 1: DNA marker; Lane 2-8: Restriction product of pcDNA3.1-NPM;A3A-A3H; Lane 9: Control.

    To verify the constructed pcDNA3.1-NPM-A3s expressed proteins, the recombinant plasmid and an empty pcDNA3.1 vector as a control were transfected into 293T cells. The cells were then subjected to protein detection by Western blot analysis. Protein expressions were detected and the molecular weights of the products were consistent with the expected values (Figure 4).

    Figure 4 Detection of protein expression in 293T cells by Western blot analysis

    In vitro anti-HlV-1 activities of NPM APOBEC3s

    To address whether different NPM APOBEC3 isoforms were able to effectively inhibit HIV-1 infectivity, we performed a single-cycle infectivity assay in TZM-bl cells. We observed more efficient inhibition of HIV-1NL4-3infectivity by NPM A3G and A3F. Furthermore, NPM A3B and A3D showed less efficient inhibition than A3G/F, A3H showed relatively weaker inhibition compared with that of A3B/D, and the HIV-1 produced in the presence of A3A and A3C expression vector did not show any reduction in relative infectivity (Figure 5).

    Figure 5 Anti-HlV-1 activities of NPM APOBEC3sThe empty parental vector served as a negative control and human-A3G vector as a positive control; *: P<0.05.

    DlSCUSSlON

    NPMs express a TRIM5-Cyclophilin A (TRIMCyp) fusion protein,instead of a TRIM5α protein, which makes them more susceptible to HIV-1 infection than other macaques (Kuang et al., 2009; Liao et al., 2007). However, HIV-1 still encounters considerable obstacles in regards to persistent replication in this host (Agy et al., 1992; Bosch et al., 2000; Hu, 2005),suggesting that other restriction factors act as barriers. In previous studies, APOBEC3s have demonstrated a capacity to restrict HIV-1 replication (Jia et al., 2015; Simon et al., 2015;Stavrou & Ross, 2015). However, it is unclear whether the APOBEC3 proteins of NPMs play an important role in restricting the replication of HIV-1.

    In the current study, the NPM A3A-A3H genes were cloned,with BLAST analysis of their CDSs showing 94%-99% nucleotide identity with those of rhesus, crab-eating, and southern pig-tailed macaques, and 89%-93% nucleotide identity with those of humans. Among them, the identities of NPM cDNA sequences with those of rhesus and southern pig-tailed macaques reached 99%. Such a high nucleotide identity suggests that APOBEC3 genes might be important for the species to survive in nature. In addition, compared with rodents,which have only one APOBEC3 gene, primates have as many as seven (Jarmuz et al., 2002; Wedekind et al., 2003; Zhang & Webb, 2004), indicating that APOBEC3 gene expansion has been critical for primate survival during evolution.

    About 35-50 million years ago, the dramatic decline in retrotransposon activities in primates might have resulted from the successful expansion of the APOBEC3 gene (Zhang & Webb, 2004). Retrotransposon activities increase genomic instability. Frequent retrotransposition can be detrimental for species living in stable environments and adapting to the environment at the same. However, moderate retrotransposon activities promote gene mutation, which is helpful for a species population to adapt to changing living environments. The APOBEC3 gene family has undergone rapid expansion, from one or two genes in non-primate mammals to at least seven in primates. In the past 30 million years, the primate genome has been infected by many viruses (Belshaw et al., 2004; Wolfe et al., 2004). The rapid evolution of the APOBEC3 genes has kept pace with the rapidly evolving viruses (Sawyer et al., 2004),suggesting that the APOBEC3 gene family plays an important role in restricting virus infection and maintaining genomic stability.

    We analyzed the anti-HIV-1 activity of the A3A-A3H genes. NPM A3G/F demonstrated very efficient anti-HIV-1 activity;however, NPM A3A/C exhibited no anti-HIV-1 activity, which is consistent with the anti-HIV-1 activity of APOBEC3s in humans and rhesus macaques (Virgen & Hatziioannou, 2007). Our study indicates that A3G and A3F might play critical roles in restricting HIV-1 replication in NPMs in vivo.

    Although results indicated that NPM A3A and A3C exhibited no anti-HIV-1 activity, their antiviral activity against other viruses and important biological roles cannot be ignored. Some studies have suggested that primate A3A limits the replication of the hepatitis B virus (HBV) and human papillomavirus (HPV)(Suspène et al., 2005; Vartanian et al., 2008) and the retrotransposition of Alu elements (Stenglein et al., 2010). In this study, we only determined the anti-HIV-1 activity of NPM APOBEC3s in vitro. Whether NPM A3G and A3F exhibit better anti-HIV-1 activity in vivo needs to be further explored.

    In conclusion, A3A-A3H genes from NPMs were cloned, and their CDSs were found to be 99% identical to relevant sequences from rhesus and southern pig-tailed macaques. NPM A3G and A3F showed the greatest anti-HIV-1 activity compared with that of the other members, whereas A3A and A3C exhibited no anti-HIV-1 activity at all. This study indicates that A3G and A3F might play critical roles in limiting HIV-1 replication in NPMs in vivo. Our study provides valuable information for the optimization of monkey models of HIV-1 infection.

    ACKNOWLEDGEMENTS

    We thank Prof. Guang-Xia Gao (Institute of Biophysics, CAS) for providing the wild-type HIV-1NL4-3proviral plasmid. We also thank Dr. Muhammad Shahzad for language editing. We acknowledge the MRC AIDS Reagent Project for providing TZM-bl and the Kunming Primate Research Center of the Chinese Academy of Sciences for providing the macaques in this study.

    REFERENCES

    Agy MB, Frumkin LR, Corey L, Coombs RW, Wolinsky SM, Koehler J,

    Morton WR, Katze MG. 1992. Infection of Macaca nemestrina by human immunodeficiency virus type-1. Science, 257(5066): 103-106.

    Belshaw R, Pereira V, Katzourakis A, Talbot G, Pa?es J, Burt A, Tristem M. 2004. Long-term reinfection of the human genome by endogenous retroviruses. Proceedings of the National Academy of Sciences of the United States of America, 101(14): 4894-4899.

    Bosch ML, Schmidt A, Chen JL, Florey MJ, Agy M, Morton WR. 2000. Enhanced replication of HIV-1 in vivo in pigtailed macaques (Macaca nemestrina). Journal of Medical Primatology, 29(3-4): 107-113.

    Dai ZX, Zhang GH, Zhang XH, Zheng YT. 2013. Identification and characterization of a novel splice variant of rhesus macaque MHC IA. Molecular Immunology, 53(3): 206-213.

    Groves CP. 2001. Primate Taxonomy. Washington DC: Smithsonian Institution Press, 222-224.

    Hatziioannou T, Evans DT. 2012. Animal models for HIV/AIDS research. Nature Reviews Microbiology, 10(12): 852-867.

    Hatziioannou T, Del Prete GQ, Keele BF, Estes JD, Mcnatt MW, Bitzegeio J,Raymond A, Rodriguez A, Schmidt F, Mac Trubey C, Smedley J, Piatak M Jr, Kewalramani VN, Lifson JD, Bieniasz PD. 2014. HIV-1-induced AIDS in monkeys. Science, 344(6190): 1401-1405.

    Hu SL. 2005. Non-human primate models for AIDS vaccine research. Current Drug Targets-Infectious Disorders, 5(2): 193-201.

    Jarmuz A, Chester A, Bayliss J, Gisbourne J, Dunham I, Scott J,Navaratnam N. 2002. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics, 79(3): 285-296.

    Jia XF, Zhao Q, Xiong Y. 2015. HIV suppression by host restriction factors and viral immune evasion. Current Opinion in Structural Biology, 31: 106-114.

    Kuang YQ, Tang X, Liu FL, Jiang XL, Zhang YP, Gao G, Zheng YT. 2009. Genotyping of TRIM5 locus in northern pig-tailed macaques (Macaca leonina), a primate species susceptible to Human Immunodeficiency Virus type 1 infection. Retrovirology, 6: 58.

    Lei AH, Zhang GH, Tian RR, Zhu JW, Zheng HY, Pang W, Zheng YT. 2014. Replication potentials of HIV-1/HSIV in PBMCs from northern pig-tailed macaque (Macaca leonina). Zoological Research, 35(3): 186-195.

    Lian XD, Zhang XH, Dai ZX, Zheng YT. 2016. Cloning, sequencing, and polymorphism analysis of novel classical MHC class I alleles in northern pig-tailed macaques (Macaca leonina). Immunogenetics, 68(4): 261-274.

    Liao CH, Kuang YQ, Liu HL, Zheng YT, Su B. 2007. A novel fusion gene,TRIM5-Cyclophilin A in the pig-tailed macaque determines its susceptibility to HIV-1 infection. AIDS, 21 Suppl 8: S19-S26.

    Pang W, Lü LB, Wang Y, Li G, Huang DT, Lei AH, Zhang GH, Zheng YT. 2013. Measurement and analysis of hematology and blood chemistry parameters in northern pig-tailed macaques (Macaca leonina). Zoological Research, 34(2): 89-96. (in Chinese)

    Pillai SK, Abdel-Mohsen M, Guatelli J, Skasko M, Monto A, Fujimoto K, Yukl S, Greene WC, Kovari H, Rauch A, Fellay J, Battegay M, Hirschel B,Witteck A, Bernasconi E, Ledergerber B, Gunthard HF, Wong JK. 2012. Role of retroviral restriction factors in the interferon-alpha-mediated suppression of HIV-1 in vivo. Proceedings of the National Academy of Sciences of the United States of America, 109(8): 3035-3040.

    Prohaska KM, Bennett RP, Salter JD, Smith HC. 2014. The multifaceted

    roles of RNA binding in APOBEC cytidine deaminase functions. Wiley Interdisciplinary Reviews: RNA, 5(4): 493-508.

    Sawyer SL, Emerman M, Malik HS. 2004. Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biology, 2(9):e275.

    Simon V, Bloch N, Landau NR. 2015. Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nature Immunology, 16(6): 546-553.

    Stavrou S, Ross SR. 2015. APOBEC3 proteins in viral immunity. The Journal of Immunology, 195(10): 4565-4570.

    Stenglein MD, Burns MB, Li M, Lengyel J, Harris RS. 2010. APOBEC3 proteins mediate the clearance of foreign DNA from human cells. Nature Structural & Molecular Biology, 17(2): 222-229.

    Suspène R, Guétard D, Henry M, Sommer P, Wain-Hobson S, Vartanian JP. 2005. Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 102(23): 8321-8326.

    Vartanian JP, Guetard D, Henry M, Wain-Hobson S. 2008. Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions. Science, 320(5873): 230-233.

    Virgen CA, Hatziioannou T. 2007. Antiretroviral activity and Vif sensitivity of rhesus macaque APOBEC3 proteins. Journal of Virology, 81(24): 13932-13937.

    Wedekind JE, Dance GS, Sowden MP, Smith HC. 2003. Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. Trends in Genetics, 19(4): 207-216.

    Wolfe ND, Switzer WM, Carr JK, Bhullar VB, Shanmugam V, Tamoufe U,Prosser AT, Torimiro JN, Wright A, Mpoudi-Ngole E, Mccutchan FE, Birx DL,F(xiàn)olks TM, Burke DS, Heneine W. 2004. Naturally acquired simian retrovirus infections in central African hunters. The Lancet, 363(9413): 932-937.

    Zennou V, Bieniasz PD. 2006. Comparative analysis of the antiretroviral activity of APOBEC3G and APOBEC3F from primates. Virology, 349(1): 31-40.

    Zhang GH, Li MH, Zheng YT. 2007. Application of AIDS macaque animal model in HIV vaccine research. Zoological Research, 28(5): 556-562.

    Zhang JZ, Webb DM. 2004. Rapid evolution of primate antiviral enzyme APOBEC3G. Human Molecular Genetics, 13(16): 1785-1791.

    Zhang MX, Zheng HY, Jiang J, Pang W, Zhang GH, Zheng YT. 2016. Viral seroprevalence in northern pig-tailed macaques (Macaca leonina) derived from Ho Chi Minh City, Vietnam. Primates, doi: 10.1007/s10329-016-0531-5.

    Zhang XL, Pang W, Deng DY, Lv LB, Feng Y, Zheng YT. 2014. Analysis of immunoglobulin, complements and CRP levels in serum of captive northern pig-tailed macaques (Macaca leonina). Zoological Research, 35(3): 196-203.

    Zheng HY, Zhang MX, Zhang LT, Zhang XL, Pang W, Lyu LB, Zheng YT. 2014. Flow cytometric characterizations of leukocyte subpopulations in the peripheral blood of northern pig-tailed macaques (Macaca leonina). Zoological Research, 35(6): 465-473.

    Zhu L, Lei AH, Zheng HY, Lyu LB, Zhang ZG, Zheng YT. 2015. Longitudinal analysis reveals characteristically high proportions of bacterial vaginosisassociated bacteria and temporal variability of vaginal microbiota in northern pig-tailed macaques (Macaca leonina). Zoological Research, 36(5):285-298.

    10.13918/j.issn.2095-8137.2016.4.246

    23 May 2016; Accepted: 05 July 2016

    Foundation items: This work was supported by the National Special Science Research Program of China (2012CBA01305), National Natural Science Foundation of China (81172876; 81471620; 81273251;81571606; U0832601), National Science and Technology Major Project (2014ZX10005-002-006), Knowledge Innovation Program of CAS (KJZD-EW-L10-02) and Yunnan Applicative and Basic Research Program (2014FB181)

    *Corresponding author, E-mail: zhengyt@mail.kiz.ac.cn

    国产午夜精品论理片| 国产精华一区二区三区| 色综合亚洲欧美另类图片| 日韩 欧美 亚洲 中文字幕| 久久国产乱子伦精品免费另类| 日韩欧美 国产精品| 亚洲专区国产一区二区| 小说图片视频综合网站| av天堂中文字幕网| 小说图片视频综合网站| 国产极品精品免费视频能看的| 国产高潮美女av| 国产精品久久久久久亚洲av鲁大| 少妇人妻一区二区三区视频| 搡老岳熟女国产| 亚洲精品成人久久久久久| 一a级毛片在线观看| 日韩成人在线观看一区二区三区| 91av网一区二区| 国产真实伦视频高清在线观看 | 熟女人妻精品中文字幕| av女优亚洲男人天堂| 国产中年淑女户外野战色| 亚洲精品456在线播放app | 久久久久久国产a免费观看| 听说在线观看完整版免费高清| 宅男免费午夜| 2021天堂中文幕一二区在线观| 变态另类成人亚洲欧美熟女| 小蜜桃在线观看免费完整版高清| 蜜桃久久精品国产亚洲av| 久久草成人影院| 最新在线观看一区二区三区| 狂野欧美激情性xxxx| 欧美极品一区二区三区四区| 99热这里只有精品一区| 国产精品 欧美亚洲| 久久国产精品人妻蜜桃| 亚洲欧美日韩无卡精品| 老熟妇乱子伦视频在线观看| 变态另类成人亚洲欧美熟女| 亚洲成人免费电影在线观看| 国产一级毛片七仙女欲春2| 身体一侧抽搐| 国产精品综合久久久久久久免费| 中文字幕av成人在线电影| 日韩欧美国产一区二区入口| 精品99又大又爽又粗少妇毛片 | 精品久久久久久成人av| 特级一级黄色大片| 亚洲五月婷婷丁香| avwww免费| 日日摸夜夜添夜夜添小说| 中文字幕精品亚洲无线码一区| 国产av不卡久久| 精品人妻1区二区| 欧美日本视频| 特大巨黑吊av在线直播| 国产真实伦视频高清在线观看 | 日韩欧美国产在线观看| 午夜福利视频1000在线观看| 久久中文看片网| 国产精品久久久久久久电影 | 91麻豆av在线| 精品久久久久久久末码| 九九热线精品视视频播放| 3wmmmm亚洲av在线观看| 嫩草影视91久久| 国内精品一区二区在线观看| 日本一本二区三区精品| 夜夜夜夜夜久久久久| 国产成人影院久久av| or卡值多少钱| 国产黄a三级三级三级人| av国产免费在线观看| 欧美三级亚洲精品| 韩国av一区二区三区四区| 国产 一区 欧美 日韩| 午夜精品久久久久久毛片777| 叶爱在线成人免费视频播放| 97超视频在线观看视频| 日本免费一区二区三区高清不卡| 黄色成人免费大全| 国产亚洲精品av在线| 老司机福利观看| 国产精品嫩草影院av在线观看 | 日本一二三区视频观看| 国产一区二区三区在线臀色熟女| 久久婷婷人人爽人人干人人爱| 亚洲精品一卡2卡三卡4卡5卡| 久久久久免费精品人妻一区二区| 精品久久久久久久久久免费视频| 欧美3d第一页| 麻豆国产av国片精品| 在线观看午夜福利视频| 亚洲狠狠婷婷综合久久图片| 国产一区在线观看成人免费| 亚洲成人中文字幕在线播放| 久久99热这里只有精品18| 村上凉子中文字幕在线| 国产乱人视频| 大型黄色视频在线免费观看| 久久精品人妻少妇| 97碰自拍视频| 成人av一区二区三区在线看| 精品福利观看| 久久久久免费精品人妻一区二区| 看片在线看免费视频| 国产aⅴ精品一区二区三区波| 天堂网av新在线| 成人18禁在线播放| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 97超视频在线观看视频| 99热只有精品国产| 色吧在线观看| 变态另类丝袜制服| 88av欧美| 岛国视频午夜一区免费看| 99久久精品热视频| www日本黄色视频网| 亚洲美女黄片视频| 搡老岳熟女国产| 国产一区在线观看成人免费| 婷婷六月久久综合丁香| 五月玫瑰六月丁香| 久久99热这里只有精品18| 丰满乱子伦码专区| 中文字幕熟女人妻在线| 美女高潮喷水抽搐中文字幕| 色噜噜av男人的天堂激情| 18禁黄网站禁片免费观看直播| 亚洲乱码一区二区免费版| 午夜福利欧美成人| 一进一出好大好爽视频| 88av欧美| 成人特级av手机在线观看| 国产av不卡久久| 欧美日韩乱码在线| 日本a在线网址| 超碰av人人做人人爽久久 | 老司机午夜十八禁免费视频| www国产在线视频色| 亚洲欧美精品综合久久99| 狂野欧美激情性xxxx| 99riav亚洲国产免费| 日本 欧美在线| 乱人视频在线观看| 叶爱在线成人免费视频播放| 欧美在线一区亚洲| 精品免费久久久久久久清纯| 一夜夜www| 国产伦精品一区二区三区视频9 | 国产一区二区在线av高清观看| 极品教师在线免费播放| 一区二区三区免费毛片| 欧美丝袜亚洲另类 | 日本五十路高清| 国产精品免费一区二区三区在线| 中文字幕熟女人妻在线| 午夜亚洲福利在线播放| 一边摸一边抽搐一进一小说| 国内精品久久久久久久电影| 色尼玛亚洲综合影院| 久久久久久久亚洲中文字幕 | 亚洲无线观看免费| 亚洲色图av天堂| 亚洲成人久久性| 精品久久久久久,| 丰满人妻一区二区三区视频av | 99精品久久久久人妻精品| 国产成人欧美在线观看| 精品久久久久久久久久久久久| 国产激情偷乱视频一区二区| 亚洲国产精品合色在线| 久久精品人妻少妇| 国产精品久久久人人做人人爽| 最近视频中文字幕2019在线8| 午夜福利视频1000在线观看| 国内精品久久久久久久电影| 日韩欧美在线二视频| 亚洲中文日韩欧美视频| 亚洲国产日韩欧美精品在线观看 | 在线观看午夜福利视频| 两人在一起打扑克的视频| 中文在线观看免费www的网站| 久久精品国产亚洲av涩爱 | 亚洲成a人片在线一区二区| 精品久久久久久久久久免费视频| 日本熟妇午夜| 成年女人看的毛片在线观看| 午夜福利欧美成人| 午夜福利免费观看在线| 99国产精品一区二区蜜桃av| 美女 人体艺术 gogo| 亚洲不卡免费看| 久久久久久久久中文| 亚洲 欧美 日韩 在线 免费| 久久久久亚洲av毛片大全| 欧美黄色片欧美黄色片| 精品久久久久久久毛片微露脸| 久久久久国内视频| 老司机午夜福利在线观看视频| 天堂av国产一区二区熟女人妻| 在线观看66精品国产| 精品电影一区二区在线| 国产精品av视频在线免费观看| 床上黄色一级片| 最后的刺客免费高清国语| 老司机午夜福利在线观看视频| 日日摸夜夜添夜夜添小说| 白带黄色成豆腐渣| 免费看a级黄色片| 色综合站精品国产| 男人的好看免费观看在线视频| 欧洲精品卡2卡3卡4卡5卡区| 少妇的逼水好多| 国产午夜福利久久久久久| 久久精品国产亚洲av香蕉五月| a级毛片a级免费在线| 禁无遮挡网站| 国产精品永久免费网站| 国产精品一区二区三区四区免费观看 | av女优亚洲男人天堂| 久久久久精品国产欧美久久久| 内射极品少妇av片p| 波多野结衣高清无吗| 一个人免费在线观看的高清视频| 免费搜索国产男女视频| 可以在线观看的亚洲视频| 国产在视频线在精品| 免费无遮挡裸体视频| 男女午夜视频在线观看| 19禁男女啪啪无遮挡网站| 女人十人毛片免费观看3o分钟| aaaaa片日本免费| 中文字幕久久专区| 成人国产综合亚洲| 大型黄色视频在线免费观看| 精品国产三级普通话版| 十八禁网站免费在线| 午夜亚洲福利在线播放| 久久九九热精品免费| 欧美另类亚洲清纯唯美| a级一级毛片免费在线观看| 波野结衣二区三区在线 | 91av网一区二区| 久久久久亚洲av毛片大全| 最好的美女福利视频网| 一区福利在线观看| 欧美av亚洲av综合av国产av| 变态另类丝袜制服| 国产精品 国内视频| 欧美一区二区亚洲| 欧美一区二区精品小视频在线| 精品午夜福利视频在线观看一区| 国产精品久久电影中文字幕| 国产亚洲精品久久久com| 两人在一起打扑克的视频| 久久久久久久久中文| 久久久久久九九精品二区国产| 亚洲av免费在线观看| 禁无遮挡网站| 天堂影院成人在线观看| 免费无遮挡裸体视频| 一级a爱片免费观看的视频| 露出奶头的视频| 国产成人aa在线观看| 可以在线观看毛片的网站| 大型黄色视频在线免费观看| 18禁国产床啪视频网站| 欧美成人性av电影在线观看| 99久久综合精品五月天人人| 天天一区二区日本电影三级| 日韩精品青青久久久久久| 亚洲熟妇熟女久久| 国产精华一区二区三区| svipshipincom国产片| 国产黄片美女视频| 日韩欧美精品v在线| 中文字幕熟女人妻在线| 精品熟女少妇八av免费久了| 欧美一级a爱片免费观看看| av天堂中文字幕网| 国产精品久久久久久精品电影| 亚洲av第一区精品v没综合| 久久久国产成人精品二区| 国产伦一二天堂av在线观看| 好男人电影高清在线观看| 99在线人妻在线中文字幕| 青草久久国产| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | av女优亚洲男人天堂| xxx96com| 999久久久精品免费观看国产| 美女黄网站色视频| 最后的刺客免费高清国语| xxx96com| 久久精品91蜜桃| 18禁国产床啪视频网站| 久久天躁狠狠躁夜夜2o2o| 国内久久婷婷六月综合欲色啪| 99久久九九国产精品国产免费| 国产精品香港三级国产av潘金莲| 亚洲精品影视一区二区三区av| 99热这里只有精品一区| 三级男女做爰猛烈吃奶摸视频| 最新中文字幕久久久久| 我要搜黄色片| 亚洲人成伊人成综合网2020| 9191精品国产免费久久| 好男人电影高清在线观看| 久久精品综合一区二区三区| 欧美日韩福利视频一区二区| 成人精品一区二区免费| 亚洲乱码一区二区免费版| 亚洲欧美日韩卡通动漫| 久久草成人影院| 久久国产精品影院| 日本精品一区二区三区蜜桃| 亚洲人成电影免费在线| 波多野结衣巨乳人妻| 午夜福利18| 性色av乱码一区二区三区2| 国产日本99.免费观看| 一个人看视频在线观看www免费 | 成人av在线播放网站| 国产精品亚洲美女久久久| 午夜a级毛片| 成人无遮挡网站| 国产成人av激情在线播放| 日本黄色视频三级网站网址| 有码 亚洲区| xxxwww97欧美| 伊人久久精品亚洲午夜| 五月伊人婷婷丁香| 18美女黄网站色大片免费观看| 国产精品永久免费网站| 亚洲国产高清在线一区二区三| 在线免费观看的www视频| 99在线视频只有这里精品首页| 午夜日韩欧美国产| 欧美日本亚洲视频在线播放| 亚洲国产精品成人综合色| 国产 一区 欧美 日韩| 91字幕亚洲| 成人午夜高清在线视频| 亚洲欧美日韩高清在线视频| 一区二区三区高清视频在线| 天堂动漫精品| 男人和女人高潮做爰伦理| 午夜精品一区二区三区免费看| 村上凉子中文字幕在线| 母亲3免费完整高清在线观看| 免费观看精品视频网站| 亚洲乱码一区二区免费版| 一个人观看的视频www高清免费观看| 99久久成人亚洲精品观看| 人妻夜夜爽99麻豆av| 天美传媒精品一区二区| 国产69精品久久久久777片| 国产精品亚洲美女久久久| 最新中文字幕久久久久| 99riav亚洲国产免费| 天堂av国产一区二区熟女人妻| 美女大奶头视频| 99riav亚洲国产免费| 免费在线观看日本一区| 又粗又爽又猛毛片免费看| 淫秽高清视频在线观看| 91麻豆av在线| 国产极品精品免费视频能看的| 亚洲性夜色夜夜综合| 亚洲人成网站在线播| 色哟哟哟哟哟哟| 精品久久久久久久毛片微露脸| 法律面前人人平等表现在哪些方面| 不卡一级毛片| 乱人视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产精品99久久99久久久不卡| 19禁男女啪啪无遮挡网站| 国产69精品久久久久777片| 在线观看66精品国产| 国产视频一区二区在线看| 日韩欧美三级三区| 色视频www国产| 久久久久国产精品人妻aⅴ院| 岛国视频午夜一区免费看| xxxwww97欧美| 一级黄色大片毛片| 国产黄a三级三级三级人| 国产精品亚洲av一区麻豆| 变态另类成人亚洲欧美熟女| 国产一区二区激情短视频| 精品午夜福利视频在线观看一区| 国产亚洲精品久久久久久毛片| 国产黄a三级三级三级人| 欧美极品一区二区三区四区| 亚洲精品在线美女| 久久久久久大精品| 一卡2卡三卡四卡精品乱码亚洲| 亚洲一区二区三区色噜噜| 嫩草影院精品99| 法律面前人人平等表现在哪些方面| 老熟妇仑乱视频hdxx| 91在线精品国自产拍蜜月 | 少妇人妻一区二区三区视频| 狠狠狠狠99中文字幕| 可以在线观看毛片的网站| 亚洲成人中文字幕在线播放| 国产精品嫩草影院av在线观看 | 丁香欧美五月| 久久九九热精品免费| 亚洲va日本ⅴa欧美va伊人久久| 十八禁网站免费在线| 老司机午夜福利在线观看视频| 国产免费一级a男人的天堂| 狠狠狠狠99中文字幕| 精品久久久久久久人妻蜜臀av| 久久久成人免费电影| 久久久国产成人精品二区| 久久久久久人人人人人| 国产黄色小视频在线观看| 国产探花在线观看一区二区| 男女下面进入的视频免费午夜| 在线观看免费午夜福利视频| 国内精品一区二区在线观看| 欧美性猛交黑人性爽| 中文字幕人妻熟人妻熟丝袜美 | 欧美日韩福利视频一区二区| 婷婷亚洲欧美| 久久久久久国产a免费观看| 国产高清videossex| 精品久久久久久,| 欧美成人一区二区免费高清观看| 18+在线观看网站| 高清日韩中文字幕在线| 中出人妻视频一区二区| АⅤ资源中文在线天堂| 黄片小视频在线播放| 好男人电影高清在线观看| or卡值多少钱| 午夜精品一区二区三区免费看| 亚洲精品成人久久久久久| 精品一区二区三区视频在线 | www.999成人在线观看| 成人亚洲精品av一区二区| 一进一出抽搐gif免费好疼| 天天躁日日操中文字幕| 韩国av一区二区三区四区| 少妇的逼好多水| 内地一区二区视频在线| 又粗又爽又猛毛片免费看| 美女cb高潮喷水在线观看| 免费无遮挡裸体视频| 亚洲狠狠婷婷综合久久图片| 人妻丰满熟妇av一区二区三区| 热99在线观看视频| xxxwww97欧美| 国产高清视频在线播放一区| 国产精品 国内视频| 中文资源天堂在线| 久久精品国产清高在天天线| xxxwww97欧美| 国产乱人视频| 欧美乱妇无乱码| 在线观看66精品国产| av视频在线观看入口| 色综合婷婷激情| 黄色女人牲交| 欧美乱妇无乱码| 白带黄色成豆腐渣| 舔av片在线| 淫妇啪啪啪对白视频| 一区福利在线观看| 最新在线观看一区二区三区| 国产免费一级a男人的天堂| 在线观看午夜福利视频| 伊人久久精品亚洲午夜| 90打野战视频偷拍视频| 免费人成在线观看视频色| 国产成年人精品一区二区| 亚洲人成网站在线播| 在线视频色国产色| 亚洲成人久久爱视频| 老汉色∧v一级毛片| 啪啪无遮挡十八禁网站| 成人永久免费在线观看视频| 亚洲国产欧洲综合997久久,| 黄色丝袜av网址大全| 中文字幕人成人乱码亚洲影| 美女高潮的动态| 午夜免费成人在线视频| 中文字幕精品亚洲无线码一区| 日韩欧美 国产精品| 99在线视频只有这里精品首页| 在线a可以看的网站| 69人妻影院| 欧美日本视频| 国产黄a三级三级三级人| 九色国产91popny在线| 精品人妻1区二区| 国产精华一区二区三区| 国语自产精品视频在线第100页| 97超视频在线观看视频| 欧美丝袜亚洲另类 | 又爽又黄无遮挡网站| 精品人妻偷拍中文字幕| 亚洲五月婷婷丁香| 国语自产精品视频在线第100页| 日本a在线网址| tocl精华| 老司机深夜福利视频在线观看| or卡值多少钱| 欧美高清成人免费视频www| 19禁男女啪啪无遮挡网站| 中文字幕久久专区| 国产精品一区二区三区四区久久| 亚洲在线自拍视频| 色吧在线观看| 国产aⅴ精品一区二区三区波| 久久这里只有精品中国| 国产精品久久久久久久久免 | 一本综合久久免费| 俄罗斯特黄特色一大片| netflix在线观看网站| 90打野战视频偷拍视频| netflix在线观看网站| 亚洲狠狠婷婷综合久久图片| 一级毛片高清免费大全| 亚洲熟妇熟女久久| 亚洲在线自拍视频| 亚洲av成人av| 尤物成人国产欧美一区二区三区| 日韩欧美精品v在线| 国产v大片淫在线免费观看| 2021天堂中文幕一二区在线观| 老司机午夜十八禁免费视频| 欧美一区二区精品小视频在线| 成人av在线播放网站| 嫩草影视91久久| 18禁黄网站禁片午夜丰满| 日韩免费av在线播放| 国产麻豆成人av免费视频| 国产精品久久久久久亚洲av鲁大| 夜夜夜夜夜久久久久| 日本与韩国留学比较| 老司机午夜福利在线观看视频| 一级a爱片免费观看的视频| 欧洲精品卡2卡3卡4卡5卡区| 久久精品国产亚洲av香蕉五月| 精品久久久久久久久久久久久| 欧美在线黄色| 色尼玛亚洲综合影院| 国产91精品成人一区二区三区| 高潮久久久久久久久久久不卡| 欧美一区二区国产精品久久精品| 18+在线观看网站| 精品免费久久久久久久清纯| 99久久九九国产精品国产免费| 欧美黑人巨大hd| 精品福利观看| 一本久久中文字幕| 变态另类成人亚洲欧美熟女| 成年人黄色毛片网站| 91久久精品电影网| 久9热在线精品视频| 午夜福利高清视频| 久9热在线精品视频| av中文乱码字幕在线| 亚洲第一欧美日韩一区二区三区| 午夜福利欧美成人| 丰满人妻熟妇乱又伦精品不卡| 免费电影在线观看免费观看| 看免费av毛片| 久久久精品欧美日韩精品| 欧美日韩国产亚洲二区| 日日干狠狠操夜夜爽| 波野结衣二区三区在线 | 亚洲天堂国产精品一区在线| 美女高潮喷水抽搐中文字幕| 成人欧美大片| 国产精品精品国产色婷婷| 成人永久免费在线观看视频| 色播亚洲综合网| 精品国产超薄肉色丝袜足j| 亚洲人成电影免费在线| av中文乱码字幕在线| 特大巨黑吊av在线直播| 国产欧美日韩一区二区三| 黑人欧美特级aaaaaa片| 天堂动漫精品| 午夜日韩欧美国产| 日韩欧美免费精品| 欧美不卡视频在线免费观看| 18美女黄网站色大片免费观看| 身体一侧抽搐| 在线观看日韩欧美| 无遮挡黄片免费观看| 国内久久婷婷六月综合欲色啪| 国产成年人精品一区二区| 午夜免费男女啪啪视频观看 | 美女 人体艺术 gogo| 亚洲成人精品中文字幕电影| 精品久久久久久成人av| 欧美黄色片欧美黄色片| a级一级毛片免费在线观看| 国产黄色小视频在线观看| 欧美最新免费一区二区三区 | 亚洲性夜色夜夜综合| 国产精品国产高清国产av| 国产成人影院久久av| 免费在线观看影片大全网站| 国产成人aa在线观看| 久久人人精品亚洲av|