李楠靜,劉明,張又,何菲
(1成都中醫(yī)藥大學(xué)臨床醫(yī)學(xué)院,成都610072;2四川大學(xué)華西醫(yī)院)
Rho GTP酶(Rho GTPases)屬于Ras超家族,是細(xì)胞內(nèi)重要的信號(hào)分子,主要包括Rho(RhoA、RhoB、RhoC、RhoE)、Rac、Cdc42三個(gè)亞家族[1,2]。Rho GTPases能夠接收多種刺激信號(hào),參與調(diào)控細(xì)胞骨架重組、細(xì)胞黏附和移動(dòng)、細(xì)胞周期、基因轉(zhuǎn)錄、物質(zhì)轉(zhuǎn)運(yùn)等多種生理過(guò)程[3,4]。Rho家族與腫瘤的發(fā)生發(fā)展密切相關(guān),可以促進(jìn)細(xì)胞增殖和腫瘤血管壁發(fā)育,能夠阻斷細(xì)胞凋亡信號(hào)轉(zhuǎn)導(dǎo)途徑從而抑制細(xì)胞凋亡[5~7]。耐藥性形成是導(dǎo)致腫瘤治療效果不佳的重要原因之一,深入研究Rho GTPases信號(hào)轉(zhuǎn)導(dǎo)通路中的信號(hào)分子與腫瘤細(xì)胞耐藥性的關(guān)系[8,9],可為尋找降低腫瘤耐藥性的靶點(diǎn)提供理論參考?,F(xiàn)就Rho GTPases與腫瘤細(xì)胞耐藥性的關(guān)系研究進(jìn)展綜述如下。
RhoA是Rho家族中重要的信號(hào)分子,可通過(guò)其下游效應(yīng)分子Rho相關(guān)激酶(ROCK)調(diào)節(jié)肌動(dòng)蛋白對(duì)細(xì)胞外信號(hào)的反應(yīng)[10],通過(guò)磷脂酰肌醇3激酶(PI3K)調(diào)節(jié)細(xì)胞增殖和代謝,在腫瘤的發(fā)生發(fā)展過(guò)程中起促進(jìn)作用。大量研究發(fā)現(xiàn)RhoA在胃癌、結(jié)腸癌、卵巢癌、乳腺癌等腫瘤組織中表達(dá)高于正常組織[11]。
Korourian等[12]觀察了RhoA表達(dá)變化對(duì)胃癌細(xì)胞惡性生物學(xué)表型及耐藥性的影響,先是發(fā)現(xiàn)胃癌細(xì)胞MKN-45中RhoA呈高表達(dá),通過(guò)轉(zhuǎn)染miR-31下調(diào)RhoA表達(dá)后,發(fā)現(xiàn)轉(zhuǎn)染miR-31組與對(duì)照組相比胃癌細(xì)胞增殖、遷移、侵襲能力受到抑制,同時(shí)胃癌細(xì)胞對(duì)5-氟尿嘧啶(5-FU)的藥物敏感性增強(qiáng)、耐藥性降低。
Sophie等[13]進(jìn)一步研究了RhoA與腫瘤細(xì)胞耐藥性形成的關(guān)系,他們將結(jié)腸癌細(xì)胞系HT29進(jìn)行阿霉素(ADR)誘導(dǎo)處理后建立了結(jié)腸癌阿霉素耐藥細(xì)胞系,轉(zhuǎn)染RhoA siRNA后發(fā)現(xiàn)親代細(xì)胞和耐藥細(xì)胞系對(duì)阿霉素的敏感性均較轉(zhuǎn)染前顯著增加;進(jìn)一步研究發(fā)現(xiàn),RhoA被沉默后核因子-κB(NF-κB)通路的活性加強(qiáng),引起一氧化氮合酶(NOS)激活,多藥耐藥相關(guān)蛋白3(MRP3)和P糖蛋白(P-gp)被硝化、蛋白活性降低,表明RhoA表達(dá)被抑制后導(dǎo)致細(xì)胞膜轉(zhuǎn)運(yùn)蛋白P-gp、MRP3表達(dá)也下調(diào),通過(guò)膜轉(zhuǎn)運(yùn)蛋白向細(xì)胞外運(yùn)輸?shù)幕熕幬餃p少,腫瘤細(xì)胞內(nèi)藥物濃度增加,故而耐藥性降低。
Huang等[14]建立了結(jié)腸癌伊利替康耐藥細(xì)胞系,發(fā)現(xiàn)在耐藥細(xì)胞系中RhoA表達(dá)上調(diào),而轉(zhuǎn)染RhoA siRNA的耐藥細(xì)胞系其對(duì)奧沙利鉑(L-OHP)、表阿霉素(EPI)、長(zhǎng)春新堿(VCR)、順鉑(DDP)、5-FU、依托泊苷(VP-16)和紫杉醇(PTX)等幾種藥物的敏感性遠(yuǎn)高于轉(zhuǎn)染對(duì)照序列的耐藥細(xì)胞系,耐藥性降低。學(xué)者進(jìn)一步檢測(cè)發(fā)現(xiàn)轉(zhuǎn)染RhoA siRNA的耐藥細(xì)胞系中細(xì)胞膜轉(zhuǎn)運(yùn)蛋白P-gp、多藥耐藥相關(guān)蛋白1(MRP1)和谷胱甘肽S轉(zhuǎn)移酶P1(GSTP1)蛋白表達(dá)水平低于轉(zhuǎn)染對(duì)照序列的耐藥細(xì)胞系,Bcl-xL、Bcl-2的表達(dá)降低而B(niǎo)ax的表達(dá)增高。上述結(jié)果說(shuō)明RhoA表達(dá)被抑制后細(xì)胞膜轉(zhuǎn)運(yùn)蛋白P-gp和MRP1的表達(dá)水平降低,細(xì)胞內(nèi)化療藥物濃度增加,對(duì)腫瘤細(xì)胞殺傷作用增強(qiáng),腫瘤細(xì)胞對(duì)多種化療藥物的耐藥性降低;GSTP1表達(dá)下調(diào),可減少化療藥物與谷胱甘肽(GSH)結(jié)合引起的藥物外排,增加細(xì)胞內(nèi)藥物濃度從而降低耐藥性;同時(shí),抑制凋亡基因Bcl-xL、Bcl-2表達(dá)下調(diào)而促進(jìn)凋亡基因Bax表達(dá)增高,可促進(jìn)結(jié)腸癌細(xì)胞凋亡,降低結(jié)腸癌細(xì)胞對(duì)多種化療藥物的耐藥性。
RhoB作為重要信號(hào)分子主要存在于溶酶體膜或核膜,能夠直接參與細(xì)胞表面受體的各種運(yùn)輸,同時(shí)介導(dǎo)多條與腫瘤惡性轉(zhuǎn)化及生長(zhǎng)有關(guān)的重要信號(hào)通路[15]。與大多數(shù)Rho家族蛋白促進(jìn)細(xì)胞增殖及惡性轉(zhuǎn)化不同,RhoB在腫瘤發(fā)生發(fā)展中主要起到負(fù)性調(diào)控作用[16]。
Tamara等[17]將人喉癌細(xì)胞系HEp-2進(jìn)行順鉑誘導(dǎo)處理后建立了喉癌順鉑耐藥細(xì)胞系,發(fā)現(xiàn)耐藥細(xì)胞系中RhoB mRNA及蛋白表達(dá)明顯低于親代細(xì)胞系,轉(zhuǎn)染RhoB基因的耐藥細(xì)胞系對(duì)順鉑的敏感性增強(qiáng)、耐藥性降低,而轉(zhuǎn)染RhoB siRNA的親代細(xì)胞系對(duì)順鉑的敏感性下降;進(jìn)一步研究發(fā)現(xiàn)RhoB通過(guò)激活胞外信號(hào)調(diào)節(jié)激酶(ERK)信號(hào)通路影響喉癌細(xì)胞對(duì)順鉑的耐藥性。
Olivier等[18]的研究表明RhoB不僅可降低腫瘤細(xì)胞對(duì)傳統(tǒng)化療藥物的耐藥性,對(duì)靶向治療藥物的耐藥性也有影響。臨床觀察中發(fā)現(xiàn)雖然攜帶表皮生長(zhǎng)因子受體(EGFR)基因突變的非小細(xì)胞肺癌(NSCLC)患者能夠受益于靶向治療藥物表皮生長(zhǎng)因子受體酪氨酸酶抑制劑(EGFR-TKI),但較大比例患者因耐藥引起腫瘤復(fù)發(fā)的速度也比較快。RhoB在肺癌的形成中起到重要作用,也影響患者對(duì)EGFR-TKI的療效反應(yīng)。有學(xué)者對(duì)EGFR突變的肺癌患者進(jìn)行研究發(fā)現(xiàn),RhoB低表達(dá)患者相較于RhoB高表達(dá)的患者對(duì)EGFR-TKI的治療反應(yīng)更好,且RhoB低表達(dá)組的肺癌小鼠對(duì)EGFR-TKI也有更好的反應(yīng)。體內(nèi)外實(shí)驗(yàn)中都發(fā)現(xiàn)RhoB高表達(dá)組可通過(guò)激活蛋白質(zhì)絲氨酸蘇氨酸激酶(AKT)信號(hào)通路來(lái)增加腫瘤對(duì)EGFR-TKI靶向藥物的耐藥性;而針對(duì)RhoB高表達(dá)組使用EGFR-TKI藥物厄洛替尼聯(lián)合新的AKT抑制劑后發(fā)現(xiàn)腫瘤細(xì)胞凋亡增多,腫瘤組織增長(zhǎng)減慢,比單用厄洛替尼效果更好,提示RhoB通過(guò)激活A(yù)KT信號(hào)通路影響非小細(xì)胞肺癌對(duì)EGFR-TKI的耐藥性。
RhoE是Rho家族中一個(gè)獨(dú)特的分子,它可以結(jié)合但不能水解GTP,一直處于持續(xù)活化的GTP結(jié)合狀態(tài)[19]。RhoE是細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)中的重要分子,可調(diào)控細(xì)胞骨架結(jié)構(gòu),降低細(xì)胞周期蛋白D1(Cyclin D1)的表達(dá)從而抑制細(xì)胞增殖并誘導(dǎo)凋亡,降低細(xì)胞周期蛋白B1(Cyclin B1)表達(dá)而使細(xì)胞停滯在G2/M期[20,21]。
Li等[22]將胃癌細(xì)胞系SGC7901進(jìn)行長(zhǎng)春新堿藥物誘導(dǎo)處理后建立了胃癌長(zhǎng)春新堿耐藥細(xì)胞系,發(fā)現(xiàn)耐藥細(xì)胞系中RhoE mRNA及蛋白的表達(dá)高于親代細(xì)胞系。將RhoE轉(zhuǎn)染入表達(dá)相對(duì)較低的親代胃癌細(xì)胞系SGC7901,發(fā)現(xiàn)轉(zhuǎn)染RhoE基因的細(xì)胞系對(duì)ADR、VCR、DDP、5-FU、VP-16和絲裂霉素(MMC)的藥物敏感性遠(yuǎn)低于轉(zhuǎn)染對(duì)照序列的細(xì)胞系,說(shuō)明轉(zhuǎn)染RhoE的細(xì)胞系對(duì)多種化療藥物的耐藥性更強(qiáng)。進(jìn)一步對(duì)耐藥機(jī)制進(jìn)行研究,發(fā)現(xiàn)過(guò)表達(dá)RhoE的細(xì)胞系與親代細(xì)胞相比,膜轉(zhuǎn)運(yùn)蛋白P-gp、MRP1的表達(dá)沒(méi)有明顯變化,凋亡相關(guān)蛋白Bcl-2、Caspase 7和DNA修復(fù)酶(PARP)的表達(dá)也沒(méi)有明顯變化,但促進(jìn)凋亡基因Bax的表達(dá)明顯下降;表明RhoE通過(guò)降低Bax基因的表達(dá),減少胃癌細(xì)胞凋亡,增強(qiáng)胃癌細(xì)胞對(duì)多種化療藥物的耐藥性。
Ma等[23]研究發(fā)現(xiàn)RhoE在肝細(xì)胞癌(HCC)中高表達(dá),RhoE通過(guò)激活下游ROCK信號(hào)通路增強(qiáng)肝癌細(xì)胞對(duì)順鉑的耐藥性。肝癌細(xì)胞體外實(shí)驗(yàn)和裸鼠移植瘤模型體內(nèi)實(shí)驗(yàn)結(jié)果顯示,RhoE是通過(guò)激活ROCK2信號(hào)分子而非ROCK1信號(hào)分子對(duì)肝細(xì)胞癌的耐藥性產(chǎn)生影響。ROCK2既能通過(guò)上調(diào)IL-6和IL-6受體表達(dá)激活Janus蛋白酪氨酸激酶2/轉(zhuǎn)錄激活子3(JAK2/STAT3)信號(hào)通路,也可通過(guò)增加NF-κB抑制蛋白(I-κB)的表達(dá)從而激活NF-κB信號(hào)通路,使細(xì)胞膜轉(zhuǎn)運(yùn)蛋白硝化、活性降低,肝癌細(xì)胞內(nèi)藥物濃度增加,肝癌細(xì)胞對(duì)順鉑的耐藥性降低。
細(xì)胞分裂周期蛋白42(Cdc42)作為Rho家族主要的信號(hào)分子之一,可促進(jìn)細(xì)胞分裂和生長(zhǎng)增殖,增強(qiáng)細(xì)胞間的黏附,促進(jìn)細(xì)胞骨架構(gòu)建和腫瘤血管壁生成,阻斷正常凋亡信號(hào)轉(zhuǎn)導(dǎo)途徑從而抑制凋亡,在腫瘤的發(fā)生發(fā)展過(guò)程中起到促進(jìn)作用,在消化系統(tǒng)腫瘤、頭頸部腫瘤、黑色素瘤等多種惡性腫瘤中表達(dá)增高[24]。
李楠靜等[25]將結(jié)腸癌細(xì)胞系SW480和Colo320進(jìn)行奧沙利鉑藥物誘導(dǎo)處理后建立了結(jié)腸癌奧沙利鉑耐藥細(xì)胞系,發(fā)現(xiàn)耐藥細(xì)胞系中Cdc42表達(dá)上調(diào);轉(zhuǎn)染Cdc42 siRNA的耐藥細(xì)胞系對(duì)L-OHP、ADR、VCR、DDP、5-FU和VP-16等幾種藥物的敏感性高于轉(zhuǎn)染對(duì)照序列的耐藥細(xì)胞系,轉(zhuǎn)染Cdc42基因的親代細(xì)胞系對(duì)多種化療藥物的敏感性低于轉(zhuǎn)染空載質(zhì)粒的親代細(xì)胞系;轉(zhuǎn)染Cdc42基因的親代細(xì)胞系中細(xì)胞膜轉(zhuǎn)運(yùn)蛋白P-gp、MRP1表達(dá)水平較轉(zhuǎn)染空載質(zhì)粒的親代細(xì)胞系相對(duì)較高,表明Cdc42過(guò)表達(dá)后P-gp、MRP1的表達(dá)水平增加,化療藥物外排增強(qiáng),結(jié)腸癌細(xì)胞內(nèi)化療藥物濃度降低,結(jié)腸癌細(xì)胞對(duì)藥物的耐藥性增強(qiáng)。
Liu等[26]研究發(fā)現(xiàn)經(jīng)過(guò)放療或化療后殘存的乳腺癌衰老細(xì)胞往往表現(xiàn)出對(duì)內(nèi)分泌藥物的耐藥性。進(jìn)一步研究發(fā)現(xiàn)乳腺癌衰老細(xì)胞MCF7中Cdc42高表達(dá),Cdc42在乳腺癌衰老細(xì)胞中通過(guò)激活ERK信號(hào)通路增加對(duì)內(nèi)分泌藥物的耐藥性;而將羥甲基戊二酰輔酶A(HMG-coA)還原酶抑制劑辛伐他汀作用于乳腺癌衰老細(xì)胞后,能夠抑制Cdc42和ERK信號(hào)通路分子的表達(dá),降低乳腺癌衰老細(xì)胞對(duì)內(nèi)分泌藥物的耐藥性,提高乳腺癌綜合治療的療效。
綜上所述,Rho GTPases可通過(guò)對(duì)細(xì)胞膜轉(zhuǎn)運(yùn)蛋白、凋亡相關(guān)蛋白、信號(hào)轉(zhuǎn)導(dǎo)通路相關(guān)分子等的調(diào)節(jié)來(lái)影響腫瘤細(xì)胞耐藥性。研究Rho GTPases與腫瘤細(xì)胞耐藥性之間的關(guān)系有助于我們更好地將基礎(chǔ)研究與臨床實(shí)踐相結(jié)合,降低傳統(tǒng)化療藥物、內(nèi)分泌藥物及靶向藥物的耐藥性,使更多的腫瘤患者受益,延長(zhǎng)生存期同時(shí)提高生活質(zhì)量。
參考文獻(xiàn):
[1] Wen SJ, Zhang W, Ni NN, et al. Expression of Rho GTPases family in melanoma cells and itsinfluence on cytoskeleton and migration [J]. Oncotarget, 2017,8(18):30112-30122.
[2] Blangy A. Tensins are versatile regulators of Rho GTPase signalling and cell adhesion[J]. BiolCell, 2017,109(3):115-126.
[3] Okada T, Sinha S, Esposito I, et al. The Rho GTPase Rnd1 suppresses mammary tumorigenesisand EMT by restraining Ras-MAPK signalling [J]. Nat Cell Biol, 2015,17(1):81-94.
[4] Hodge RG, Ridley AJ. Regulating Rho GTPases and their regulators[J]. Nat Rev Mol Cell Biol,2016,17(8):496-510.
[5] Maggio J, González N, Cardama GA, et al. Rho GTPases as molecular targets in cancer. Strategies and therapeutic opportunities [J]. Medicina (B Aires), 2017,77(6):497-504.
[6] Wei L, Surma M, Shi S, et al. Novel Insights into the Roles of Rho Kinase in Cancer[J]. Arch Immunol Ther Exp, 2016,64(4):259-278.
[7] Lai YJ, Tsai JC, Tseng YT, et al. Small G protein Rac GTPases regulate the maintenance ofglioblastoma stem-like cells in vitro and in vivo[J]. Oncotarget, 2017,8(11):18031-18049.
[8] Cardama GA, Gonzalez N, Maggio J, et al. Rho GTPases as therapeutic targets in cancer[J]. Int J Oncol, 2017,51(4):1025-1034.
[9] Mokady D, Meiri D. RhoGTPases-A novel link between cytoskeleton organization and cisplatin resistance[J]. Drug Resist Updat, 2015,19:22-32.
[10] Yang L, Dai F, Tang L, et al. Macrophage differentiation induced by PMA is mediated by activation of RhoA/ROCK signaling[J]. J Toxicol Sci, 2017,42(6):763-771.
[11] Zhang C, Wang HJ, Bao QC, et al. NRF2 promotes breast cancer cell proliferation and metastasis by increasing RhoA/ROCK pathway signal[J]. Oncotarget, 2016,7(45):73593-73606.
[12] Korourian A, Roudi R, Shariftabrizi A, et al. MicroRNA-31 inhibits RhoA-mediated tumor invasion and chemotherapy resistance in MKN-45 gastric adenocarcinoma cells[J]. Exp Biol Med, 2017,242(18):1842-1847.
[13] Sophie D, Chiara R, Claudia V, et al. RhoA Silencing reverts the resistance to doxorubicin in human colon cancer cells[J]. Mol Cancer Res, 2008,6(10):1607-1620.
[14] Ruihua H, Mengyi Z, Chong Z, et al. RhoA regulates resistance to irinotecan by regulating membrane transporter and apoptosis signaling in colorectal cancer[J]. Oncotarget, 2016,7(52):87136-87146.
[15] Nomikou E, Stournaras C, Kardassis D. Functional analysis of the promoters of the small GTPases RhoA and RhoB in embryonic stem cells[J]. Biochem Biophys Res Commun, 2017,491(3):754-759.
[16] Huang GX, Pan XY, Jin YD, et al. The mechanisms and significance of up-regulation of RhoB expression by hypoxia and glucocorticoid in rat lung and A549 cells[J]. J Cell Mol Med, 2016,20(7):1276-1286.
[17] Tamara C, Imbora Z, Gerhard F,et al. Downregulation of RhoB GTPase confers resistance to cisplatin in human laryngeal carcinoma cells[J]. Cancer Letters, 2010,295(2):182-190.
[18] Calvayrac O, Mazieres J, Figarol S, et al. The RAS-related GTPase RHOB confers resistance to EGFR-tyrosine kinase inhibitors in non-small-cell lung cancer via an AKT-dependent mechanism[J]. EMBO Mol Med, 2017,9(2):238-250.
[19] Wang H, Wang Y, Liang B, et al. The Rho GTPase RhoE exerts tumor-suppressing effects in human esophageal squamous cell carcinoma via negatively regulating epidermal growth factor receptor[J]. J Cancer Res Ther, 2016,12(Suppl):60-63.
[20] Jie W, Andrade KC, Lin X, et al. Pathophysiological Functions of Rnd3/RhoE[J]. Compr Physiol, 2015,6(1):169-186.
[21] Thuault S, Comunale F, Hasna J, et al. The RhoE/ROCK/ARHGAP25 signaling pathway controls cell invasion by inhibition of Rac activity[J]. Mol Biol Cell, 2016,27(17):2653-2661.
[22] Li K, Lu Y, Liang J, et al. RhoE enhances multidrug resistance of gastric cancer cells by suppressing Bax[J]. Biochem Biophys Res Commun, 2009,379(2):212-216.
[23] Ma W, Sze KM, Chan LK, et al. RhoE/ROCK2 regulates chemoresistance through NF-κB/IL-6/STAT3 signaling in hepatocellular carcinoma[J]. Oncotarget, 2016,7(27):41445-41459.
[24] He Y, Northey JJ, Pelletier A, et al. The Cdc42/Rac1 regulator CdGAP is a novel E-cadherin transcriptional co-repressor with Zeb2 in breast cancer[J].Oncogene, 2017,36(24):3490-3503.
[25] 李楠靜,劉楨,張又,等.小G蛋白Cdc42對(duì)人結(jié)腸癌奧沙利鉑耐藥細(xì)胞多藥耐藥性的影響[J].四川大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2011,42(4):466-470.
[26] Liu S, Uppal H, Demaria M, et al. Simvastatin suppresses breast cancer cell proliferation induced by senescent cell[J]. Sci Rep, 2015,5:17895.