臧明泉,任建琳,靖琳,陶靈佳,桂奕文,閻國(guó)良,李寧
(上海中醫(yī)藥大學(xué)附屬市中醫(yī)醫(yī)院,上海200071)
外泌體是一種直徑在30~150 nm的囊性小泡,人體幾乎所有細(xì)胞都可以分泌外泌體。外泌體含多種功能性核酸和蛋白質(zhì),其物質(zhì)轉(zhuǎn)運(yùn)和信息傳遞的功能影響細(xì)胞生長(zhǎng)分化[1],在多種疾病特別是腫瘤研究中逐漸成為熱點(diǎn)[2,3]。腫瘤的生長(zhǎng)涉及多種機(jī)制,包括血管新生、上皮間質(zhì)轉(zhuǎn)化(EMT)、化療耐藥、免疫逃逸、基質(zhì)降解等[4],相關(guān)外泌體研究均涉及上述機(jī)制[5]。此前諸多研究報(bào)道外泌體具有促進(jìn)腫瘤進(jìn)展的作用,隨后外泌體抑制腫瘤生長(zhǎng)和轉(zhuǎn)移的作用被證實(shí)。探討外泌體在腫瘤免疫調(diào)控、EMT、血管生成過(guò)程中的雙重作用,有助于揭示和理解外泌體在腫瘤發(fā)生、進(jìn)展中的復(fù)雜作用?,F(xiàn)就相關(guān)研究進(jìn)展綜述如下。
體內(nèi)免疫調(diào)節(jié)對(duì)清除腫瘤細(xì)胞、抑制腫瘤生長(zhǎng)意義顯著。多項(xiàng)研究表明外泌體參與了腫瘤細(xì)胞特異性識(shí)別、DC細(xì)胞抗原呈遞、T細(xì)胞殺傷、細(xì)胞自噬的過(guò)程。
1.1 外泌體促瘤性免疫調(diào)控 骨髓衍生抑制細(xì)胞的生長(zhǎng)受到骨髓基質(zhì)細(xì)胞外泌體的影響。骨髓衍生抑制細(xì)胞在融合骨髓基質(zhì)細(xì)胞外泌體后,信號(hào)通路中的STAT3和STAT1被激活,抗凋亡蛋白Bcl-xL、Mcl-1表達(dá)上調(diào),且骨髓衍生抑制細(xì)胞釋放NO增多,從而增強(qiáng)對(duì)T細(xì)胞的抑制[6]。卵巢癌源外泌體通過(guò)作用外周血中的淋巴細(xì)胞,調(diào)控其分泌的促炎因子、免疫刺激因子或免疫抑制因子水平,促進(jìn)卵巢癌細(xì)胞免疫逃逸。Li等[7]將來(lái)源于卵巢癌和良性卵巢囊腫的外泌體分別添加到外周血淋巴細(xì)胞中,經(jīng)檢測(cè)發(fā)現(xiàn)有26種基因表達(dá)增高以及2種基因表達(dá)下調(diào),26種表達(dá)增高的基因主要有促炎因子、免疫刺激因子、免疫抑制因子(如CCL2/4/5/18、CXCL1/2/5/8/10/11、IL1B/2/6/12A、VEGFA),而表達(dá)下調(diào)的2種基因?yàn)榭乖岢驶騂LA-A和HLA-B,這種外泌體介導(dǎo)的基因表達(dá)調(diào)控極有可能是通過(guò)激活干擾素和NF-κB信號(hào)通路實(shí)現(xiàn)的;隨后研究者發(fā)現(xiàn)良性卵巢囊腫腹腔沖洗物相比卵巢癌患者惡性腹水來(lái)源的淋巴細(xì)胞核中P65和IRF5呈高表達(dá)。外泌體除了能夠調(diào)節(jié)上述免疫因子外,還可抑制免疫性細(xì)胞毒性反應(yīng)。通常上皮性卵巢癌生長(zhǎng)受免疫性細(xì)胞毒性作用的抑制,該抑制途徑包括NKG2D受體/配體通路和DNAM-1-PVR/nectin-2通路。有研究發(fā)現(xiàn),上皮卵巢癌瘤體、上皮卵巢癌細(xì)胞系培養(yǎng)基上清液以及卵巢癌患者腹水來(lái)源的外泌體中NKG2D蛋白配體呈差異性表達(dá),而DNAM-1配體含量較少;外周血單核細(xì)胞在獲取卵巢癌來(lái)源的外泌體后其介導(dǎo)的細(xì)胞毒性反應(yīng)被抑制,這主要是通過(guò)外泌體NKG2D蛋白配體與接受細(xì)胞中的相應(yīng)受體反應(yīng);下調(diào)外周血單核細(xì)胞中的NKG2D受體蛋白表達(dá),減弱該蛋白介導(dǎo)的細(xì)胞毒性,將使單核細(xì)胞對(duì)卵巢上皮細(xì)胞的殺傷力受到抑制[8]。
1.2 外泌體抑瘤性免疫調(diào)控 由于外泌體內(nèi)容和功能通常受其來(lái)源細(xì)胞的影響,通過(guò)大量分離來(lái)源于T細(xì)胞又具有抗原識(shí)別功能的外泌體作用于腫瘤細(xì)胞從而發(fā)揮直接免疫攻擊作用,這在腫瘤臨床治療相關(guān)研究中得到了廣泛關(guān)注[9]。腫瘤細(xì)胞來(lái)源的外泌體承載母細(xì)胞癌性抗原這一特性是利用疫苗靶向作用抗癌的基礎(chǔ)。Koyama等[10]將表達(dá)肺結(jié)核分歧桿菌的質(zhì)粒導(dǎo)入黑色素瘤細(xì)胞株B16中,分離提純既含有B16細(xì)胞致癌性又含有肺分歧桿菌抗原(早期分泌性抗原靶-6)的外泌體,將其注入到B16細(xì)胞移植瘤小鼠的足底,發(fā)現(xiàn)可加強(qiáng)小鼠體內(nèi)對(duì)瘤體細(xì)胞和早期分泌性抗原靶-6的免疫反應(yīng);若將外泌體注入到小鼠瘤體內(nèi),瘤體生長(zhǎng)受到顯著抑制。在外泌體內(nèi)含有足夠多致癌性抗原的條件下,即使外泌體內(nèi)不含主要組織相容性復(fù)合體Ⅰ分子亦不影響B(tài)淋巴細(xì)胞誘導(dǎo)效應(yīng)T細(xì)胞[11]。來(lái)源于拓泊替康作用后乳腺癌細(xì)胞的外泌體內(nèi)含有特異性DNA,這種特異性DNA可通過(guò)作用于STING蛋白(一種有利于激活免疫反應(yīng)的天然免疫接頭蛋白[12])介導(dǎo)樹(shù)突狀細(xì)胞激活,增強(qiáng)抗腫瘤免疫反應(yīng)[13]。
EMT是指上皮細(xì)胞完成具有侵襲和轉(zhuǎn)移等間質(zhì)細(xì)胞特性的轉(zhuǎn)化,它是腫瘤細(xì)胞侵襲轉(zhuǎn)移和遠(yuǎn)處播散的關(guān)鍵步驟之一[14]。外泌體通過(guò)調(diào)控Vimentin蛋白(EMT標(biāo)志蛋白)影響受體細(xì)胞EMT而調(diào)節(jié)受體細(xì)胞侵襲轉(zhuǎn)移。有學(xué)者[15]從晚期肺癌患者血清和高侵襲性肺癌細(xì)胞及低侵襲性肺癌細(xì)胞中分別分離提取外泌體,發(fā)現(xiàn)前兩者源外泌體中Vimentin、N-cadherin蛋白高表達(dá);將高侵襲性肺癌細(xì)胞株P(guān)C14HM及低侵襲性肺癌細(xì)胞株P(guān)C14源外泌體分別作用于正常支氣管上皮細(xì)胞后,發(fā)現(xiàn)PC14HM細(xì)胞源外泌體作用的支氣管上皮細(xì)胞的侵襲和遷移能力強(qiáng)于PC14細(xì)胞源外泌體作用的支氣管上皮細(xì)胞,并且前者的Vimentin、N-cadherin蛋白表達(dá)更高;研究人員還發(fā)現(xiàn)與正常人相比肺癌患者血漿中外泌體Vimentin蛋白水平顯著升高,并將外泌體對(duì)照組、外泌體Vimentin沉默組、siRNA陰性對(duì)照組的外泌體分別作用于人支氣管上皮細(xì)胞,發(fā)現(xiàn)細(xì)胞遷移能力在Vimentin沉默組、siRNA陰性對(duì)照組、外泌體對(duì)照組依次增高,明確了肺癌細(xì)胞分泌的外泌體能夠通過(guò)Vimentin蛋白促進(jìn)EMT而促進(jìn)侵襲轉(zhuǎn)移[15]。
腫瘤成纖維細(xì)胞釋放的外泌體被惡性細(xì)胞細(xì)胞攝取后,其EMT傾向顯著增強(qiáng)[16]。來(lái)自T細(xì)胞的外泌體對(duì)放療后人食管鱗狀癌細(xì)胞株TE13的增殖和侵襲轉(zhuǎn)移方面有著不一致的作用。TE13細(xì)胞在與T細(xì)胞來(lái)源外泌體共培養(yǎng)后,其增殖能力受到抑制,而侵襲遷移能力增強(qiáng)。研究人員提取受T細(xì)胞源外泌體影響后的TE13細(xì)胞中的蛋白,檢測(cè)后發(fā)現(xiàn)與促進(jìn)EMT相關(guān)的β-catenin、NF-κB及snail蛋白表達(dá)上調(diào),即T細(xì)胞來(lái)源的外泌體可能是通過(guò)上調(diào)β-catenin/NF-κB/snail信號(hào)通路蛋白表達(dá)而促進(jìn)TE13細(xì)胞EMT進(jìn)而導(dǎo)致侵襲轉(zhuǎn)移[17]。
血管生成是腫瘤增殖和侵襲轉(zhuǎn)移的重要環(huán)節(jié)。多種蛋白與血管生成密切相關(guān),例如經(jīng)典的VEGFs、表皮生長(zhǎng)因子受體家族(EGFRs)及內(nèi)皮細(xì)胞分泌的血管抑制蛋白1(Vasohibin-1)[18,19]。近來(lái)與血管新生相關(guān)的外泌體及蛋白不斷涌現(xiàn),如前列腺源外泌體中活性氧簇、慢性粒細(xì)胞白血病細(xì)胞株K562源外泌體與磷酸化Scr蛋白等,這對(duì)揭示腫瘤血管生成機(jī)制并尋找抗癌新靶點(diǎn)意義深遠(yuǎn)[20,21]。
3.1 外泌體促進(jìn)血管生成 現(xiàn)已證實(shí)膜聯(lián)蛋白(Annexin Ⅱ)在腫瘤細(xì)胞分泌的外泌體中高度表達(dá)。研究[22]表明,相對(duì)于正常細(xì)胞,乳腺癌細(xì)胞中Annexin Ⅱ高表達(dá),且乳腺癌源外泌體中Annexin Ⅱ能夠促進(jìn)tPA依賴的血管生成,這一作用得到體內(nèi)體外實(shí)驗(yàn)結(jié)果支持。HEF野生型人神經(jīng)母細(xì)胞瘤細(xì)胞源外泌體能夠增加有利于血管新生及腫瘤耐藥的蛋白分泌[23]??沟蛲龌虻鞍譎AX-1在多種腫瘤細(xì)胞中表達(dá),其有助于腫瘤細(xì)胞侵襲。一項(xiàng)研究[24]發(fā)現(xiàn)HAX-1在鼻咽癌細(xì)胞中高表達(dá)且與鼻咽癌患者的淋巴結(jié)轉(zhuǎn)移及預(yù)后密切相關(guān);進(jìn)一步研究表明鼻咽癌細(xì)胞源外泌體中HAX-1呈高水平,且HAX-1能夠增強(qiáng)人臍靜脈內(nèi)皮細(xì)胞的血管新生能力,這表明鼻咽癌細(xì)胞源外泌體中的HAX-1促進(jìn)血管新生可能是其有利于鼻咽癌生長(zhǎng)轉(zhuǎn)移的因素。有學(xué)者[25]發(fā)現(xiàn)人膠質(zhì)母細(xì)胞瘤株U251源外泌體促進(jìn)人腦微血管內(nèi)皮細(xì)胞血管生成的能力與其載有多種促血管生成蛋白密切相關(guān),這些促血管生成蛋白主要包括明膠酶、纖溶酶原激活劑、VEGF、TGF-β及CXCR4趨化因子受體。另一項(xiàng)研究同樣支持腫瘤細(xì)胞源外泌體可促進(jìn)血管生成。Hsu等[26]的研究揭示了缺氧條件下的肺癌細(xì)胞不僅產(chǎn)生更多外泌體,而且外泌體中miRNA-23a表達(dá)亦升高;缺氧肺癌細(xì)胞源外泌體中的miRNA-23a能夠作用于受體表皮細(xì)胞內(nèi)的脯氨酰羥化酶1、2,導(dǎo)致細(xì)胞內(nèi)缺氧誘導(dǎo)因子1(HIF-1)水平升高,有利于血管新生;此外,miRNA-23a尚能直接抑制緊密連接蛋白ZO-1表達(dá),導(dǎo)致血管通透性增高、肺癌細(xì)胞跨血管遷移。
3.2 外泌體抑制血管生成 與上述作用相反,Pakravan等[27]發(fā)現(xiàn)間質(zhì)干細(xì)胞源的外泌體能夠通過(guò)靶向mTOR/HIF-1α/VEGF信號(hào)通路而抑制乳腺癌細(xì)胞血管生成,并且該抑制作用與外泌體劑量成正比;發(fā)揮抑制作用的關(guān)鍵是間質(zhì)干細(xì)胞源外泌體內(nèi)的miRNA-100轉(zhuǎn)入乳腺癌細(xì)胞,如果miRNA-100被敲除,VEGF生成抑制的作用將被解除。Yang等[28]研究亦證明外泌體可抑制腫瘤血管新生,且靶點(diǎn)為VEFGR2。研究人員從受瘧原蟲(chóng)感染小鼠血漿中分離純化外泌體,將這些外泌體注入肺癌細(xì)胞株Lewis荷瘤小鼠體內(nèi),與對(duì)照組相比,瘧原蟲(chóng)感染源外泌體能顯著抑制瘤體生長(zhǎng);體外實(shí)驗(yàn)中發(fā)現(xiàn),瘧原蟲(chóng)感染源外泌體與表皮細(xì)胞培養(yǎng)后能抑制細(xì)胞中VEGFR2的表達(dá)和表皮細(xì)胞遷移。該學(xué)者還發(fā)現(xiàn)瘧原蟲(chóng)感染源外泌體內(nèi)含有的miRNA-16/322/497/17是抑制血管生成的決定性因素。
隨著外泌體分離及鑒定等相關(guān)技術(shù)的發(fā)展,外泌體相關(guān)研究會(huì)在多種腫瘤防治層面得到體現(xiàn),如外泌體對(duì)腫瘤細(xì)胞信號(hào)通路調(diào)控和關(guān)鍵蛋白表達(dá)的影響,特異性外泌體在腫瘤診斷、預(yù)后及治療評(píng)估中的應(yīng)用,外泌體作為納米級(jí)抗腫瘤藥物載體的應(yīng)用,以及外泌體作為疫苗用于免疫治療等。此外,在調(diào)節(jié)外泌體水平抗腫瘤的相關(guān)中醫(yī)藥研究中亦有許多抗腫瘤中藥單體涌現(xiàn)。中藥復(fù)方與外泌體相結(jié)合有利于發(fā)揮抗腫瘤多靶點(diǎn)優(yōu)勢(shì),其縱向具體機(jī)制將會(huì)在后續(xù)研究中得到進(jìn)一步揭示。值得關(guān)注的是外泌體具有雙重或多元效應(yīng),不同來(lái)源或載有不同核酸和蛋白的外泌體對(duì)同一類(lèi)型腫瘤細(xì)胞有著雙重影響,甚至相同來(lái)源的外泌體對(duì)腫瘤細(xì)胞增殖和侵襲作用并不一致。外泌體在人體體液中廣泛存在,參與或介導(dǎo)腫瘤細(xì)胞生長(zhǎng)、侵襲和遷移、耐藥、免疫逃逸、細(xì)胞凋亡等多個(gè)環(huán)節(jié),深入研究外泌體并揭示其作用機(jī)制有利于推動(dòng)外泌體在腫瘤早期診斷和臨床治療中的應(yīng)用。
參考文獻(xiàn):
[1] Qin Y, Peng Y, Zhao W, et al. Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: A novel mechanism in muscle-bone communication[J]. Biol Chem, 2017,292(26):11021-11033.
[2] Agarwal U, George A, Bhutani S, et al. Experimental, systems, and computational approaches to understanding the microRNA-mediated reparative potential of cardiac progenitor cell-derived exosomes from pediatric patients[J]. Circ Res, 2017,120(4):701-712.
[3] Chen JJ, Zhao B, Zhao J, et al. Potential roles of exosomal microRNAs as diagnostic biomarkers and therapeutic application in alzheimer′s disease[J]. Neural Plast, 2017:7027380.
[4] Mirzaei H, Sahebkar A, Jaafari MR, et al. Diagnostic and therapeutic potential of exosomes in cancer: the beginning of a new tale[J]. Cell Physiol, 2017,232(12):3251-3260.
[5] Patel GK, Khan MA, Bhardwaj A, et al. Exosomes confer chemoresistance to pancreatic cancer cells by promoting ROS detoxification and miR-155-mediated suppression of key gemcitabine-metabolising enzyme, DCK[J]. Br J Cancer, 2017,116(5):609-619.
[6] Wang J, De Veirman K, De Beule N, et al. The bone marrow microenvironment enhances multiple myeloma progression by exosome-mediated activation of myeloid-derived suppressor cells[J]. Oncotarget, 2015,6(41):43992-44004.
[7] Li Y, Yang Y, Xiong A, et al. Comparative gene expression analysis of lymphocytes treated with exosomes derived from ovarian cancer and ovarian cysts[J]. Front Immunol, 2017,8:607.
[8] Labani-Motlagh A, Israelsson P, Ottander U, et al. Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity[J]. Tumour Biol, 2016,37(4):5455-5466.
[9] Tang XJ, Sun XY, Huang KM, et al. Therapeutic potential of CAR-T cell-derived exosomes: a cell-free modality for targeted cancer therapy[J]. Oncotarget, 2015,6(42):44179-44190.
[10] Koyama Y, Ito T, Hasegawa A, et al. Exosomes derived from tumor cells genetically modified to express Mycobacterium tuberculosis antigen: a novel vaccine for cancer therapy[J]. Biotechnol Lett, 2016,38(11):1857-1866.
[11] Hiltbrunner S, Larssen P, Eldh M, et al. Exosomal cancer immunotherapy is independent of MHC molecules on exosomes[J]. Oncotarget, 2016,7(25):38707-38717.
[12] Ouyang S, Song X, Wang Y, et al. Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding[J]. Immunity, 2012,36(6):1073-1086.
[13] Kitai Y, Kawasaki T, Sueyoshi T, et al. DNA-containing exosomes derived from cancer cells treated with topotecan activate a STING-dependent pathway and reinforce antitumor immunity[J]. J Immunol, 2017,198(4):1649-1659.
[14] Chen J, Cao SW, Cai Z, et al. Epithelial-mesenchymal transition phenotypes of circulating tumor cells correlate with the clinical stages and cancer metastasis in hepatocellular carcinoma patients[J]. Cancer Biomark, 2017,20(4):487-498.
[15] Rahman MA, Barger JF, Lovat F, et al. Lung cancer exosomes as drivers of epithelial mesenchymal transition[J]. Oncotarget, 2016,7(34):54852-54866.
[16] Donnarumma E, Fiore D, Nappa M, et al. Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer[J]. Oncotarget, 2017,8(12):19592-19608.
[17] Min H, Sun X, Yang X, et al. Exosomes derived from irradiated esophageal carcinoma-infiltrating T cells promote metastasis by inducing the epithelial-mesenchymal transition in esophageal cancer cells[J]. Pathol Oncol Res, 2017,24(1):11-18.
[18] Du H, Zhao J, Hai L, et al. The roles of vasohibin and its family members: beyond angiogenesis modulators[J]. Cancer Biol Ther, 2017,18(11):827-832.
[19] Wang J, Chen J, Guo Y, et al. Strategies targeting angiogenesis in advanced non-small cell lung cancer[J]. Oncotarget, 2017,8(32):53854-53872.
[20] Alcayaga-Miranda F, Gonzalez PL, Lopez-Verrilli A, et al. Prostate tumor-induced angiogenesis is blocked by exosomes derived from menstrual stem cells through the inhibition of reactive oxygen species[J]. Oncotarget, 2016,7(28):44462-44477.
[21] Huaitong X, Yuanyong F, Yueqin T, et al. Microvesicles releasing by oral cancer cells enhance endothelial cell angiogenesis via Shh/RhoA signaling pathway[J]. Cancer Biol Ther, 2017,18(10):783-791.
[22] Maji S, Chaudhary P, Akopova I, et al. Exosomal annexin II promotes angiogenesis and breast cancer metastasis[J]. Mol Cancer Res, 2017,15(1):93-105.
[23] Mrowczynski OD, Madhankumar AB, Slagle-Webb B, et al. HFE genotype affects exosome phenotype in cancer[J]. Biochim Biophys Acta, 2017,1861(8):1921-1928.
[24] You B, Cao X, Shao X, et al. Clinical and biological significance of HAX-1 overexpression in nasopharyngeal carcinoma[J]. Oncotarget, 2016,7(11):12505-24.
[25] Giusti I, Delle MS, Di FM, et al. From glioblastoma to endothelial cells through extracellular vesicles: messages for angiogenesis[J]. Tumour Biol, 2016,37(9):12743-12753.
[26] Hsu YL, Hung JY, Chang WA, et al. Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1[J]. Oncogene, 2017,36(34):4929-4942.
[27] Pakravan K, Babashah S, Sadeghizadeh M, et al. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells[J]. Cell Oncol, 2017,40(5):1-14.
[28] Yang Y, Liu Q, Lu J, et al. Exosomes from Plasmodium-infected hosts inhibit tumor angiogenesis in a murine Lewis lung cancer model[J]. Oncogenesis, 2017,6(6):e351.