• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Probabilistic Model Checking-Based Survivability Analysis in Vehicle-to-Vehicle Networks

    2018-03-12 12:12:35LiJinGuoanZhangJueWang
    China Communications 2018年1期

    Li Jin, Guoan Zhang*, Jue Wang

    School of Electronics and Information, Nantong University, Nantong 226019, China

    I. INTRODUCTION

    Vehicle-to-vehicle (V2V) networks are deployed to alert drivers to the safety-related events happening around, such as traffic slowdowns, road obstacles and the approaching of emergency vehicles. Due to the nature of wireless propagation, V2V networks are vulnerable to hacking attacks and/or channel fading, which could cause serious safety problems. For instance, a hacker may remotely take over the control of a car’s engine, brakes and even more functional units of the vehicle,making the target vehicle node fail to communicate with the other vehicle nodes in the network. On the other hand, deep channel fading between two vehicle nodes will suspend the communications on this link. Therefore,how to guarantee communications security for the V2V networks is important and has drawn considerable attentions in the research [1-7].

    Survivability is an important security measure in V2V networks. It reects the ability of a V2V network to accomplish communication in the existence of abnormal events (such as malicious attacks, network failures, accidents,etc.). In the literature, different approaches have been used to evaluate the survivability of various systems [8-11]. A quantitative survivability evaluation method was presented for wireless ad hoc networks in [12], where the excess packet loss caused by network failures was used as the survivability performance measure, thereafter, steady-state availability analysis and transient performance analysis were applied to the survivability model. In[13], the authors investigated the survivability for large-scale mobile ad hoc networks(MANETs), where numerical validation was applied to study the failure rate of each node.In [14], a reliability theory-based survivability evaluation approach was proposed for wireless sensor networks (WSNs), wherein the network availability, reliability and survival lifetime were investigated. Moreover, the availability and perform ability were discussed in terms of component failures and topological resilience for mesh network in [15]. In [16], the channel availability has been explored in the survivability model of vehicle ad hoc network(VANET).

    Most of the above-mentioned works rely on numerical simulation-based techniques. Differently, in this paper, we use the probabilistic model checking approach to model and analyze the survivability for V2V networks. By doing so, the advantages of the probabilistic model checking can be exploited, e.g., it can provide a rigorous formal model for the specification of V2V networks; additionally, the model checking approach is able to analyze all possible behaviours of V2V networks, which is more flexible than the numerical analysis commonly adopted in the literature.

    In this paper, we consider a general V2V network on the highway, consisting of multiple vehicle nodes. We use the infinite-state continuous-time Markov chain (CTMC) to describe the considered network architecture.Note that in the research of wireless and optical networks, a probabilistic Markov decision process model has been adopted in [17], and an undirected probabilistic graphical model is considered in [18]. However, when taking into account both the vehicle failure rate and the repair rate in our considered V2V network,these models in the literature fail to provide a satisfactory analysis framework. For this reason, we choose the probabilistic continuous-time Markov chain (CTMC) model in our analysis. Based on that, we apply two failure types (namely the node failure caused by external attacks on a target V2V node, and link failure caused by the channel fading/obstacle blocking in the communication link) to the CTMC model to study their impacts on the communication survivability. Furthermore, we use the PRISM (Probabilistic Symbolic Model Checker) [19-21] to model the CTMC, and use continuous stochastic logic (CSL) [22-24] to describe the corresponding survivability properties. The impacts of both failures on the network survivability are illustrated and compared.

    As a possible future extension, the proposed probabilistic model checking-based survivability evaluation method can be further applied to urban V2V networks, which have totally different architecture and characteristics as compared to the V2V networks on the highway scenario. New network architecture and transmission protocols are used to be exploited to improve the network survivability,e.g., in urban areas, it is possible to exploit other external network infrastructures such as the distributed antenna systems (DAS) [25]and cloud radio overber network (C-RoFN)[26, 27], which have recently drawn considerable attentions in the construction of public safety networks, to enhance the V2V network survivability. The DAS architecture allows for low communications latency which is preferable in safety-related V2V applications. In addition, recent studies exploited only partial and/or large scale channel state informations(CSIs) [28-30] in DAS networks which provides a solid basis for the DAS-aided V2V communications with the challenge of the acquiring accurate CSIs in high-speed vehicles.

    The remainder of this paper is organized as follows. Section II proposes the CTMC based survivability model for the considered V2V network. In Section III, the probabilistic model checking approach is proposed to quantitatively analyze the survivability of the V2V network. At last, Section IV concludes the paper and possible future works are discussed.

    II. SURVIVABILITY MODEL

    2.1 Survivability model de nition

    For different application scenarios, the denitions of network survivability model are different [10, 12, 31-33]. For our considered V2V network, we dene its survivability model as follows:

    Definition 1. The V2V network surviv-

    ability model (VNSM) can be described as a four-tuplewhere the parameters are dened as follows:

    1)Eis the environment statement, describing the network architecture as well as the environment in which the survivable communication system operates. Throughout this paper,Estands for the V2V network on the highway as shown ingure 1.

    The environment statementEdetermines the failure types that could possibly happen.For our considered environment, two typical failures will be considered in the following analysis, namely (1) the node failure and (2)the link failure. Detailed descriptions of these failures are given by the denition of the second parameter in theVNSM, i.e.,F, as in the following. Remark 1. Assuming that there areMvehicles in the considered V2V network,the maximum number of node failures in this network isNnode=M, while the maximum number of link failures isNlink=2(M?1). It is reasonable since that the communication link between any two adjacent vehicle nodes is bi-directional.

    Table I. Parameters description.

    Fig. 1. An illustration of the V2V network on the highway.

    In what follows, for the ease of description,we omit the subscripts and denote the maximum number of both failures asN. The values ofNwill be respectively specified when different failure types are considered.

    Fig. 2. The CTMC survivability model for the V2V network.

    -S0∈Sis the initial state of thenite state machine.

    -Lf: The labeling function of atomic propositionsAPare true inS, that isS→2AP.

    -T: The state transition matrix.

    2.2 CTMC model

    Assumption 1. The key assumptions made in our CTMC model are listed as follows:

    1) Each failure event follows Poisson distribution

    Correspondingly, the occurrence time of each failure event follows exponential distribution for which the density function is given by

    2) All failure events are mutually independent.

    In the next section, the proposed CTMC model will be further described with the language of the PRISM model checker. By using the PRISM model checker, the state space,transition matrix and state rewards can be conveniently obtained, and the transient probabilities as well as the steady-state probabilities described in (2) can be therefore computed.

    III. QUANTITATIVE SURVIVABILITY EVALUATION USING PRISM

    In this section, quantitative survivability anal-ysis is conducted using the probabilistic model checker PRISM based on Definition 1 and its corresponding CTMC model. According to the conguration parameters given in Table 1, we build the survivability model for the considered V2V network in PRISM, where parametric models can be specified by PRISM’s guarded command languages. When doing quantitative analysis, we use continuous-time stochastic logic (CSL) formulas to define the properties of the vehicle survivability network. These properties represent partial specifications of the steady-state and the transient behaviors of the CTMC model, which are dened bySas described in Denition 1. According to these CSL-formulas, we use PRISM to solve the actual probability of the specic states in the V2V network.

    Table 2 shows the established numerical results of the state space of CTMC model using PRISM for diff- erent values ofN. The results are obtained for an example scenario whereλ=0.3 andμ=0.05, and the construction time is measured on Intel-core 3.2GHz CPU with 8 GB RAM.

    In Table 2, for different number ofN, the corresponding number of the states and transitions of the CTMC model is presented. The amount of memory required by the sparse matrix to represent the same CTMC is also given by the column labeled with ‘sparse’ in the table.The last two columns, under the label ‘construction’, show the amount of time and the number ofx-point iterations required to construct the models. The construction involvesrstly building a CTMC (denoted as a Multi-Terminal Binary Decision Diagram (MTBDD) in Table 2)from the system description, and then computing the reachable states using a Binary Decision Diagram (BDD).

    Table II. PRISM model checking results of CTMC.

    Based on the CSL formulas, we use different attributes to perform the quantitative survivability analysis in the considered V2V network. We consider four different attributes in the subsequent analysis, namely the maximum probability, minimum probability, expected rewards, and instantaneous rewards. Their definitions, the corresponding CSL formulas,as well as the simulation results, are provided in detail in the following subsections.

    3.1 Maximum probability

    Formula_1:

    The CSL Formula_1 represents the maximum probability that a network breakdown happens. HigherPmaxcorresponds to lower network survivability. As an example, werst consider the failure typef1, the corresponding maximum probability is denoted asPmax1.Ingure 3, the value ofPmax1is shown for a V2V network consisting ofM=100 vehicle nodes, so the maximum number of node failures isN=M=100. Moreover, we setμ1=0.05 andT=50s. The probabilities are illustrated for differentλ1,i.e., the strength off1. As shown in thegure, the V2V network survivability declines with increasingλ2, in the meanwhile, the reliability of the V2V network reduces. It can also be observed that the maximum probabilities will asymptotically approach 1 for sufciently largeT.

    In the next, we compare the maximum probability under different link failure conditions in figure 4,i.e., considering the failure typef2. The CSL formula used herein still follows the structure of Formula_1, whereas the failure strength and the repair rate are respectively changed toλ2andμ2. As compared withgure 3, two major differences lie in the parameter setting ofgure 4: 1) As described in Remark 1, the maximum number of failures changes fromN=100 toN=198; 2) A larger repair rate is used (μ2=0.2) for the reason that in practice, it is likely that a link failure is easier to be repaired than a node failure.

    We first compare the dash line in figure 4 and the blue curve marked with circle ingure 3. The only difference in the parameter setting is the maximum number of failures. These two curves show only slight difference since the maximum number of failures in both figures are large, in this case, the maximum probability will not be affected too much. Further, for the solid curves in figure 4, the repair rate is increased toμ2=0.2. It can be seen that whenλ2=0.1, the maximum probability of link failures (i.e., the solid curve marked with circle ingure 4) is smaller than the maximum probability of node failures (see the solid curve marked with circle ingure 3), due to the larger repair rate. On the other hand, whenλ2is changed to 0.3 and 0.6, the maximum probabilities of link failures become almost equal to those of the node failures. This indicates that in the environments with large failure strength, the impact of repair rate becomes trivial. Figure 3 andgure 4 show that greater failure strength results in greater network breakdown probability in the V2V network, or equivalently, lower network survivability. For the same failure strength, the network survivability improves with increasing repair rate.

    3.2 Minimum probability

    Formula_2:

    The CSL Formula_2 denotes the minimum probability that a network breakdown happens.Again, respectively considering the failure typesf1andf2, the corresponding minimum probabilities are shown in figure 5 and figure 6. Both figure 5 and figure 6 show that the minimum probabilities increase with the failure strengthsλ1orλ2. For the comparison betweengure 5 andgure 6, similar conclusions can be obtained as that ingure 3 andgure 4.However, it is observed that the minimum probability is more sensitive to parameters such asNandμ. Moreover, for the failure strength larger than 0.3, the minimum probability gradually approaches 1 with increasingT, which indicates that the vehicle network will be completely destroyed eventually.

    Fig. 3. The maximum probability (Pmax1) of network breakdown vs. time. (corresponding to the node failure).

    Fig. 4. The maximum probability (Pmax2) of network breakdown vs. time. (corresponding to the link failure).

    Furthermore, we depict both the maximum and minimum network breakdown probabilities respectively with respect to the failure strength and repair rate, as shown in figure 7,gure 8,gure 9 andgure 10. As can be anticipated, the probability of network breakdown increases with the failure strengthλ, and decreases with the repair rateμ. Fromgure 7 andgure 8, it is worth noting that when the failure strength is larger than a certain threshold, the network breakdown event will eventually happen with probability 1, no matter what value the repair rate is set to be.

    Similarly, figure 9 and figure 10 indicates that when the failure strength is large, zero network breakdown probability cannot be guaranteed even when the repair rate is set to be 1 (i.e., the largest value).

    Fig. 5. The minimum probability (Pmin1) of network breakdown vs.time. (corresponding to the node failure).

    Fig. 7. The maximum probabilities of network breakdown vs. failure strength (λ).

    3.3 Expected reward

    In addition to the above survivability analysis, we also perform a reward analysis, which computes the expected accumulated reward up to a certain time in the considered CTMC. The reward formula is dened as follows:

    Fig. 8. The minimum probabilities of network breakdown vs. failure strength (λ).

    Figure 11 provides graphical description of the properties in Formula_3. In practice(e.g., on the highway), the expected reward of node failures corresponds to the compromises of data, and the expected reward of link failures corresponds to the data transmission delay and/or packet losses. Ingure 11, we setT=50sandN=100. The four curves show that the expected rewards would increase over the time. Largerλ1orλ2results in increasing of the expected rewards.

    Formula_4:R{ "failures" } = ?[I=T].

    The four curves in figure 12 illustrate that the expected number of failures (either the node failures or link failures) increases with increasing failure strength. On the other hand, for the same failure strength, the expected number of failures reduces with increasing repair rate.

    3.4 Instantaneous reward

    In the end, we analyze the instantaneous reward of the survival model. The instantaneous reward is defined as the expected number of failures in the V2V network at a certain time instant. The corresponding CSL formula is shown as follows:

    IV. CONCLUSIONS

    Fig. 9. The maximum probabilities of network breakdown vs. repair rate(μ).

    Fig. 10. The minimum probabilities of network breakdown vs. repair rate(μ).

    Fig. 11. The expected reward versus time. Results are shown for both failure types with different failure strength and repair rate.

    Fig. 12. Instantaneous reward of the expected failure number in the V2V network. Results are shown for both failure types with different failure strength and repair rate.

    In this paper, we proposed a probabilistic model checking approach to quantitatively analyze the survivability in a V2V network.Two typical failure types, namely the node failure and link failure, were considered in the analysis. Based on the considered V2V network architecture and its characteristics, werst provided the survivability denition, then established a continuous-time Markov chain model to describe the survivability in the considered V2V network. After that, the CTMC model was described in the PRISM model checker, which can be conveniently used to analyze different CSL properties related to the network survivability. The proposed probabilistic model checking-based survivability evaluation approach can beexibly extended to other networks besides the V2Vnetwork.

    ACKNOWLEDGEMENT

    This work is supported by the National Natural Science Foundation of China under Grant no. 61371113 and 61401240, Graduate Student Research Innovation Program Foundation of Jiangsu Province no. YKC16006, and Graduate Student Research Innovation Program Foundation of Nantong University no.KYZZ160354. Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (PPZY2015B135).

    [1] Stajano, Frank, and R. Anderson, “The Resurrecting Duckling: Security Issues for Ad-hoc Wireless Networks,”International Workshop on Security Protocols Springer Berlin Heidelberg,vol. 1796, no. 1, 1999, pp.172-182.

    [2] S. Tanwar, K V. Prema, “Threats & Security Issues in Ad hoc network: A Survey Report,”International Journal of Soft Computing & Engineering,vol. 2, no. 6, 2013, pp. 2231-2307.

    [3] Woo, Samuel, H. J. Jo and H. L. Dong, “A Practical Wireless Attack on the Connected Car and Security Protocol for In-Vehicle CAN,”IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 2, 2015, pp. 993-1006.

    [4] Patel, J. Nirav and R. H. Jhaveri, “Trust based approaches for secure routing in VANET: A survey,”P(pán)rocedia Computer Science, vol. 45, 2015,pp. 592-601.

    [5] Singh, Amandeep and S. Kad, “A Review on the Various Security Techniques for VANETs,”P(pán)rocedia Computer Science, vol. 78, 2016, pp. 284-290.

    [6] Sari, Arif, O. Onursal and M. Akkaya, “Review of the Security Issues in Vehicular Ad Hoc Networks (VANET),”International Journal of Communications Network & System Sciences, vol. 8,no.13, 2015, pp. 552-566.

    [7] H. Hasrouny, A E. Samhat, C. Bassil, et al. “VANet security challenges and solutions: A survey,”Vehicular Communications, vol. 7, 2017, pp. 7-20.

    [8] R. C. Linger, N. R. Mead and H. F. Lipson, “Requirements Definition for Survivable Network Systems,”P(pán)roc. International Conference on Requirements Engineering: Putting Requirements Engineering To Practice, 1998, pp. 14-23.

    [9] R. J. Ellison, D. A. Fisher, R. C. Linger, et al, “Survivable Network Systems: An Emerging Discipline,”Survivable Network Systems An Emerging Discipline, 1997, pp. 11-20.

    [10] K. S. Trivedi and R. Xia, “Quantication of system survivability,”Telecommunication Systems,vol. 60, no. 4, 2015, pp. 451-470.

    [11] C. L. Wang, D X. Wang, Q. Miao, et al, “A Novel Network Survivability Analysis and Evaluation Model,”Applied Mechanics & Materials, vol.347-350, no. 347-350, 2013, pp. 2082-2088.

    [12] D. Chen, S. Garg and K. S. Trivedi, “Network survivability performance evaluation:: a quantitative approach with applications in wireless ad-hoc networks,”P(pán)roc. ACM International Workshop on Modeling Analysis and Simulation of Wireless and Mobile Systems, 2002, pp. 61-68.

    [13] S. Peng, W. JIA and G. WANG, “Survivability Evaluationin Large-Scale Mobile Ad-Hoc Networks,”Journal of Computer Science and Technology, vol. 24, no. 4, 2009, pp. 761-774.

    [14] S. Shen, R. Han, L. Guo,et al, “Survivability evaluation towards attacked WSNs based on stochastic game and continuous-time Markov chain,”Applied Soft Computing, vol. 12, no. 5,2012, pp. 1467-1476.

    [15] P. H. Pathak, “Designing for Network and Service Continuity in Wireless Mesh Networks,”Springer New York, 2012.

    [16] S.Dharmaraja, R. Vinayak and K. S. Trivedi, “Reliability and survivability of vehicular ad hoc networks: An analytical approach,”Reliability Engineering & System Safety, vol. 153, no. 5,2016, pp. 28-38.

    [17] V. Zagorskis, “Using the probabilistic model checker PRISM to analyze H-OTBA algorithm in Optical Burst Switching (OBS) networks,”P(pán)roc.Advances in Wireless and Optical Communications, 2015, pp. 132-137.

    [18] G. Liu, C. Ji, “Resilience of all-optical network architectures under in-band crosstalk attacks:a probabilistic graphical model approach,”IEEE Journal on Selected Areas in Communications,vol. 25, no. 3, 2007, pp. 2-17.

    [19] M. Kwiatkowska, G. Norman, D. Parker, “PRISM:Probabilistic Symbolic Model Checker,”Lecture Notes in Computer Science, vol. 2324, 2002, pp.200-204.

    [20] M. Kwiatkowska, G. Norman, D. Parker, “Proba-bilistic symbolic model checking with PRISM: a hybrid approach,”International Journal on Software Tools for Technology Transfer, vol. 6, no. 2,2004, pp. 128-142.

    [21] M. Kwiatkowska, G. Norman, D. Parker, “PRISM:probabilistic model checking for performance and reliability analysis,”ACM Press, 2009.

    [22] C. Baier, B. Haverkort, H. Hermanns,et al, “Model-Checking Algorithms for Continuous-Time Markov Chains,”IEEE Transactions on Software Engineering, vol. 29, no. 6, 2003, pp. 524-541.

    [23] Y. Gao, M. Xu, N. Zhan,et al, “Model checking conditional CSL for continuous-time Markov chains,”Information Processing Letters, vol. 113 no. 1-2, 2013, pp. 44-50.

    [24] P. E. Heegaard, K. S. Trivedi, “Network survivability modelling,”Computer Networks, vol. 53, no.8, 2009, pp. 1215-1234.

    [25] W. Feng, Y. Li, J. Gan, S. Zhou, J. Wang and M Xia, “On the deployment of antenna elements in generalized multi-user distributed antenna systems,”ACM Mobile Networks and Applications, vol. 16, no. 1, 2011, pp. 35-45.

    [26] H. Yang,et al. “Experimental demonstration of multi-dimensional resources integration for service provisioning in cloud radio over fiber network,”, 2016, pp. 30678.

    [27] H. Yang,et al. “C-RoFN: multi-stratum resources optimization for cloud-based radio over opticalber networks,”IEEE Communications Magazine,vol. 54, no. 8, 2016, pp. 118-125.

    [28] Y. Wang, W. Feng, L. Xiao, Y. Zhao and S. Zhou,“Coordinated multi-cell transmission for distributed antenna systems with partial CSIT,”IEEE Communications Letters, vol. 16, no. 7, 2012, pp.1044-1047.

    [29] W. Feng, Y. Wang, N. Ge, J. Lu and J Zhang,“Virtual MIMO in multi-cell distributed antenna systems: coordinated transmissions with largescale CSIT,”IEEE Journal on Selected Areas in Communications, vol. 31, no. 10, 2013, pp.2067-2081.

    [30] W. Feng, Y. Wang, D. Lin,et al. “When mmWave Communications Meet Network Densification:A Scalable Interference Coordination Perspective,”IEEE Journal on Selected Areas in Communications, vol. 35, no. 7, 2017, pp. 1459-1471.

    [31] P. E. Heegaard, K. S. Trivedi, “Survivability quantification of communication services,”P(pán)roc.IEEE International Conference on Dependable Systems and Networks with Ftcs and DCC, 2008,pp. 462-471

    [32] J. C. Knight, K. J. Sullivan, “On The Denition Of Survivability”, 2003.

    [33] V. R. Westmark, “A definition for information system survivability,”P(pán)roc. of the 37th Hawaii International Conference on System Sciences,2004, pp. 1-10.

    [34] W. J. Stewart, “Introduction to the Numerical Solution of Markov Chains, ”DBLP, 1994.

    [35] H Hermanns, J. P. Katoen, J. Meyerkayser,et al. “A Markov Chain Model Checker,”Lecture Notes in Computer Science, vol. 1785, 2000, pp. 347-362.

    [36] B. Plateau, K. Atif, “Stochastic Automata Network For Modeling Parallel Systems,”IEEE Transactions on Software Engineering,vol. 17, no. 10,1991, pp. 1093-1108.

    [37] M. Ajmone Marsan, G. Conte, G. Balbo, “A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems,”Acm Transactions on Computer Systems,vol. 2, no. 2, 1984, pp. 93-122.

    [38] M. Hlynka, “Queueing Networks and Markov Chains (Modeling and Performance Evaluation With Computer Science Applications),”Technometrics, vol. 49, no. 1, 2006, pp. 104-105.

    精品人妻1区二区| 国产精品三级大全| 国产精品电影一区二区三区| 欧美日韩综合久久久久久 | 成人特级黄色片久久久久久久| 亚洲国产高清在线一区二区三| 中文亚洲av片在线观看爽| 人人妻人人看人人澡| 高潮久久久久久久久久久不卡| 特大巨黑吊av在线直播| 亚洲人成电影免费在线| 久久天躁狠狠躁夜夜2o2o| 俺也久久电影网| 最后的刺客免费高清国语| 亚洲aⅴ乱码一区二区在线播放| 国产精品自产拍在线观看55亚洲| 性色avwww在线观看| 亚洲精品乱码久久久v下载方式| 精品国内亚洲2022精品成人| 中文字幕av在线有码专区| 免费黄网站久久成人精品 | 免费看光身美女| 欧美高清成人免费视频www| 亚洲,欧美,日韩| 国产精品1区2区在线观看.| 色在线成人网| 欧美性感艳星| 中出人妻视频一区二区| 欧美+日韩+精品| 此物有八面人人有两片| 综合色av麻豆| 老司机午夜十八禁免费视频| 国产午夜精品论理片| 亚洲精品亚洲一区二区| 欧美性感艳星| 一卡2卡三卡四卡精品乱码亚洲| 国产熟女xx| 国产精品影院久久| 免费大片18禁| 成人亚洲精品av一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 91av网一区二区| 深爱激情五月婷婷| 成人鲁丝片一二三区免费| 午夜视频国产福利| 色在线成人网| 性插视频无遮挡在线免费观看| 亚洲欧美精品综合久久99| 亚洲无线观看免费| 日韩欧美精品v在线| 99国产综合亚洲精品| 美女 人体艺术 gogo| 麻豆一二三区av精品| 91久久精品电影网| 综合色av麻豆| 欧美成人免费av一区二区三区| 伊人久久精品亚洲午夜| 精品久久久久久久久亚洲 | 国产精品久久久久久久久免 | 国产黄a三级三级三级人| 一本一本综合久久| 精品久久久久久久久久久久久| 老司机福利观看| 免费看日本二区| 久99久视频精品免费| 男女视频在线观看网站免费| 露出奶头的视频| 超碰av人人做人人爽久久| 亚洲狠狠婷婷综合久久图片| 国产亚洲欧美在线一区二区| 免费大片18禁| 国模一区二区三区四区视频| 欧美xxxx性猛交bbbb| 直男gayav资源| 免费在线观看日本一区| 特级一级黄色大片| 好看av亚洲va欧美ⅴa在| 欧美激情久久久久久爽电影| 熟女电影av网| 精品一区二区三区视频在线观看免费| 97碰自拍视频| 亚洲美女视频黄频| 午夜福利免费观看在线| 午夜老司机福利剧场| 亚洲第一欧美日韩一区二区三区| 9191精品国产免费久久| 中文字幕人成人乱码亚洲影| 亚洲五月天丁香| 丰满人妻熟妇乱又伦精品不卡| 日本成人三级电影网站| 综合色av麻豆| 99热只有精品国产| 国产精品爽爽va在线观看网站| 日韩av在线大香蕉| 一进一出抽搐动态| 在线播放国产精品三级| 国产精品人妻久久久久久| 精品国产亚洲在线| 18禁黄网站禁片免费观看直播| 欧美一区二区国产精品久久精品| 日韩有码中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 婷婷色综合大香蕉| 午夜福利视频1000在线观看| 成人精品一区二区免费| 午夜福利欧美成人| 最近在线观看免费完整版| av专区在线播放| 亚洲av成人不卡在线观看播放网| 欧美一区二区亚洲| 蜜桃亚洲精品一区二区三区| 高潮久久久久久久久久久不卡| 中文字幕久久专区| 亚洲男人的天堂狠狠| 久久草成人影院| 免费观看精品视频网站| 激情在线观看视频在线高清| 国产爱豆传媒在线观看| 亚洲综合色惰| 欧美成人a在线观看| 亚洲第一电影网av| 亚洲专区中文字幕在线| 色播亚洲综合网| 国产 一区 欧美 日韩| 成人av一区二区三区在线看| 欧美日韩乱码在线| 日本在线视频免费播放| 亚洲专区中文字幕在线| 性插视频无遮挡在线免费观看| 亚洲avbb在线观看| 国产精品99久久久久久久久| 欧美三级亚洲精品| 国产一级毛片七仙女欲春2| 国产野战对白在线观看| 欧美午夜高清在线| 亚洲综合色惰| 综合色av麻豆| 国产亚洲av嫩草精品影院| 亚洲精品456在线播放app | 国产成人a区在线观看| 国产伦在线观看视频一区| 麻豆久久精品国产亚洲av| 亚州av有码| 欧美日韩福利视频一区二区| 国产毛片a区久久久久| 国产精品一及| 麻豆av噜噜一区二区三区| 一个人看的www免费观看视频| 黄片小视频在线播放| 精品熟女少妇八av免费久了| 日韩精品中文字幕看吧| 欧美黄色片欧美黄色片| 无人区码免费观看不卡| 亚洲色图av天堂| www.999成人在线观看| 久久久久性生活片| 又紧又爽又黄一区二区| 超碰av人人做人人爽久久| 国内久久婷婷六月综合欲色啪| 身体一侧抽搐| 亚洲国产精品成人综合色| 国产 一区 欧美 日韩| 91午夜精品亚洲一区二区三区 | 欧美另类亚洲清纯唯美| 99视频精品全部免费 在线| 久久人人爽人人爽人人片va | 成人毛片a级毛片在线播放| 欧美性感艳星| 高潮久久久久久久久久久不卡| 国产av在哪里看| 嫩草影院入口| 国产精品人妻久久久久久| 最新中文字幕久久久久| aaaaa片日本免费| 少妇高潮的动态图| 色综合站精品国产| 久久精品国产亚洲av天美| 一区二区三区高清视频在线| 天天躁日日操中文字幕| 日日摸夜夜添夜夜添av毛片 | 成人无遮挡网站| 99热精品在线国产| 少妇人妻一区二区三区视频| 亚洲欧美日韩高清专用| 亚洲色图av天堂| 麻豆国产97在线/欧美| 男人狂女人下面高潮的视频| 久久热精品热| 国产成人影院久久av| 看黄色毛片网站| 国产精品av视频在线免费观看| 别揉我奶头~嗯~啊~动态视频| 国产成+人综合+亚洲专区| 久久久久久久久大av| 国产成人aa在线观看| 黄色一级大片看看| a级毛片免费高清观看在线播放| 色视频www国产| 中文字幕高清在线视频| 身体一侧抽搐| 五月伊人婷婷丁香| 国产主播在线观看一区二区| 我要看日韩黄色一级片| 男人的好看免费观看在线视频| 婷婷丁香在线五月| 国产精品不卡视频一区二区 | 欧美黑人巨大hd| 久久精品国产亚洲av天美| 亚洲经典国产精华液单 | 51国产日韩欧美| 久久伊人香网站| 成人国产综合亚洲| 一进一出抽搐gif免费好疼| 九九久久精品国产亚洲av麻豆| 一区二区三区四区激情视频 | 99久久精品一区二区三区| 国产爱豆传媒在线观看| 午夜亚洲福利在线播放| 国产精品久久久久久久久免 | 一个人观看的视频www高清免费观看| 国产精品一区二区免费欧美| 欧美在线黄色| 非洲黑人性xxxx精品又粗又长| av天堂中文字幕网| 99国产综合亚洲精品| 国产 一区 欧美 日韩| 欧美日韩综合久久久久久 | 在线观看66精品国产| 精品乱码久久久久久99久播| 成人毛片a级毛片在线播放| 九九久久精品国产亚洲av麻豆| 久久久色成人| 内地一区二区视频在线| 久久精品91蜜桃| 麻豆国产97在线/欧美| 禁无遮挡网站| 熟妇人妻久久中文字幕3abv| 国产一区二区在线观看日韩| 日韩亚洲欧美综合| 国产色爽女视频免费观看| 身体一侧抽搐| 淫秽高清视频在线观看| 别揉我奶头~嗯~啊~动态视频| 欧美另类亚洲清纯唯美| 麻豆成人av在线观看| 日本免费一区二区三区高清不卡| 国产精品日韩av在线免费观看| 午夜精品久久久久久毛片777| 啦啦啦韩国在线观看视频| 神马国产精品三级电影在线观看| 欧美性猛交╳xxx乱大交人| 老司机午夜福利在线观看视频| 欧美最新免费一区二区三区 | 一区二区三区四区激情视频 | 在线观看免费视频日本深夜| 97超视频在线观看视频| 一级作爱视频免费观看| 欧美高清成人免费视频www| 美女大奶头视频| 精品久久久久久久末码| 99热这里只有是精品50| 成人毛片a级毛片在线播放| 免费看美女性在线毛片视频| 老司机福利观看| 午夜两性在线视频| 深夜精品福利| 简卡轻食公司| 日日摸夜夜添夜夜添小说| 日韩精品青青久久久久久| 一夜夜www| 中文字幕人妻熟人妻熟丝袜美| 国产一区二区三区视频了| 成年女人永久免费观看视频| 很黄的视频免费| 看十八女毛片水多多多| 91麻豆精品激情在线观看国产| 国产亚洲精品久久久com| 免费观看精品视频网站| 亚洲自拍偷在线| 色精品久久人妻99蜜桃| 啦啦啦观看免费观看视频高清| 久久精品人妻少妇| 两个人视频免费观看高清| 国产在视频线在精品| 国产免费一级a男人的天堂| 亚洲精品粉嫩美女一区| 桃色一区二区三区在线观看| 伊人久久精品亚洲午夜| 草草在线视频免费看| 一边摸一边抽搐一进一小说| 欧美最黄视频在线播放免费| 久久久久亚洲av毛片大全| 精品免费久久久久久久清纯| 国产av一区在线观看免费| av在线蜜桃| 亚洲国产欧美人成| 国产69精品久久久久777片| 又黄又爽又免费观看的视频| 成人三级黄色视频| 一区二区三区免费毛片| 免费在线观看日本一区| 精品人妻1区二区| 亚洲五月天丁香| 夜夜躁狠狠躁天天躁| 嫩草影视91久久| 在线观看美女被高潮喷水网站 | 欧美绝顶高潮抽搐喷水| www.色视频.com| 午夜精品久久久久久毛片777| 久久久久免费精品人妻一区二区| 欧美bdsm另类| a在线观看视频网站| a级一级毛片免费在线观看| av中文乱码字幕在线| 一个人观看的视频www高清免费观看| 日本一本二区三区精品| 在线观看av片永久免费下载| 日本免费a在线| 国产久久久一区二区三区| av在线蜜桃| 欧美成人性av电影在线观看| 色尼玛亚洲综合影院| 成人毛片a级毛片在线播放| 免费大片18禁| 黄色丝袜av网址大全| 国产爱豆传媒在线观看| 亚洲性夜色夜夜综合| 一卡2卡三卡四卡精品乱码亚洲| 亚洲 欧美 日韩 在线 免费| 色综合站精品国产| 国产v大片淫在线免费观看| 国产老妇女一区| 女生性感内裤真人,穿戴方法视频| 国产中年淑女户外野战色| 黄色配什么色好看| 国产伦精品一区二区三区视频9| 久9热在线精品视频| 国产午夜精品论理片| 色综合亚洲欧美另类图片| 亚洲国产色片| 国产免费男女视频| 高清日韩中文字幕在线| 热99re8久久精品国产| 在线十欧美十亚洲十日本专区| 亚州av有码| 岛国在线免费视频观看| 性色avwww在线观看| 国产高清视频在线观看网站| 亚洲18禁久久av| 日韩欧美免费精品| 亚洲无线在线观看| 亚洲成人精品中文字幕电影| 九九热线精品视视频播放| 亚洲成a人片在线一区二区| 久久人妻av系列| 波野结衣二区三区在线| 欧美bdsm另类| 欧美性猛交╳xxx乱大交人| 成年免费大片在线观看| 91九色精品人成在线观看| 国产高潮美女av| 床上黄色一级片| 亚洲人与动物交配视频| 国产精品人妻久久久久久| 两个人的视频大全免费| 亚洲精品粉嫩美女一区| 日韩高清综合在线| 中文字幕免费在线视频6| 麻豆一二三区av精品| 亚洲成人久久性| 亚洲国产欧洲综合997久久,| 亚洲精品影视一区二区三区av| 成人亚洲精品av一区二区| 国产精品99久久久久久久久| 嫩草影视91久久| 有码 亚洲区| 国内精品久久久久久久电影| 欧美乱色亚洲激情| 午夜福利在线在线| 国产精品三级大全| 熟女人妻精品中文字幕| 小蜜桃在线观看免费完整版高清| 男人舔奶头视频| 综合色av麻豆| 国产精品久久电影中文字幕| 女同久久另类99精品国产91| 在线免费观看的www视频| 亚洲成av人片免费观看| 窝窝影院91人妻| 在线观看av片永久免费下载| 最近视频中文字幕2019在线8| 精品久久久久久成人av| 91久久精品电影网| 亚洲精品色激情综合| 国产人妻一区二区三区在| 少妇的逼水好多| 最好的美女福利视频网| 超碰av人人做人人爽久久| 少妇人妻精品综合一区二区 | 一本久久中文字幕| a级一级毛片免费在线观看| 欧美日本亚洲视频在线播放| 69av精品久久久久久| 又爽又黄a免费视频| 色哟哟哟哟哟哟| 我要搜黄色片| 欧美高清性xxxxhd video| 成年版毛片免费区| 欧美黑人欧美精品刺激| 狂野欧美白嫩少妇大欣赏| 国产探花在线观看一区二区| 此物有八面人人有两片| 天堂√8在线中文| 国产成人av教育| 欧美日本视频| 亚洲国产精品sss在线观看| 色精品久久人妻99蜜桃| 国产伦精品一区二区三区四那| 97人妻精品一区二区三区麻豆| 国产黄色小视频在线观看| 欧美极品一区二区三区四区| .国产精品久久| 亚洲国产精品999在线| 国产高清有码在线观看视频| 国产精品永久免费网站| 久久精品人妻少妇| 嫩草影院精品99| 国产视频内射| 成人国产综合亚洲| 九九久久精品国产亚洲av麻豆| 国产精品久久视频播放| 日本一本二区三区精品| 91字幕亚洲| 美女高潮喷水抽搐中文字幕| 男人的好看免费观看在线视频| 国产精品野战在线观看| 日韩精品青青久久久久久| 夜夜爽天天搞| 色综合婷婷激情| 男女做爰动态图高潮gif福利片| 久久九九热精品免费| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产主播在线观看一区二区| 久久久色成人| 搡老熟女国产l中国老女人| 亚洲精品成人久久久久久| 久久午夜亚洲精品久久| 日本成人三级电影网站| 乱人视频在线观看| 国产在视频线在精品| 夜夜看夜夜爽夜夜摸| 色综合站精品国产| 久久久久九九精品影院| 亚洲欧美日韩高清在线视频| 精品人妻1区二区| 亚洲七黄色美女视频| 亚洲国产精品久久男人天堂| 日本黄大片高清| 性色av乱码一区二区三区2| 淫妇啪啪啪对白视频| 成人国产一区最新在线观看| 国产伦人伦偷精品视频| 亚洲久久久久久中文字幕| 老熟妇仑乱视频hdxx| 嫩草影院精品99| 欧美极品一区二区三区四区| 中文亚洲av片在线观看爽| 俄罗斯特黄特色一大片| 国内久久婷婷六月综合欲色啪| 精品一区二区三区人妻视频| 91在线精品国自产拍蜜月| 看免费av毛片| 最新中文字幕久久久久| 国产真实乱freesex| 黄色一级大片看看| 国产av不卡久久| 中出人妻视频一区二区| ponron亚洲| 欧美xxxx黑人xx丫x性爽| 中文字幕av在线有码专区| av欧美777| 好男人在线观看高清免费视频| 老司机深夜福利视频在线观看| 他把我摸到了高潮在线观看| 18禁黄网站禁片午夜丰满| av天堂中文字幕网| 国产精品日韩av在线免费观看| 免费看日本二区| 国产精品98久久久久久宅男小说| 精品久久久久久久久av| 欧美另类亚洲清纯唯美| 亚洲一区二区三区色噜噜| 国产黄色小视频在线观看| 国内精品久久久久精免费| 色噜噜av男人的天堂激情| av女优亚洲男人天堂| 国产毛片a区久久久久| 噜噜噜噜噜久久久久久91| 观看免费一级毛片| 精品国产三级普通话版| 97超级碰碰碰精品色视频在线观看| 99视频精品全部免费 在线| 亚洲最大成人av| 人妻丰满熟妇av一区二区三区| 无遮挡黄片免费观看| 给我免费播放毛片高清在线观看| 久久久久免费精品人妻一区二区| 日韩欧美一区二区三区在线观看| 午夜激情欧美在线| 亚洲成人免费电影在线观看| 亚洲av电影在线进入| 老女人水多毛片| 国产野战对白在线观看| 男人的好看免费观看在线视频| 精品不卡国产一区二区三区| av在线天堂中文字幕| 啦啦啦韩国在线观看视频| 国产91精品成人一区二区三区| 性欧美人与动物交配| 中文字幕av成人在线电影| 亚洲成av人片免费观看| 波野结衣二区三区在线| 亚洲av一区综合| 午夜视频国产福利| 一进一出好大好爽视频| 国产视频内射| 91字幕亚洲| 嫁个100分男人电影在线观看| 国产在线精品亚洲第一网站| 精品人妻1区二区| 精品欧美国产一区二区三| 亚洲三级黄色毛片| 亚洲自拍偷在线| 国产麻豆成人av免费视频| 在线观看av片永久免费下载| 国产亚洲av嫩草精品影院| 久久久久国产精品人妻aⅴ院| 国产精品女同一区二区软件 | 97超级碰碰碰精品色视频在线观看| 麻豆久久精品国产亚洲av| 久久久久国内视频| 波野结衣二区三区在线| 90打野战视频偷拍视频| 尤物成人国产欧美一区二区三区| 久久精品国产自在天天线| 亚洲成a人片在线一区二区| 中文字幕av成人在线电影| 久久久色成人| 欧美日韩黄片免| 国产亚洲精品久久久com| 精品不卡国产一区二区三区| 日本 欧美在线| 国产毛片a区久久久久| 亚洲aⅴ乱码一区二区在线播放| 亚洲无线观看免费| 丰满乱子伦码专区| 脱女人内裤的视频| 国产黄a三级三级三级人| 国产 一区 欧美 日韩| 亚洲美女视频黄频| 蜜桃久久精品国产亚洲av| 一级a爱片免费观看的视频| 国产单亲对白刺激| 国产男靠女视频免费网站| 一级作爱视频免费观看| 日本成人三级电影网站| 日韩av在线大香蕉| 成人高潮视频无遮挡免费网站| 亚洲最大成人av| 午夜日韩欧美国产| 麻豆国产97在线/欧美| 可以在线观看毛片的网站| АⅤ资源中文在线天堂| 午夜精品一区二区三区免费看| 久久中文看片网| 国产在视频线在精品| 香蕉av资源在线| 精品久久久久久久久久久久久| 国内揄拍国产精品人妻在线| 直男gayav资源| 日本精品一区二区三区蜜桃| 怎么达到女性高潮| 99在线人妻在线中文字幕| 欧美潮喷喷水| 亚洲av日韩精品久久久久久密| 韩国av一区二区三区四区| 欧美性感艳星| 少妇高潮的动态图| 欧美xxxx黑人xx丫x性爽| 亚洲中文字幕日韩| 国产真实乱freesex| 婷婷精品国产亚洲av在线| 国内精品久久久久久久电影| 自拍偷自拍亚洲精品老妇| 国产69精品久久久久777片| 成人三级黄色视频| 国产日本99.免费观看| 少妇人妻一区二区三区视频| 91麻豆av在线| 亚洲人成网站在线播| 色综合亚洲欧美另类图片| 国产色爽女视频免费观看| 成年女人永久免费观看视频| 日本在线视频免费播放| 国产欧美日韩一区二区三| 国产色婷婷99| or卡值多少钱| 老司机深夜福利视频在线观看| 91久久精品国产一区二区成人| 亚洲人成网站在线播放欧美日韩| 国产精华一区二区三区| 成人毛片a级毛片在线播放| 一级黄片播放器| 成人三级黄色视频| 免费黄网站久久成人精品 |