• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Probabilistic Model Checking-Based Survivability Analysis in Vehicle-to-Vehicle Networks

    2018-03-12 12:12:35LiJinGuoanZhangJueWang
    China Communications 2018年1期

    Li Jin, Guoan Zhang*, Jue Wang

    School of Electronics and Information, Nantong University, Nantong 226019, China

    I. INTRODUCTION

    Vehicle-to-vehicle (V2V) networks are deployed to alert drivers to the safety-related events happening around, such as traffic slowdowns, road obstacles and the approaching of emergency vehicles. Due to the nature of wireless propagation, V2V networks are vulnerable to hacking attacks and/or channel fading, which could cause serious safety problems. For instance, a hacker may remotely take over the control of a car’s engine, brakes and even more functional units of the vehicle,making the target vehicle node fail to communicate with the other vehicle nodes in the network. On the other hand, deep channel fading between two vehicle nodes will suspend the communications on this link. Therefore,how to guarantee communications security for the V2V networks is important and has drawn considerable attentions in the research [1-7].

    Survivability is an important security measure in V2V networks. It reects the ability of a V2V network to accomplish communication in the existence of abnormal events (such as malicious attacks, network failures, accidents,etc.). In the literature, different approaches have been used to evaluate the survivability of various systems [8-11]. A quantitative survivability evaluation method was presented for wireless ad hoc networks in [12], where the excess packet loss caused by network failures was used as the survivability performance measure, thereafter, steady-state availability analysis and transient performance analysis were applied to the survivability model. In[13], the authors investigated the survivability for large-scale mobile ad hoc networks(MANETs), where numerical validation was applied to study the failure rate of each node.In [14], a reliability theory-based survivability evaluation approach was proposed for wireless sensor networks (WSNs), wherein the network availability, reliability and survival lifetime were investigated. Moreover, the availability and perform ability were discussed in terms of component failures and topological resilience for mesh network in [15]. In [16], the channel availability has been explored in the survivability model of vehicle ad hoc network(VANET).

    Most of the above-mentioned works rely on numerical simulation-based techniques. Differently, in this paper, we use the probabilistic model checking approach to model and analyze the survivability for V2V networks. By doing so, the advantages of the probabilistic model checking can be exploited, e.g., it can provide a rigorous formal model for the specification of V2V networks; additionally, the model checking approach is able to analyze all possible behaviours of V2V networks, which is more flexible than the numerical analysis commonly adopted in the literature.

    In this paper, we consider a general V2V network on the highway, consisting of multiple vehicle nodes. We use the infinite-state continuous-time Markov chain (CTMC) to describe the considered network architecture.Note that in the research of wireless and optical networks, a probabilistic Markov decision process model has been adopted in [17], and an undirected probabilistic graphical model is considered in [18]. However, when taking into account both the vehicle failure rate and the repair rate in our considered V2V network,these models in the literature fail to provide a satisfactory analysis framework. For this reason, we choose the probabilistic continuous-time Markov chain (CTMC) model in our analysis. Based on that, we apply two failure types (namely the node failure caused by external attacks on a target V2V node, and link failure caused by the channel fading/obstacle blocking in the communication link) to the CTMC model to study their impacts on the communication survivability. Furthermore, we use the PRISM (Probabilistic Symbolic Model Checker) [19-21] to model the CTMC, and use continuous stochastic logic (CSL) [22-24] to describe the corresponding survivability properties. The impacts of both failures on the network survivability are illustrated and compared.

    As a possible future extension, the proposed probabilistic model checking-based survivability evaluation method can be further applied to urban V2V networks, which have totally different architecture and characteristics as compared to the V2V networks on the highway scenario. New network architecture and transmission protocols are used to be exploited to improve the network survivability,e.g., in urban areas, it is possible to exploit other external network infrastructures such as the distributed antenna systems (DAS) [25]and cloud radio overber network (C-RoFN)[26, 27], which have recently drawn considerable attentions in the construction of public safety networks, to enhance the V2V network survivability. The DAS architecture allows for low communications latency which is preferable in safety-related V2V applications. In addition, recent studies exploited only partial and/or large scale channel state informations(CSIs) [28-30] in DAS networks which provides a solid basis for the DAS-aided V2V communications with the challenge of the acquiring accurate CSIs in high-speed vehicles.

    The remainder of this paper is organized as follows. Section II proposes the CTMC based survivability model for the considered V2V network. In Section III, the probabilistic model checking approach is proposed to quantitatively analyze the survivability of the V2V network. At last, Section IV concludes the paper and possible future works are discussed.

    II. SURVIVABILITY MODEL

    2.1 Survivability model de nition

    For different application scenarios, the denitions of network survivability model are different [10, 12, 31-33]. For our considered V2V network, we dene its survivability model as follows:

    Definition 1. The V2V network surviv-

    ability model (VNSM) can be described as a four-tuplewhere the parameters are dened as follows:

    1)Eis the environment statement, describing the network architecture as well as the environment in which the survivable communication system operates. Throughout this paper,Estands for the V2V network on the highway as shown ingure 1.

    The environment statementEdetermines the failure types that could possibly happen.For our considered environment, two typical failures will be considered in the following analysis, namely (1) the node failure and (2)the link failure. Detailed descriptions of these failures are given by the denition of the second parameter in theVNSM, i.e.,F, as in the following. Remark 1. Assuming that there areMvehicles in the considered V2V network,the maximum number of node failures in this network isNnode=M, while the maximum number of link failures isNlink=2(M?1). It is reasonable since that the communication link between any two adjacent vehicle nodes is bi-directional.

    Table I. Parameters description.

    Fig. 1. An illustration of the V2V network on the highway.

    In what follows, for the ease of description,we omit the subscripts and denote the maximum number of both failures asN. The values ofNwill be respectively specified when different failure types are considered.

    Fig. 2. The CTMC survivability model for the V2V network.

    -S0∈Sis the initial state of thenite state machine.

    -Lf: The labeling function of atomic propositionsAPare true inS, that isS→2AP.

    -T: The state transition matrix.

    2.2 CTMC model

    Assumption 1. The key assumptions made in our CTMC model are listed as follows:

    1) Each failure event follows Poisson distribution

    Correspondingly, the occurrence time of each failure event follows exponential distribution for which the density function is given by

    2) All failure events are mutually independent.

    In the next section, the proposed CTMC model will be further described with the language of the PRISM model checker. By using the PRISM model checker, the state space,transition matrix and state rewards can be conveniently obtained, and the transient probabilities as well as the steady-state probabilities described in (2) can be therefore computed.

    III. QUANTITATIVE SURVIVABILITY EVALUATION USING PRISM

    In this section, quantitative survivability anal-ysis is conducted using the probabilistic model checker PRISM based on Definition 1 and its corresponding CTMC model. According to the conguration parameters given in Table 1, we build the survivability model for the considered V2V network in PRISM, where parametric models can be specified by PRISM’s guarded command languages. When doing quantitative analysis, we use continuous-time stochastic logic (CSL) formulas to define the properties of the vehicle survivability network. These properties represent partial specifications of the steady-state and the transient behaviors of the CTMC model, which are dened bySas described in Denition 1. According to these CSL-formulas, we use PRISM to solve the actual probability of the specic states in the V2V network.

    Table 2 shows the established numerical results of the state space of CTMC model using PRISM for diff- erent values ofN. The results are obtained for an example scenario whereλ=0.3 andμ=0.05, and the construction time is measured on Intel-core 3.2GHz CPU with 8 GB RAM.

    In Table 2, for different number ofN, the corresponding number of the states and transitions of the CTMC model is presented. The amount of memory required by the sparse matrix to represent the same CTMC is also given by the column labeled with ‘sparse’ in the table.The last two columns, under the label ‘construction’, show the amount of time and the number ofx-point iterations required to construct the models. The construction involvesrstly building a CTMC (denoted as a Multi-Terminal Binary Decision Diagram (MTBDD) in Table 2)from the system description, and then computing the reachable states using a Binary Decision Diagram (BDD).

    Table II. PRISM model checking results of CTMC.

    Based on the CSL formulas, we use different attributes to perform the quantitative survivability analysis in the considered V2V network. We consider four different attributes in the subsequent analysis, namely the maximum probability, minimum probability, expected rewards, and instantaneous rewards. Their definitions, the corresponding CSL formulas,as well as the simulation results, are provided in detail in the following subsections.

    3.1 Maximum probability

    Formula_1:

    The CSL Formula_1 represents the maximum probability that a network breakdown happens. HigherPmaxcorresponds to lower network survivability. As an example, werst consider the failure typef1, the corresponding maximum probability is denoted asPmax1.Ingure 3, the value ofPmax1is shown for a V2V network consisting ofM=100 vehicle nodes, so the maximum number of node failures isN=M=100. Moreover, we setμ1=0.05 andT=50s. The probabilities are illustrated for differentλ1,i.e., the strength off1. As shown in thegure, the V2V network survivability declines with increasingλ2, in the meanwhile, the reliability of the V2V network reduces. It can also be observed that the maximum probabilities will asymptotically approach 1 for sufciently largeT.

    In the next, we compare the maximum probability under different link failure conditions in figure 4,i.e., considering the failure typef2. The CSL formula used herein still follows the structure of Formula_1, whereas the failure strength and the repair rate are respectively changed toλ2andμ2. As compared withgure 3, two major differences lie in the parameter setting ofgure 4: 1) As described in Remark 1, the maximum number of failures changes fromN=100 toN=198; 2) A larger repair rate is used (μ2=0.2) for the reason that in practice, it is likely that a link failure is easier to be repaired than a node failure.

    We first compare the dash line in figure 4 and the blue curve marked with circle ingure 3. The only difference in the parameter setting is the maximum number of failures. These two curves show only slight difference since the maximum number of failures in both figures are large, in this case, the maximum probability will not be affected too much. Further, for the solid curves in figure 4, the repair rate is increased toμ2=0.2. It can be seen that whenλ2=0.1, the maximum probability of link failures (i.e., the solid curve marked with circle ingure 4) is smaller than the maximum probability of node failures (see the solid curve marked with circle ingure 3), due to the larger repair rate. On the other hand, whenλ2is changed to 0.3 and 0.6, the maximum probabilities of link failures become almost equal to those of the node failures. This indicates that in the environments with large failure strength, the impact of repair rate becomes trivial. Figure 3 andgure 4 show that greater failure strength results in greater network breakdown probability in the V2V network, or equivalently, lower network survivability. For the same failure strength, the network survivability improves with increasing repair rate.

    3.2 Minimum probability

    Formula_2:

    The CSL Formula_2 denotes the minimum probability that a network breakdown happens.Again, respectively considering the failure typesf1andf2, the corresponding minimum probabilities are shown in figure 5 and figure 6. Both figure 5 and figure 6 show that the minimum probabilities increase with the failure strengthsλ1orλ2. For the comparison betweengure 5 andgure 6, similar conclusions can be obtained as that ingure 3 andgure 4.However, it is observed that the minimum probability is more sensitive to parameters such asNandμ. Moreover, for the failure strength larger than 0.3, the minimum probability gradually approaches 1 with increasingT, which indicates that the vehicle network will be completely destroyed eventually.

    Fig. 3. The maximum probability (Pmax1) of network breakdown vs. time. (corresponding to the node failure).

    Fig. 4. The maximum probability (Pmax2) of network breakdown vs. time. (corresponding to the link failure).

    Furthermore, we depict both the maximum and minimum network breakdown probabilities respectively with respect to the failure strength and repair rate, as shown in figure 7,gure 8,gure 9 andgure 10. As can be anticipated, the probability of network breakdown increases with the failure strengthλ, and decreases with the repair rateμ. Fromgure 7 andgure 8, it is worth noting that when the failure strength is larger than a certain threshold, the network breakdown event will eventually happen with probability 1, no matter what value the repair rate is set to be.

    Similarly, figure 9 and figure 10 indicates that when the failure strength is large, zero network breakdown probability cannot be guaranteed even when the repair rate is set to be 1 (i.e., the largest value).

    Fig. 5. The minimum probability (Pmin1) of network breakdown vs.time. (corresponding to the node failure).

    Fig. 7. The maximum probabilities of network breakdown vs. failure strength (λ).

    3.3 Expected reward

    In addition to the above survivability analysis, we also perform a reward analysis, which computes the expected accumulated reward up to a certain time in the considered CTMC. The reward formula is dened as follows:

    Fig. 8. The minimum probabilities of network breakdown vs. failure strength (λ).

    Figure 11 provides graphical description of the properties in Formula_3. In practice(e.g., on the highway), the expected reward of node failures corresponds to the compromises of data, and the expected reward of link failures corresponds to the data transmission delay and/or packet losses. Ingure 11, we setT=50sandN=100. The four curves show that the expected rewards would increase over the time. Largerλ1orλ2results in increasing of the expected rewards.

    Formula_4:R{ "failures" } = ?[I=T].

    The four curves in figure 12 illustrate that the expected number of failures (either the node failures or link failures) increases with increasing failure strength. On the other hand, for the same failure strength, the expected number of failures reduces with increasing repair rate.

    3.4 Instantaneous reward

    In the end, we analyze the instantaneous reward of the survival model. The instantaneous reward is defined as the expected number of failures in the V2V network at a certain time instant. The corresponding CSL formula is shown as follows:

    IV. CONCLUSIONS

    Fig. 9. The maximum probabilities of network breakdown vs. repair rate(μ).

    Fig. 10. The minimum probabilities of network breakdown vs. repair rate(μ).

    Fig. 11. The expected reward versus time. Results are shown for both failure types with different failure strength and repair rate.

    Fig. 12. Instantaneous reward of the expected failure number in the V2V network. Results are shown for both failure types with different failure strength and repair rate.

    In this paper, we proposed a probabilistic model checking approach to quantitatively analyze the survivability in a V2V network.Two typical failure types, namely the node failure and link failure, were considered in the analysis. Based on the considered V2V network architecture and its characteristics, werst provided the survivability denition, then established a continuous-time Markov chain model to describe the survivability in the considered V2V network. After that, the CTMC model was described in the PRISM model checker, which can be conveniently used to analyze different CSL properties related to the network survivability. The proposed probabilistic model checking-based survivability evaluation approach can beexibly extended to other networks besides the V2Vnetwork.

    ACKNOWLEDGEMENT

    This work is supported by the National Natural Science Foundation of China under Grant no. 61371113 and 61401240, Graduate Student Research Innovation Program Foundation of Jiangsu Province no. YKC16006, and Graduate Student Research Innovation Program Foundation of Nantong University no.KYZZ160354. Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (PPZY2015B135).

    [1] Stajano, Frank, and R. Anderson, “The Resurrecting Duckling: Security Issues for Ad-hoc Wireless Networks,”International Workshop on Security Protocols Springer Berlin Heidelberg,vol. 1796, no. 1, 1999, pp.172-182.

    [2] S. Tanwar, K V. Prema, “Threats & Security Issues in Ad hoc network: A Survey Report,”International Journal of Soft Computing & Engineering,vol. 2, no. 6, 2013, pp. 2231-2307.

    [3] Woo, Samuel, H. J. Jo and H. L. Dong, “A Practical Wireless Attack on the Connected Car and Security Protocol for In-Vehicle CAN,”IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 2, 2015, pp. 993-1006.

    [4] Patel, J. Nirav and R. H. Jhaveri, “Trust based approaches for secure routing in VANET: A survey,”P(pán)rocedia Computer Science, vol. 45, 2015,pp. 592-601.

    [5] Singh, Amandeep and S. Kad, “A Review on the Various Security Techniques for VANETs,”P(pán)rocedia Computer Science, vol. 78, 2016, pp. 284-290.

    [6] Sari, Arif, O. Onursal and M. Akkaya, “Review of the Security Issues in Vehicular Ad Hoc Networks (VANET),”International Journal of Communications Network & System Sciences, vol. 8,no.13, 2015, pp. 552-566.

    [7] H. Hasrouny, A E. Samhat, C. Bassil, et al. “VANet security challenges and solutions: A survey,”Vehicular Communications, vol. 7, 2017, pp. 7-20.

    [8] R. C. Linger, N. R. Mead and H. F. Lipson, “Requirements Definition for Survivable Network Systems,”P(pán)roc. International Conference on Requirements Engineering: Putting Requirements Engineering To Practice, 1998, pp. 14-23.

    [9] R. J. Ellison, D. A. Fisher, R. C. Linger, et al, “Survivable Network Systems: An Emerging Discipline,”Survivable Network Systems An Emerging Discipline, 1997, pp. 11-20.

    [10] K. S. Trivedi and R. Xia, “Quantication of system survivability,”Telecommunication Systems,vol. 60, no. 4, 2015, pp. 451-470.

    [11] C. L. Wang, D X. Wang, Q. Miao, et al, “A Novel Network Survivability Analysis and Evaluation Model,”Applied Mechanics & Materials, vol.347-350, no. 347-350, 2013, pp. 2082-2088.

    [12] D. Chen, S. Garg and K. S. Trivedi, “Network survivability performance evaluation:: a quantitative approach with applications in wireless ad-hoc networks,”P(pán)roc. ACM International Workshop on Modeling Analysis and Simulation of Wireless and Mobile Systems, 2002, pp. 61-68.

    [13] S. Peng, W. JIA and G. WANG, “Survivability Evaluationin Large-Scale Mobile Ad-Hoc Networks,”Journal of Computer Science and Technology, vol. 24, no. 4, 2009, pp. 761-774.

    [14] S. Shen, R. Han, L. Guo,et al, “Survivability evaluation towards attacked WSNs based on stochastic game and continuous-time Markov chain,”Applied Soft Computing, vol. 12, no. 5,2012, pp. 1467-1476.

    [15] P. H. Pathak, “Designing for Network and Service Continuity in Wireless Mesh Networks,”Springer New York, 2012.

    [16] S.Dharmaraja, R. Vinayak and K. S. Trivedi, “Reliability and survivability of vehicular ad hoc networks: An analytical approach,”Reliability Engineering & System Safety, vol. 153, no. 5,2016, pp. 28-38.

    [17] V. Zagorskis, “Using the probabilistic model checker PRISM to analyze H-OTBA algorithm in Optical Burst Switching (OBS) networks,”P(pán)roc.Advances in Wireless and Optical Communications, 2015, pp. 132-137.

    [18] G. Liu, C. Ji, “Resilience of all-optical network architectures under in-band crosstalk attacks:a probabilistic graphical model approach,”IEEE Journal on Selected Areas in Communications,vol. 25, no. 3, 2007, pp. 2-17.

    [19] M. Kwiatkowska, G. Norman, D. Parker, “PRISM:Probabilistic Symbolic Model Checker,”Lecture Notes in Computer Science, vol. 2324, 2002, pp.200-204.

    [20] M. Kwiatkowska, G. Norman, D. Parker, “Proba-bilistic symbolic model checking with PRISM: a hybrid approach,”International Journal on Software Tools for Technology Transfer, vol. 6, no. 2,2004, pp. 128-142.

    [21] M. Kwiatkowska, G. Norman, D. Parker, “PRISM:probabilistic model checking for performance and reliability analysis,”ACM Press, 2009.

    [22] C. Baier, B. Haverkort, H. Hermanns,et al, “Model-Checking Algorithms for Continuous-Time Markov Chains,”IEEE Transactions on Software Engineering, vol. 29, no. 6, 2003, pp. 524-541.

    [23] Y. Gao, M. Xu, N. Zhan,et al, “Model checking conditional CSL for continuous-time Markov chains,”Information Processing Letters, vol. 113 no. 1-2, 2013, pp. 44-50.

    [24] P. E. Heegaard, K. S. Trivedi, “Network survivability modelling,”Computer Networks, vol. 53, no.8, 2009, pp. 1215-1234.

    [25] W. Feng, Y. Li, J. Gan, S. Zhou, J. Wang and M Xia, “On the deployment of antenna elements in generalized multi-user distributed antenna systems,”ACM Mobile Networks and Applications, vol. 16, no. 1, 2011, pp. 35-45.

    [26] H. Yang,et al. “Experimental demonstration of multi-dimensional resources integration for service provisioning in cloud radio over fiber network,”, 2016, pp. 30678.

    [27] H. Yang,et al. “C-RoFN: multi-stratum resources optimization for cloud-based radio over opticalber networks,”IEEE Communications Magazine,vol. 54, no. 8, 2016, pp. 118-125.

    [28] Y. Wang, W. Feng, L. Xiao, Y. Zhao and S. Zhou,“Coordinated multi-cell transmission for distributed antenna systems with partial CSIT,”IEEE Communications Letters, vol. 16, no. 7, 2012, pp.1044-1047.

    [29] W. Feng, Y. Wang, N. Ge, J. Lu and J Zhang,“Virtual MIMO in multi-cell distributed antenna systems: coordinated transmissions with largescale CSIT,”IEEE Journal on Selected Areas in Communications, vol. 31, no. 10, 2013, pp.2067-2081.

    [30] W. Feng, Y. Wang, D. Lin,et al. “When mmWave Communications Meet Network Densification:A Scalable Interference Coordination Perspective,”IEEE Journal on Selected Areas in Communications, vol. 35, no. 7, 2017, pp. 1459-1471.

    [31] P. E. Heegaard, K. S. Trivedi, “Survivability quantification of communication services,”P(pán)roc.IEEE International Conference on Dependable Systems and Networks with Ftcs and DCC, 2008,pp. 462-471

    [32] J. C. Knight, K. J. Sullivan, “On The Denition Of Survivability”, 2003.

    [33] V. R. Westmark, “A definition for information system survivability,”P(pán)roc. of the 37th Hawaii International Conference on System Sciences,2004, pp. 1-10.

    [34] W. J. Stewart, “Introduction to the Numerical Solution of Markov Chains, ”DBLP, 1994.

    [35] H Hermanns, J. P. Katoen, J. Meyerkayser,et al. “A Markov Chain Model Checker,”Lecture Notes in Computer Science, vol. 1785, 2000, pp. 347-362.

    [36] B. Plateau, K. Atif, “Stochastic Automata Network For Modeling Parallel Systems,”IEEE Transactions on Software Engineering,vol. 17, no. 10,1991, pp. 1093-1108.

    [37] M. Ajmone Marsan, G. Conte, G. Balbo, “A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems,”Acm Transactions on Computer Systems,vol. 2, no. 2, 1984, pp. 93-122.

    [38] M. Hlynka, “Queueing Networks and Markov Chains (Modeling and Performance Evaluation With Computer Science Applications),”Technometrics, vol. 49, no. 1, 2006, pp. 104-105.

    av播播在线观看一区| www日本在线高清视频| 考比视频在线观看| 精品一区二区免费观看| 欧美成人午夜精品| 大香蕉久久成人网| 国产成人a∨麻豆精品| 久久久欧美国产精品| 色婷婷av一区二区三区视频| 国产乱来视频区| 亚洲欧美精品自产自拍| www.熟女人妻精品国产 | 高清在线视频一区二区三区| 欧美精品人与动牲交sv欧美| 热re99久久国产66热| 熟女av电影| 日韩大片免费观看网站| 国产欧美日韩一区二区三区在线| 天天躁夜夜躁狠狠久久av| 久久 成人 亚洲| 国产成人一区二区在线| 九色成人免费人妻av| 日日啪夜夜爽| 婷婷色综合大香蕉| 日韩 亚洲 欧美在线| 国产成人a∨麻豆精品| 我要看黄色一级片免费的| 免费观看性生交大片5| 热re99久久国产66热| 国产在视频线精品| 亚洲精品国产av成人精品| 日日撸夜夜添| 夫妻性生交免费视频一级片| 新久久久久国产一级毛片| 男人爽女人下面视频在线观看| 亚洲综合精品二区| 国产精品99久久99久久久不卡 | 国产片特级美女逼逼视频| 免费女性裸体啪啪无遮挡网站| 最后的刺客免费高清国语| 90打野战视频偷拍视频| 国产1区2区3区精品| 免费看光身美女| 日本av手机在线免费观看| 人人妻人人爽人人添夜夜欢视频| 久久午夜综合久久蜜桃| 欧美精品av麻豆av| 日韩伦理黄色片| 最近中文字幕2019免费版| 亚洲国产毛片av蜜桃av| 在现免费观看毛片| √禁漫天堂资源中文www| 国产成人精品福利久久| 美女福利国产在线| 老司机影院毛片| 一本久久精品| 国产成人精品久久久久久| 久久国内精品自在自线图片| 亚洲欧美一区二区三区国产| freevideosex欧美| 99热这里只有是精品在线观看| 蜜臀久久99精品久久宅男| 久久精品久久久久久久性| 国产精品偷伦视频观看了| 国产69精品久久久久777片| 黄片无遮挡物在线观看| 欧美成人午夜精品| 街头女战士在线观看网站| 性色av一级| 日本色播在线视频| 午夜精品国产一区二区电影| 亚洲欧洲国产日韩| 高清在线视频一区二区三区| 国产精品国产三级国产av玫瑰| 天天操日日干夜夜撸| videossex国产| 香蕉丝袜av| 亚洲精品日本国产第一区| 高清黄色对白视频在线免费看| 国产精品久久久久久精品电影小说| 亚洲av欧美aⅴ国产| 人妻少妇偷人精品九色| 天天躁夜夜躁狠狠久久av| 日韩一区二区三区影片| 日本与韩国留学比较| 欧美日韩亚洲高清精品| 一区二区av电影网| 国产亚洲精品第一综合不卡 | 最近的中文字幕免费完整| 一区二区三区精品91| 欧美成人精品欧美一级黄| 免费在线观看黄色视频的| 老熟女久久久| 精品午夜福利在线看| 少妇被粗大的猛进出69影院 | 国产精品久久久久久av不卡| 99国产综合亚洲精品| 成年人午夜在线观看视频| 亚洲一区二区三区欧美精品| 少妇熟女欧美另类| 国产欧美日韩综合在线一区二区| 在线观看人妻少妇| 伦理电影免费视频| 久久久久国产网址| 春色校园在线视频观看| 男女啪啪激烈高潮av片| 婷婷色av中文字幕| 亚洲欧美成人综合另类久久久| 亚洲av免费高清在线观看| 制服丝袜香蕉在线| 男女边吃奶边做爰视频| 久久久精品区二区三区| 国产极品粉嫩免费观看在线| 一级爰片在线观看| 国产精品一区二区在线不卡| 女性生殖器流出的白浆| 大香蕉97超碰在线| 亚洲av中文av极速乱| 18禁动态无遮挡网站| 最近最新中文字幕免费大全7| 成年动漫av网址| 久久久久久久精品精品| 国产有黄有色有爽视频| 九色亚洲精品在线播放| 免费在线观看黄色视频的| 巨乳人妻的诱惑在线观看| 亚洲国产精品一区三区| 久久久国产精品麻豆| a 毛片基地| 少妇人妻 视频| 成人午夜精彩视频在线观看| 欧美激情国产日韩精品一区| 亚洲人成网站在线观看播放| 极品少妇高潮喷水抽搐| 激情视频va一区二区三区| 日本欧美国产在线视频| 好男人视频免费观看在线| 五月天丁香电影| 搡女人真爽免费视频火全软件| 欧美变态另类bdsm刘玥| 亚洲欧美清纯卡通| 亚洲天堂av无毛| 亚洲精品久久成人aⅴ小说| 国产1区2区3区精品| 一区二区三区精品91| 国产精品久久久av美女十八| 国产成人av激情在线播放| 肉色欧美久久久久久久蜜桃| 丁香六月天网| 深夜精品福利| 汤姆久久久久久久影院中文字幕| 午夜激情久久久久久久| 大片免费播放器 马上看| 香蕉精品网在线| av视频免费观看在线观看| 国产免费一级a男人的天堂| 色婷婷av一区二区三区视频| 丰满迷人的少妇在线观看| 中文字幕精品免费在线观看视频 | 一区二区三区精品91| 国产国拍精品亚洲av在线观看| 卡戴珊不雅视频在线播放| 少妇熟女欧美另类| 亚洲伊人色综图| 亚洲人成网站在线观看播放| 久久人妻熟女aⅴ| 婷婷色综合大香蕉| 激情五月婷婷亚洲| www日本在线高清视频| 999精品在线视频| 一级爰片在线观看| 国产白丝娇喘喷水9色精品| 街头女战士在线观看网站| 欧美另类一区| 久久热在线av| 侵犯人妻中文字幕一二三四区| 国产免费又黄又爽又色| 最近中文字幕2019免费版| 国产一区二区在线观看日韩| 中文精品一卡2卡3卡4更新| 美女内射精品一级片tv| 女的被弄到高潮叫床怎么办| 国产精品国产av在线观看| 午夜福利在线观看免费完整高清在| 一区二区av电影网| 亚洲情色 制服丝袜| 水蜜桃什么品种好| 成年动漫av网址| 国产高清不卡午夜福利| 成人国产麻豆网| 日本爱情动作片www.在线观看| 免费黄色在线免费观看| 日韩电影二区| 伊人亚洲综合成人网| 亚洲国产欧美在线一区| 嫩草影院入口| 18禁观看日本| 尾随美女入室| 两性夫妻黄色片 | 国产片特级美女逼逼视频| 久久久国产欧美日韩av| 看十八女毛片水多多多| 欧美精品人与动牲交sv欧美| 精品久久蜜臀av无| 国产1区2区3区精品| 欧美日韩亚洲高清精品| 看免费成人av毛片| av在线观看视频网站免费| 久久这里只有精品19| 久久午夜综合久久蜜桃| 曰老女人黄片| 免费黄频网站在线观看国产| 成年人免费黄色播放视频| 国产精品偷伦视频观看了| 亚洲欧洲日产国产| 我要看黄色一级片免费的| 精品人妻一区二区三区麻豆| 熟女电影av网| 多毛熟女@视频| 激情视频va一区二区三区| 久久精品人人爽人人爽视色| 男女高潮啪啪啪动态图| 高清毛片免费看| 免费观看av网站的网址| 久久久久久久精品精品| 少妇精品久久久久久久| 丝袜人妻中文字幕| 亚洲高清免费不卡视频| 国产精品国产av在线观看| 久久精品国产自在天天线| 一级毛片我不卡| 久久久精品免费免费高清| 91aial.com中文字幕在线观看| 午夜福利视频精品| 国产又色又爽无遮挡免| 最近最新中文字幕免费大全7| 一二三四在线观看免费中文在 | 日韩三级伦理在线观看| 欧美 日韩 精品 国产| 香蕉丝袜av| 美女xxoo啪啪120秒动态图| 成年av动漫网址| 中文字幕人妻丝袜制服| 天美传媒精品一区二区| 国产一区有黄有色的免费视频| 汤姆久久久久久久影院中文字幕| 亚洲婷婷狠狠爱综合网| 宅男免费午夜| 免费久久久久久久精品成人欧美视频 | 一二三四在线观看免费中文在 | 欧美精品av麻豆av| 国产精品麻豆人妻色哟哟久久| 欧美亚洲 丝袜 人妻 在线| videossex国产| 国产精品国产av在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产片特级美女逼逼视频| 亚洲在久久综合| 中国三级夫妇交换| 中文字幕免费在线视频6| 亚洲国产精品一区二区三区在线| 国产1区2区3区精品| 91成人精品电影| 亚洲成人av在线免费| 极品少妇高潮喷水抽搐| 国产精品国产av在线观看| 男的添女的下面高潮视频| 国产一区二区在线观看av| 丰满迷人的少妇在线观看| tube8黄色片| 国产在视频线精品| 国产精品99久久99久久久不卡 | 高清不卡的av网站| 欧美日韩视频高清一区二区三区二| 亚洲精品日本国产第一区| 亚洲少妇的诱惑av| 国产成人精品在线电影| 亚洲美女视频黄频| 高清不卡的av网站| 女的被弄到高潮叫床怎么办| 女性生殖器流出的白浆| 日本wwww免费看| 美女福利国产在线| 国产亚洲精品第一综合不卡 | 丝袜美足系列| 国产乱人偷精品视频| 亚洲精华国产精华液的使用体验| 91aial.com中文字幕在线观看| 亚洲 欧美一区二区三区| av国产精品久久久久影院| 国产成人免费观看mmmm| 欧美日韩国产mv在线观看视频| 青春草视频在线免费观看| 伊人亚洲综合成人网| 中文字幕av电影在线播放| av在线老鸭窝| 午夜福利网站1000一区二区三区| 亚洲精品国产色婷婷电影| 国产欧美日韩一区二区三区在线| 国产高清不卡午夜福利| 五月玫瑰六月丁香| 大香蕉97超碰在线| 欧美变态另类bdsm刘玥| 国产熟女午夜一区二区三区| 男男h啪啪无遮挡| 国产精品麻豆人妻色哟哟久久| 日韩一本色道免费dvd| 七月丁香在线播放| 亚洲精品日本国产第一区| kizo精华| 22中文网久久字幕| 99久久中文字幕三级久久日本| 国内精品宾馆在线| 国产免费又黄又爽又色| 久久久久久久久久久久大奶| 有码 亚洲区| 最近的中文字幕免费完整| 国产成人午夜福利电影在线观看| 两性夫妻黄色片 | 国产成人a∨麻豆精品| av在线app专区| 亚洲经典国产精华液单| 天天操日日干夜夜撸| 国产熟女午夜一区二区三区| 80岁老熟妇乱子伦牲交| 91成人精品电影| 男女无遮挡免费网站观看| 免费大片黄手机在线观看| 成人亚洲欧美一区二区av| 边亲边吃奶的免费视频| 国产欧美日韩综合在线一区二区| 又粗又硬又长又爽又黄的视频| 亚洲精品久久午夜乱码| 免费日韩欧美在线观看| 国产无遮挡羞羞视频在线观看| 涩涩av久久男人的天堂| 国产av一区二区精品久久| 国产在线免费精品| 精品人妻偷拍中文字幕| 国产一区二区在线观看日韩| 一边亲一边摸免费视频| 日韩成人av中文字幕在线观看| 中文字幕精品免费在线观看视频 | 亚洲欧美一区二区三区黑人 | 午夜久久久在线观看| 最近手机中文字幕大全| 国产精品99久久99久久久不卡 | 99热网站在线观看| 在线亚洲精品国产二区图片欧美| 如日韩欧美国产精品一区二区三区| 在现免费观看毛片| 精品熟女少妇av免费看| av电影中文网址| 亚洲中文av在线| 久久综合国产亚洲精品| 久久精品aⅴ一区二区三区四区 | 国国产精品蜜臀av免费| 亚洲第一av免费看| 精品久久蜜臀av无| 欧美精品高潮呻吟av久久| 一区二区av电影网| 亚洲精品一区蜜桃| 国产国语露脸激情在线看| 麻豆精品久久久久久蜜桃| 伊人亚洲综合成人网| 99久久精品国产国产毛片| 免费高清在线观看日韩| 18禁在线无遮挡免费观看视频| 亚洲性久久影院| 亚洲欧洲日产国产| 在线观看免费视频网站a站| 日韩中文字幕视频在线看片| 免费黄频网站在线观看国产| 日本wwww免费看| 18禁动态无遮挡网站| 只有这里有精品99| 妹子高潮喷水视频| 香蕉国产在线看| 久久精品夜色国产| 亚洲一区二区三区欧美精品| 一级黄片播放器| 美女大奶头黄色视频| 热99国产精品久久久久久7| 成人亚洲欧美一区二区av| 亚洲成国产人片在线观看| 97精品久久久久久久久久精品| 久久国产精品大桥未久av| av国产精品久久久久影院| 99re6热这里在线精品视频| 制服人妻中文乱码| 考比视频在线观看| 精品一区在线观看国产| 宅男免费午夜| 亚洲情色 制服丝袜| 免费日韩欧美在线观看| 男女免费视频国产| 曰老女人黄片| 亚洲精品自拍成人| 99热全是精品| 亚洲美女黄色视频免费看| 人妻系列 视频| 日韩人妻精品一区2区三区| 精品一区二区三区视频在线| av网站免费在线观看视频| 久久久久网色| 美女脱内裤让男人舔精品视频| 美女内射精品一级片tv| 欧美日韩综合久久久久久| 午夜福利视频精品| 免费高清在线观看日韩| 人人澡人人妻人| 乱码一卡2卡4卡精品| 久久久精品免费免费高清| 亚洲国产精品999| 久久精品久久久久久噜噜老黄| 国产精品熟女久久久久浪| 不卡视频在线观看欧美| 国产精品三级大全| 亚洲美女搞黄在线观看| 天天躁夜夜躁狠狠久久av| 国精品久久久久久国模美| 天天影视国产精品| 日产精品乱码卡一卡2卡三| 18禁在线无遮挡免费观看视频| 久久精品熟女亚洲av麻豆精品| 国产一区二区三区av在线| 精品久久久精品久久久| 成人午夜精彩视频在线观看| 如日韩欧美国产精品一区二区三区| 性色avwww在线观看| 久久亚洲国产成人精品v| 欧美人与性动交α欧美精品济南到 | 国产日韩欧美视频二区| 久久久久精品人妻al黑| av又黄又爽大尺度在线免费看| 国产成人a∨麻豆精品| 日韩视频在线欧美| 69精品国产乱码久久久| 成人无遮挡网站| 少妇的逼水好多| www.色视频.com| 国产乱来视频区| 热99久久久久精品小说推荐| 成人毛片a级毛片在线播放| 日韩中文字幕视频在线看片| 国内精品宾馆在线| 精品卡一卡二卡四卡免费| 9191精品国产免费久久| 18禁动态无遮挡网站| 亚洲在久久综合| 一区二区三区精品91| 搡老乐熟女国产| 午夜激情av网站| 国产精品无大码| 日韩,欧美,国产一区二区三区| 国产精品国产av在线观看| 美女大奶头黄色视频| 好男人视频免费观看在线| 尾随美女入室| 蜜臀久久99精品久久宅男| 视频中文字幕在线观看| 国产精品麻豆人妻色哟哟久久| 一级,二级,三级黄色视频| 中文字幕精品免费在线观看视频 | 少妇被粗大猛烈的视频| 99九九在线精品视频| 欧美日本中文国产一区发布| 免费观看a级毛片全部| 欧美xxxx性猛交bbbb| 日本黄大片高清| 一级毛片电影观看| 内地一区二区视频在线| 国产精品成人在线| 精品久久久精品久久久| 99精国产麻豆久久婷婷| 91在线精品国自产拍蜜月| 午夜福利,免费看| 国产激情久久老熟女| 美女中出高潮动态图| 国产精品人妻久久久影院| tube8黄色片| 亚洲成国产人片在线观看| 久久久久久人妻| 国产欧美日韩综合在线一区二区| 少妇熟女欧美另类| 在线看a的网站| 我要看黄色一级片免费的| 国产av精品麻豆| 咕卡用的链子| 波野结衣二区三区在线| 亚洲,一卡二卡三卡| 亚洲欧美成人精品一区二区| 一级毛片电影观看| 精品视频人人做人人爽| 又粗又硬又长又爽又黄的视频| 国产精品久久久av美女十八| 亚洲国产av新网站| 亚洲国产成人一精品久久久| 国产精品国产三级专区第一集| 国产老妇伦熟女老妇高清| 99国产综合亚洲精品| 99久久综合免费| 国产一区二区激情短视频 | 欧美精品人与动牲交sv欧美| 美国免费a级毛片| 亚洲av电影在线进入| 国产av国产精品国产| 国产成人一区二区在线| 中国国产av一级| av在线老鸭窝| 亚洲av.av天堂| 久久人人97超碰香蕉20202| 免费高清在线观看视频在线观看| 亚洲人与动物交配视频| 天天操日日干夜夜撸| 咕卡用的链子| 夫妻性生交免费视频一级片| videossex国产| 国产精品一区二区在线观看99| 啦啦啦中文免费视频观看日本| 欧美变态另类bdsm刘玥| 免费久久久久久久精品成人欧美视频 | 欧美3d第一页| 中文欧美无线码| 天堂俺去俺来也www色官网| 18在线观看网站| 久久久久国产精品人妻一区二区| 亚洲av中文av极速乱| a 毛片基地| 1024视频免费在线观看| 国产精品久久久久久精品电影小说| 自拍欧美九色日韩亚洲蝌蚪91| 晚上一个人看的免费电影| 日本av免费视频播放| 国产成人欧美| 午夜av观看不卡| 国产精品国产三级国产专区5o| 男女边摸边吃奶| 亚洲内射少妇av| 亚洲四区av| av.在线天堂| 一区二区三区乱码不卡18| 欧美+日韩+精品| 美女xxoo啪啪120秒动态图| 免费在线观看完整版高清| 成人影院久久| 日韩一区二区视频免费看| 国产男人的电影天堂91| 精品一区二区三卡| 最新中文字幕久久久久| 九九爱精品视频在线观看| 国产一区二区在线观看av| 久久人人97超碰香蕉20202| 婷婷色综合大香蕉| 久久久久久久大尺度免费视频| 日本av免费视频播放| 国产精品国产三级国产专区5o| 一级,二级,三级黄色视频| 久久精品夜色国产| 美女大奶头黄色视频| 亚洲精品第二区| 香蕉国产在线看| 欧美日韩亚洲高清精品| 欧美人与性动交α欧美精品济南到 | 国产av精品麻豆| 99九九在线精品视频| 90打野战视频偷拍视频| 中国国产av一级| 亚洲精品一二三| 国产高清国产精品国产三级| 宅男免费午夜| 欧美精品av麻豆av| 久久亚洲国产成人精品v| 在线观看国产h片| 秋霞伦理黄片| 少妇的逼好多水| 赤兔流量卡办理| 国产亚洲欧美精品永久| 国产xxxxx性猛交| 777米奇影视久久| 中文字幕制服av| 日本色播在线视频| 天堂俺去俺来也www色官网| 男人操女人黄网站| 欧美xxxx性猛交bbbb| 亚洲精品久久久久久婷婷小说| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品久久久久久精品电影小说| 欧美精品一区二区大全| xxx大片免费视频| 黄色视频在线播放观看不卡| 久久免费观看电影| 亚洲国产精品成人久久小说| 精品人妻偷拍中文字幕| 亚洲人与动物交配视频| 男女啪啪激烈高潮av片| 春色校园在线视频观看| 日本-黄色视频高清免费观看| 高清欧美精品videossex| 寂寞人妻少妇视频99o| 性色avwww在线观看| 大话2 男鬼变身卡| 人妻少妇偷人精品九色| 男的添女的下面高潮视频| 97精品久久久久久久久久精品| 国产极品天堂在线| 97精品久久久久久久久久精品| 丝袜人妻中文字幕| 韩国高清视频一区二区三区| 一区二区三区精品91| 啦啦啦啦在线视频资源| 日韩中字成人| 狠狠精品人妻久久久久久综合| 日韩精品有码人妻一区| 极品少妇高潮喷水抽搐|