• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy Effcient Modelling of a Network

    2018-03-12 12:12:31AnishKumarSahaKojSambyoChandanTilakBhunia
    China Communications 2018年1期

    Anish Kumar Saha*, Koj Sambyo, Chandan Tilak Bhunia

    Dept. of Computer Science and Engineering, NIT Arunachal Pradesh, India

    I. INTRODUCTION

    Demands of energy are growing day by day.The demands of energy in developing countries will be higher in the future. A major portion of electrical energy comes from fossil fuel, coals and natural gases. These conventional sources of energy increases the unavoidable future problem termed as “global warming and green house gases”. If we notice statistical data, according to CETE and Bell labs report, the volume of CO2emitted by ICT is near about 830 million tons every year, which is around 2% of the man made emission of the world. It has also projected that the amount of CO2emission will be approximately double in 2020. According to EIA report, fast developing countries like India and China will share half of the world increase power in 2040. One of the key areas where drastically increase power consumption is computer networking,data communication and data centers. Worldwide internet users are 3.17 billion in 2015,which is around 8% growth with respect to users in 2014. Users of internet in 2015 are almost 3 times user in 2005. Bianzino et al.[1] described different types of common strategies in energy efficient networking. These strategies are adaptive link rate, interface proxying, energy aware infrastructure, energy aware application, energy aware routing etc.Hasan et al. [2] described energy efcient cellular networking and they explained different common energy efficient research areas like,improvement in power amplifier, power saving protocol, energy aware cooperative management, management of relay & repeaters,picco/macro/ femto cells, energy aware medium access control etc. They showed different green metrics for measuring the efficiency of a system. Other than these, huge amount of energy is consuming in famous giant data centers. Data centers are generally less energy efcient. Data centers mostly consume power due to cooling and redundancy in network resources. According to DCE industry census 2013, globally data centers power demands increased more 19% from 2011 to 2012. The total energy consumption of global data centers is around 38GW, which is 316% higher figure from 12GW in 2007. Power usages effectiveness (PUE) of large data centers is nearly between 1.2-1.6. However, the PUE of medium and small size private organizations vary from 1.7 to 3.0, which is not a goodgure for efficient energy management system.Different approaches of energy efficient data centers are nano data centers, dynamic workload consolidation, sleeping scheduling, CPU frequency adjustment, lazy capacity provisioning etc [3-6]. Other than, for controlling resources andow rule modication, updated topology is important for any network. Saha et al. [15] showed how tond topology, loops in network. They briey explained link failure identication & recovery in software dened networking (SDN). Bruce Lowekamp et al.[16] proposed algorithm for topology discovery using SNBP MIBs information contents in large size bridged Ethernet network.

    Networking devices are not fully energy proportional with respect to use. Power consumption has both static and dynamic consumption. One of the examples of dynamic consumption is data rate change. Change in data rate reduces additional power consumption in forwarding nodes. In this paper,different models are proposed. These models focus on minimum topology for allows under current situations. Here data rate change with enable/disable of edges is applied. These mathematical models are mixed integer linear programming optimization problems in nature.These models are explained with examples.

    II. RELATED WORKS

    L. Zhou et al. [18] investigated two properties namely, energy efciency and spectrum efciency in handheld mobile devices during video streaming. They combined both two parameters and proposed joint parameter algorithm. They showed the relationship between them and explained that these parameters could integrate in an energy efficient model in mobile Ad Hoc network. Liang Zhou [19]proposed sharing of same video contents in nearby mobile devices without re transmission to different devices from base station. Their method was decentralised approach and did not require any further central controller. Here,mobility velocity, video file size, communication cost, transmission radius, device and storage capacity was taken as computational parameters for device-to-device and base station-to-device communication. Hui Yang et al. [20] proposed MFVC model, which was multiple flow communication with ability of non-contiguous spectral fragment in a flexigrid optical network. Flows were split into multiple spectral and sent through the physical media using modulation. Resource allocations,guard band, number of splitows, delay constrain were taken as parameters. They showed less blocking probability without affecting other services and explained the design of transponder and control model. H. Yang et al. [21]presented Cross Stratum Optimization (CSO)as elastic data centers in SDN based optical network. The aim of their model was global optimization, QoS and accommodation of data center services under heterogeneous resources condition. H. Yang et al. [22] proposed SUDOI, which was an extension of earlier CSO model in ubiquitous data centre architecture.It managed resources based on blocking probability and resource occupation rate in optical SDN data centers. Their architecture was a multi layer and cross-stratus model from user access perspective. Different controllers were assigned in different network layers that gave hierarchy structure in central control in optical SDN.

    Other than, Two types of well knowsows are Elephant flow and mice flow. Elephantows capture healthy amount of bandwidth in a link. Elephant flows, although very limited numbers, capture large capacity. Elephant flows affect the QoS for small sized flows,which are known miceows. Authors [23-26]proposed different techniques for identification of elephantows in a network. Z. Liu et al. [27] proposed effective management of elephantows in data center. Mori et al. [28]investigated the characteristic of aggregation and user trafcs and showed their relationship.They observed that traffic follows positively skewed (non-Gaussian) distributions. In this context, we propose two types of services namely “minimum bandwidth” and “trivialle transfer”.

    Proposed Algorithms and mathematical models:

    Here four different models are proposed.Each model has different purpose and function. Therst model “Minimum edge” determines the required minimum edges along with their different data rates to support all trafcs.Switch from higher to lower data rate saves

    energy consumption in forwarding nodes. For instance, data rate change from 10 Mbps to 1Gbps increases 3W power consumption [1].This model minimizes power consumption by disabling more edges along with other edges to be set in lower data rates.

    Table I. Summary of nomenclature.

    Minimum edge model

    Objective,

    Subject to,Path selection

    Edge selection for selected path

    Rate switch and bandwidth capacity limitation

    Edge selection for spanning tree

    Spanning tree selection

    The objective (1) is a minimization function of additional power consumption of edges for their different data rates. The model optimizes in power consumption in edges through enable/disable and data rate change. Here data rate of edges is set in two different values, an intermediate value Θ and maximum capacity rate. It has six constrains. Constrain (2) entitled “Path selection” ensures, for a particular{Source, Destination} communication, only one path will be selected from a list of alternative paths. Constrain (3) entitled “Edge selection” ensures, a particular edge will be enabled if and only if at least one communication passes through this edge. Hence “Path selection”constrain (2) selects path for all communications and based on the selected path “Edge selection” constrain (3) sets the edge status.“Rate switch and bandwidth capacity limitation” constrains (4-5) set data rates for all edges. Constrain (4) sets the value of E[i][3]for lower data rate switch. In constrain (5), a small valueδis deducted from the limit Θ to convert from < to ≤ relation. It also ensures bandwidth limit of edges i.e., at E[i][3]=1 and E[i][2]=1, the sum of all required bandwidth for all communications passes through the edge should not cross its maximum bandwidth capacity limit. The different values of decision variable R are given in Table 02.

    Constrain (7) entitled “Spanning tree selection” ensures that at least one spanning tree must maintain from a list of different spanning trees. “Spanning tree selection” constrain is used to maintain connectivity between all forwarding nodes. If we do not use this constrain then the model will give more optimized result but at the same time, some forwarding nodes may disconnected from the network after applying different power saving mode like port up/down, line card enable/disable etc. Constrain (6) ensures that all edges presented in a selected spanning tree should be enabled.

    Table II. Different data rates for ith edge.

    Minimum delay model

    Objective,

    Subject to,

    Path selection

    Edge selection for selected path

    Rate switch and bandwidth capacity limitation

    Edge Selection for spanning tree

    Spanning tree selection

    Network delay divides into four classes- processing, queuing, transmission and propagation. First three delays happen at router/switch. Propagation delay depends on media.Generally, more intermediate nodes in the path increases processing and transmission delay. In this regards, the second model entitled as “Minimum delay” considers delay as objective for all communications. Here we consider delay as total number of intermediate forwarding nodes from source to destination.More number of intermediate edges means more delays in a path. This model minimizes the “total delays” for allows. The term “total delay” means sum of all delays for all flows presented in a network. The objective (8) is a minimization function, which minimizes the“total delays” for allows. The model has six constrains. Constrain (9) ensures, selection of only one path from a set of alternative paths for all communications. Constrain (10) ensures that, if anyow passes through an edge then that edge will be enabled. Constrains (11-12) set data rate switch for all edges as well as ensures that bandwidth limit of edges should not cross. Constrains (13-14) ensure that at least one spanning tree must maintain for the network to make connectivity with different forwarding nodes. The model gives more priority in delay than energy saving.

    Minimum change model

    Objective,

    Subject to,

    Path selection

    Edge selection for selected path

    Rate switch and bandwidth capacity limitation

    Edge Selection for spanning tree

    Spanning tree selection

    Sustain earlier topology

    Generally, traffic changes randomly with respect to time and space in a network. It is undesirable to change or modifyow rules for oldows in every switch to cope with current flows for certain purposes. The third model“Minimum change” determines optimal power consumption using rate change & port up/down and at the same time, maintaining the earlier required topology for oldows. Since,earlier required topology is same, so further modification is not needed in old flow rules.The model adjusts new flows with old flows and determines optimal power consumption.The objective (15) is a minimization of additional power consumption in rate change or port up/down. It has total seven constrains.Constrains (16,17,20,21) are same as discussed in Minimum edge model. Since, matrix AllotedBW contains assigned bandwidth for all “minimum bandwidth” type old flows therefore, in constrains (18-19), a part Alloted-BW[i] is added with total bandwidth of current flows for all ithedge. Constrain (22) ensures that earlier enabled edges for old flows must set enable to maintain minimum change.

    Multi flow model for “trivial file transfer” service

    Objective,

    Subject to,

    Bandwidth capacity limitation

    Maximum allotment of bandwidth for different paths

    Here two types of services namely, “minimum bandwidth” and “trivial file transfer”are considered. In “minimum bandwidth”service, all flows must maintain a minimum bandwidth for all communication. First three models are for “minimum bandwidth” type service. However, in the forth model, allows are considered as “trivialle transfer” service.In “trivialle transfer” service, bandwidth and transmission time could vary in these types ofows. Forth model “Multiow” determines to sendles as quickly as possible using multiple flows. After delivering files through multiple flows, resources could be released early and be placed in power saving mode. Here multiple flows are created for a communication.Multi flow model is applied after applying one of the three models as discussed earlier.Resources are assigningrst to all “minimum bandwidth” service, then remaining resources are allowed to assign in “trivialle transfer”service. Here “minimum bandwidth” is giving high priority than “trivialle transfer” service.This is because time and bandwidth in “trivialle transfer” could vary comparing to “minimum bandwidth” service.

    Here the objective (23) is to maximize the allocation of bandwidth for all multipleows for all communications. Constrain (24) entitled “Bandwidth capacity limitation” checks the sum of bandwidth for allows should not cross maximum limit of remaining bandwidth of every edges. Constrain (25) entitled “Maximum allotment of bandwidth for different paths” ensures allocated bandwidth should not cross maximum limit of bandwidth of the path. Suppose for thegure 01, remaining capacity of edges are E1= 5Mbps, E2= 10Mbps,E3= 4 Mbps and if a path contains E1, E2and E3edges, then path limit is minimum(10, 4, 5)Mbps or 4 Mbps. Since, all decision and other variables are real, so it is a simple optimization problem.

    An example of minimum edge model is given for the network ingure 1.

    The network has the following matrices and data,

    ? Total number of edges, n=5

    ?δ=0.0001

    ? θ=10Mbps

    Fig. 1. An example of a network with ve switch and ve edges.

    ? Three communications are {S1,S4}, {S2,S5}and {S4,S5}

    ? All alternative paths for {S1,S4}, {S2,S5}and {S4,S5} arec1,c2andc3, and its values are,

    Suppose the meaning ofc1={1,2} is,P1andP2are its two alternative paths as shown in the above matrix T.

    ? Total number of communications, M= 3

    ? Capacity={100,100, 50,50,50} in Mbps

    ? Demands for communication,d={500,800,600} in Kbps

    ? No of spanning trees taken, noSP=4

    ? List if spanning trees (S) are,

    Minimum edge model

    Objective,

    Subject to,

    Path selection

    Edge selection for selected path

    Rate switch and bandwidth capacity limitation

    Spanning tree selection

    Results:

    E1=10, E2=0(Disabled), E3=10, E4=10,E5=10inMbps.

    Another example is given for multi flow model for the same network ingure 01.

    ? AllotedBW={89,80,41,30,35} in Mbps.

    ? PathLimit={9,11,9,20,9,15} in Mbps

    Objective,

    Subject to,

    Bandwidth capacity limitation

    Maximum allotment of bandwidth for different paths

    Results: Allotted bandwidths for all sixows are,

    TBW1=0, TBW2=11, TBW3=4, TBW4=20,TBW5=5 and TBW6=0 in Mbps

    Implementation and Computation time:

    The models are MILP problems except multiow. MILP is np-hard in characteristics and takes higher time for computation for large value of inputs. To solve these models,GNU Linear Programming Kit(GLPK) is used. GLPK is an open source for large scale linear, integer, mixed integer programming solver. The proposed models are written in GNU MathProg modelling language.

    An illustration of computational time for these methods has shown in Table 03. We have taken simultaneously different 100 and 50{source, destination} numbers of communications in Abilene topology. Total 65 numbers of different spanning trees have taken. Computation time for all models have measured under different numbers of alternative paths = 1, 2,3 and 4, for each {Source, Destination}. In all cases, minimum edge takes highest and multiow model takes lowest time in computation.

    Some computational times are higher value, and in those cases, heuristic approach is used to reduce it. Here hybrid Pseudo-cost branching (PC) along with Integer Optimality(MIPgap) 0.05 is taken for reducing the computation time.

    Table III. The computational times for proposed models with variation in number of alternative paths.

    Fig. 2. Structure of Abilene network.

    III. CONCLUSION

    Here four different models are proposed in energy efficient networking. Minimum edge model provides more energy efciency but requires longer time for computation. Minimum Delay model gives faster delivery of packets due to less number of intermediate edges.Minimum change model is good for fewer changes in topology andow rules. It sustains earlier required topology and cope new communications with old communications. Since,old topology remains same, oldows need not be required to reroute and modified in flow rules. Above models are designed for “minimum bandwidth” type service. Unused edges are disabled and low utilized edges are set to lower data rate for further power saving. Multiow model is designed to transfersles quickly using multiple paths in “trivialle transfer”type service. Quick delivery of packets allows resources be placed early in power saving mode. Multiows model applied after applying one of the above three models. Therefore,“minimum bandwidth” is giving higher priority than “trivial file transfer” service. Energy efficiency is achieved using rate change and enable/disable of edges. More efcient model could be achieved by considering line cards,energy hungry TCAM memory, queuing delay effects etc in a switch. Our next plan is queuing delay with power saving in energy efcient networks.

    [1] Bianzino, A.P.; Chaudet, C.; Rossi, D.; Rougier, J.,“A Survey of Green Networking Research,”Communications Surveys & Tutorials, IEEE, vol.14,no.1, First Quarter 2012, pp.3-20.

    [2] Hasan, Z.; Boostanimehr, H.; Bhargava, V.K.,“Green Cellular Networks: A Survey, Some Research Issues and Challenges,”Communications Surveys & Tutorials, IEEE, vol.13, no.4, Fourth Quarter 2011, pp.524-540.

    [3] M. Pedram, “Energy-Effcient Datacenters,”IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 10, Oct.2012, pp. 1465-1484.

    [4] Cavdar, D.; Alagoz, F., “A survey of research on greening data centers,”Proc. Global Communications Conference (GLOBECOM), IEEE, 2012,pp. 3237-3242.

    [5] Vytautas Valancius et al., “Greening the internet with nano data centers,” Proc. of the 5th international conference on Emerging networking experiments and technologies (CoNEXT ‘09),ACM, New York, NY, USA, 2009, pp. 37-48.

    [6] L. L. H. Andrew et al., “Algorithms for dynamic capacity provisioning,” Proc. The 10th International Conference on Optical Internet(COIN2012), Yokohama, Kanagawa, 2012, pp.73-74.

    [7] Brandon Heller et al., “ElasticTree: saving energy in data center networks,” Proc. of the 7th USENIX conference on Networked systems design and implementation (NSDI’10), USENIX Association, Berkeley, CA, USA, 2010, pp. 17-17.

    [8] R. Wang et al., “Energy-aware routing algorithms in Software-Defined Networks,” Proc.of IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks 2014, Sydney, NSW, 2014, pp. 1-6.

    [9] K. van der Veldt et al., “Carbon-aware path provisioning for NRENs,” Proc. International Green Computing Conference, Dallas, TX, 2014, pp.1-7.

    [10] F. Giroire et al., “Optimizing rule placement in software-defined networks for energy-aware routing,”Proc. IEEE Global Communications Conference, Austin, TX,2014, pp. 2523-2529.

    [11] R. Bruschiet al., “Green extension of Open-Flow,” Proc.26th International Teletraffic Congress (ITC), Karlskrona, 2014, pp. 1-6.

    [12] M. Zhang et al., “GreenTE: Power-aware traffic engineering,”Proc. The 18th IEEE International Conference on Network Protocols, Kyoto,2010,pp. 21-30.

    [14] Tatsuya Otoshi, Yuichi Ohsita, Masayuki Murata,Yousuke Takahashi, Keisuke Ishibashi, and Kohei Shiomoto, “Traffc prediction for dynamic traffc engineering,” Computer Networks, ACM, vol.85, C (July 2015), pp. 36-50.

    [15] A K Saha et al., “Topology Discovery, Loop Finding and Alternative Path Solution in POX Controller”,Proc. of the International MultiConference of Engineers and Computer Scientists 2016(IMECS 2016), Hong Kong,Vol-2, 16-18 March 2016 , pp. 553-557.

    [16] Bruce Lowekamp, David O’Hallaron, and Thomas Gross, “Topology discovery for large ethernet networks,”Proc. of the conference on Applications, technologies, architectures, and protocols for computer communications(SIGCOMM ?01),ACM, New York, NY, USA,2001, pp. 237-248.

    [17] R. Carpa, O. Glück and L. Lefevre, “Segment routing based traffic engineering for energy efficient backbone networks,”Proc. 2014 IEEE International Conference on Advanced Networks and Telecommuncations Systems (ANTS), New Delhi, 2014, pp. 1-6.

    [18] L. Zhou, R. Q. Hu, Y. Qian and H. H. Chen, “Energy-Spectrum Efficiency Tradeoff for Video Streaming over Mobile Ad Hoc Networks,”IEEE Journal on Selected Areas in Communications,vol. 31, no. 5, May 2013, pp. 981-991.

    [19] Liang Zhou, “Mobile Device-to-Device Video Distribution: Theory and Application,”ACM Trans. Multimedia Computing, Communications and Applications,”vol. 12, Issue 3, Article 38(March 2016), 23 pages.

    [20] Hui Yanget al., “Multi-flow virtual concatenation triggered by path cascading degree inexible spectrum optical networks,”Proc. Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Anaheim, CA, 2013, pp. 1-3.

    [21] H. Yanget al., “CSO: cross stratum optimization for optical as a service,”IEEE Communications Magazine, vol. 53, no. 8, August 2015, pp. 130-139.

    [22] H. Yang, J. Zhang, Y. Zhao, J. Han, Y. Lin and Y.Lee, “SUDOI: software defined networking for ubiquitous data center optical interconnection,”IEEE Communications Magazine, vol. 54, no. 2,February 2016, pp. 86-95.

    [23] Tatsuya Mori et al., “Identifying elephantows through periodically sampled packets,”Proc. of the 4th ACM SIGCOMM conference on Internet measurement (IMC ‘04). ACM, New York, NY,USA,2004, pp. 115-120.

    [24] Lei Bai et al., “Algorithm based on multiple filters for elephant flows identification,” Proc.International Conference on Transportation,Mechanical, and Electrical Engineering (TMEE),Changchun, 2011, pp. 1084-1087.

    [25] Lei Bai et al., “Using TCBF technique to realize elephantows identication,” Proc. International Conference on Transportation, Mechanical,and Electrical Engineering (TMEE), Changchun,2011, pp. 1080-1083.

    [26] Lichang Che and Bin Qiu, “Landmark LRU: an effcient scheme for the detection of elephantows at internet routers,” IEEE Communications Letters, vol. 10, no. 7, July 2006, pp. 567-569.

    [27] Z. Liu et al., “An Enhanced Scheduling Mechanism for Elephant Flows in SDN-Based Data Center,” Proc. IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC, 2016, pp.1-5.

    [28] T. Mori et al., “On the characteristics of Internet traffic variability: spikes and elephants,” Proc.International Symposium on Applications and the Internet, 2004, pp. 99-106.

    久久精品综合一区二区三区| 在线观看人妻少妇| 九草在线视频观看| 精品国产乱码久久久久久小说| 久久久精品94久久精品| 五月天丁香电影| av在线app专区| 国产探花极品一区二区| 亚洲精品成人久久久久久| 综合色av麻豆| 狂野欧美白嫩少妇大欣赏| 免费少妇av软件| 免费av不卡在线播放| 精华霜和精华液先用哪个| 在线观看国产h片| 熟女人妻精品中文字幕| 国产在线男女| 国内精品美女久久久久久| 99久久中文字幕三级久久日本| 日日摸夜夜添夜夜爱| 日韩一区二区三区影片| 国产淫语在线视频| 亚洲一区二区三区欧美精品 | 秋霞在线观看毛片| 国产伦理片在线播放av一区| 深夜a级毛片| 久久精品综合一区二区三区| 久久99热6这里只有精品| 亚洲av中文字字幕乱码综合| 神马国产精品三级电影在线观看| 一级二级三级毛片免费看| 亚洲精品第二区| 成人欧美大片| 久久久午夜欧美精品| 亚洲国产欧美人成| 久久久久性生活片| 日韩国内少妇激情av| 国产精品成人在线| 国精品久久久久久国模美| 欧美3d第一页| 天天一区二区日本电影三级| 最新中文字幕久久久久| 亚洲va在线va天堂va国产| 精品亚洲乱码少妇综合久久| 少妇高潮的动态图| 99视频精品全部免费 在线| 高清午夜精品一区二区三区| 高清午夜精品一区二区三区| 男女边摸边吃奶| 亚洲自拍偷在线| 五月伊人婷婷丁香| 亚洲伊人久久精品综合| 男女下面进入的视频免费午夜| 亚洲熟女精品中文字幕| 精品久久久久久久久亚洲| 一区二区av电影网| 亚洲av福利一区| 自拍欧美九色日韩亚洲蝌蚪91 | 麻豆乱淫一区二区| 熟女av电影| 午夜福利高清视频| 丰满乱子伦码专区| 秋霞在线观看毛片| 国产精品99久久久久久久久| 国产精品国产三级专区第一集| 精品久久国产蜜桃| 韩国av在线不卡| 国产伦精品一区二区三区四那| 成年女人看的毛片在线观看| 国产男人的电影天堂91| 亚洲国产精品成人久久小说| 真实男女啪啪啪动态图| 麻豆久久精品国产亚洲av| 国产成人免费观看mmmm| 久久久色成人| 亚洲丝袜综合中文字幕| 亚洲精品自拍成人| 色视频在线一区二区三区| 国产精品伦人一区二区| 女人久久www免费人成看片| 神马国产精品三级电影在线观看| 日日摸夜夜添夜夜爱| 丝瓜视频免费看黄片| 免费av不卡在线播放| 国产成人免费观看mmmm| 最近的中文字幕免费完整| 波多野结衣巨乳人妻| 亚洲精品视频女| 中国国产av一级| 国产亚洲一区二区精品| 亚洲经典国产精华液单| 七月丁香在线播放| 日韩 亚洲 欧美在线| 免费看不卡的av| 国产精品成人在线| 免费观看无遮挡的男女| 一级爰片在线观看| 边亲边吃奶的免费视频| 视频中文字幕在线观看| 国产综合懂色| 永久免费av网站大全| 国产一区二区亚洲精品在线观看| 亚洲精品456在线播放app| 岛国毛片在线播放| 中文欧美无线码| 中文精品一卡2卡3卡4更新| 超碰av人人做人人爽久久| 欧美成人一区二区免费高清观看| 亚洲国产色片| 久久精品国产亚洲av天美| 亚洲成人av在线免费| 国产成年人精品一区二区| 熟女人妻精品中文字幕| 99久久九九国产精品国产免费| 精品一区二区免费观看| 久久久色成人| 国产成人freesex在线| 精品国产三级普通话版| 男插女下体视频免费在线播放| 在线观看一区二区三区激情| 国产黄频视频在线观看| 欧美成人一区二区免费高清观看| 可以在线观看毛片的网站| 亚洲一区二区三区欧美精品 | 熟女电影av网| 噜噜噜噜噜久久久久久91| 亚洲成人一二三区av| 少妇高潮的动态图| 2018国产大陆天天弄谢| 欧美成人精品欧美一级黄| 精品视频人人做人人爽| freevideosex欧美| 国产免费一区二区三区四区乱码| 午夜视频国产福利| 亚洲怡红院男人天堂| 国模一区二区三区四区视频| 人人妻人人看人人澡| 日本色播在线视频| 在线 av 中文字幕| 国产又色又爽无遮挡免| 亚洲av男天堂| 少妇熟女欧美另类| 岛国毛片在线播放| 欧美另类一区| 99久久人妻综合| 制服丝袜香蕉在线| 久久久久久久精品精品| 国产免费又黄又爽又色| 日本色播在线视频| 亚洲欧美中文字幕日韩二区| 大香蕉久久网| 日韩av免费高清视频| 国产精品一二三区在线看| 少妇高潮的动态图| 国产视频首页在线观看| 亚洲精品一区蜜桃| 日产精品乱码卡一卡2卡三| 免费观看无遮挡的男女| 欧美一级a爱片免费观看看| 亚洲真实伦在线观看| 日日摸夜夜添夜夜爱| 日本一本二区三区精品| 精品人妻视频免费看| 日韩欧美精品免费久久| 亚洲无线观看免费| 日韩大片免费观看网站| 麻豆精品久久久久久蜜桃| 看十八女毛片水多多多| 男女边吃奶边做爰视频| 伊人久久国产一区二区| 亚洲欧美精品专区久久| 99久国产av精品国产电影| 97超碰精品成人国产| 日韩不卡一区二区三区视频在线| 秋霞在线观看毛片| 成人亚洲精品一区在线观看 | 少妇人妻一区二区三区视频| 自拍欧美九色日韩亚洲蝌蚪91 | 网址你懂的国产日韩在线| 久久精品久久久久久噜噜老黄| 日本一二三区视频观看| 人妻制服诱惑在线中文字幕| 国产精品人妻久久久影院| 麻豆精品久久久久久蜜桃| av福利片在线观看| 听说在线观看完整版免费高清| 欧美高清性xxxxhd video| 日韩欧美 国产精品| 久久人人爽av亚洲精品天堂 | 国产有黄有色有爽视频| 校园人妻丝袜中文字幕| 国产色婷婷99| 精品一区二区免费观看| 男人狂女人下面高潮的视频| 日韩欧美 国产精品| 亚洲色图综合在线观看| 赤兔流量卡办理| 日韩精品有码人妻一区| 97精品久久久久久久久久精品| 九草在线视频观看| 舔av片在线| 亚洲图色成人| 中文欧美无线码| 午夜福利视频1000在线观看| 国产一区二区三区综合在线观看 | 欧美激情久久久久久爽电影| 婷婷色麻豆天堂久久| 久久99热这里只有精品18| 最近中文字幕高清免费大全6| 少妇熟女欧美另类| 99热这里只有是精品50| 精品国产露脸久久av麻豆| 中国三级夫妇交换| 亚洲精品国产av蜜桃| 国产精品一区二区性色av| 最近中文字幕高清免费大全6| 夜夜爽夜夜爽视频| 国产精品秋霞免费鲁丝片| av一本久久久久| 亚洲久久久久久中文字幕| av网站免费在线观看视频| 在线观看免费高清a一片| av专区在线播放| 欧美bdsm另类| 建设人人有责人人尽责人人享有的 | 亚洲不卡免费看| 久久精品人妻少妇| 国产亚洲精品久久久com| 伊人久久精品亚洲午夜| 噜噜噜噜噜久久久久久91| 新久久久久国产一级毛片| 亚洲精品日韩在线中文字幕| 男插女下体视频免费在线播放| 国产精品99久久久久久久久| 国产视频首页在线观看| 男人添女人高潮全过程视频| 国产成人91sexporn| 色视频www国产| 欧美日韩一区二区视频在线观看视频在线 | 午夜福利视频1000在线观看| 丝袜喷水一区| 欧美xxⅹ黑人| 一级片'在线观看视频| 中文乱码字字幕精品一区二区三区| 真实男女啪啪啪动态图| 寂寞人妻少妇视频99o| 国产精品女同一区二区软件| av专区在线播放| 久久99热这里只有精品18| 久久99热6这里只有精品| 欧美xxⅹ黑人| 性色avwww在线观看| 久久精品国产亚洲av涩爱| 国产黄a三级三级三级人| 亚洲精品乱码久久久v下载方式| 婷婷色麻豆天堂久久| 日本一二三区视频观看| 五月开心婷婷网| a级毛片免费高清观看在线播放| 亚洲天堂国产精品一区在线| 草草在线视频免费看| 麻豆乱淫一区二区| 欧美精品人与动牲交sv欧美| 日韩亚洲欧美综合| 国产有黄有色有爽视频| av国产久精品久网站免费入址| 在线播放无遮挡| 一级片'在线观看视频| 直男gayav资源| 国产一区二区三区av在线| 乱系列少妇在线播放| 国产av码专区亚洲av| 免费观看性生交大片5| 午夜免费观看性视频| 日韩大片免费观看网站| 又爽又黄a免费视频| 97人妻精品一区二区三区麻豆| 最近的中文字幕免费完整| 肉色欧美久久久久久久蜜桃 | 成年女人看的毛片在线观看| 18禁裸乳无遮挡免费网站照片| 搞女人的毛片| 丰满乱子伦码专区| 亚洲在线观看片| 精品国产三级普通话版| 狠狠精品人妻久久久久久综合| 久久99精品国语久久久| 51国产日韩欧美| 你懂的网址亚洲精品在线观看| 啦啦啦中文免费视频观看日本| 18+在线观看网站| av又黄又爽大尺度在线免费看| av线在线观看网站| 国产精品秋霞免费鲁丝片| 免费看日本二区| 亚洲av国产av综合av卡| 亚洲成人久久爱视频| 国产精品久久久久久久电影| av在线播放精品| 日日摸夜夜添夜夜添av毛片| 国产黄a三级三级三级人| 在线观看人妻少妇| 最近最新中文字幕免费大全7| 成年av动漫网址| 黄片无遮挡物在线观看| 麻豆乱淫一区二区| 欧美日韩综合久久久久久| 又粗又硬又长又爽又黄的视频| 又爽又黄a免费视频| 亚洲av欧美aⅴ国产| 亚洲av一区综合| 久久久欧美国产精品| 少妇的逼好多水| 国产综合懂色| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲av国产av综合av卡| 99热6这里只有精品| 边亲边吃奶的免费视频| 丝袜脚勾引网站| 国产免费福利视频在线观看| 国产精品嫩草影院av在线观看| 欧美区成人在线视频| 一个人观看的视频www高清免费观看| 特级一级黄色大片| 少妇的逼好多水| 中文字幕免费在线视频6| 夜夜看夜夜爽夜夜摸| 国产亚洲午夜精品一区二区久久 | 欧美日韩一区二区视频在线观看视频在线 | 欧美日韩国产mv在线观看视频 | 国产成人91sexporn| 亚洲人成网站在线播| 国产真实伦视频高清在线观看| 欧美xxxx性猛交bbbb| 我的老师免费观看完整版| 18禁裸乳无遮挡免费网站照片| 人人妻人人澡人人爽人人夜夜| 91在线精品国自产拍蜜月| 中国美白少妇内射xxxbb| 精品一区在线观看国产| 在线播放无遮挡| 91久久精品国产一区二区三区| 久久精品熟女亚洲av麻豆精品| 在线观看三级黄色| 精品一区二区三卡| 18禁裸乳无遮挡动漫免费视频 | 日韩强制内射视频| 免费av观看视频| 综合色av麻豆| a级一级毛片免费在线观看| 日韩av免费高清视频| 黄色欧美视频在线观看| 午夜激情久久久久久久| av专区在线播放| 日本猛色少妇xxxxx猛交久久| 中文字幕久久专区| 国产男女内射视频| 中文字幕久久专区| 欧美国产精品一级二级三级 | 日本一本二区三区精品| 欧美精品国产亚洲| 国产成人精品一,二区| 爱豆传媒免费全集在线观看| 大又大粗又爽又黄少妇毛片口| 亚州av有码| 99热这里只有是精品50| 亚洲内射少妇av| 可以在线观看毛片的网站| 国产黄a三级三级三级人| 免费人成在线观看视频色| 少妇的逼好多水| 一级毛片aaaaaa免费看小| 久久久国产一区二区| 日韩电影二区| 激情 狠狠 欧美| 免费看不卡的av| 搡老乐熟女国产| 欧美高清成人免费视频www| 亚洲精品国产色婷婷电影| 18+在线观看网站| 嫩草影院精品99| kizo精华| 免费观看性生交大片5| 人妻制服诱惑在线中文字幕| 亚洲,一卡二卡三卡| 少妇高潮的动态图| 午夜日本视频在线| 99热6这里只有精品| 亚洲精品久久久久久婷婷小说| a级毛色黄片| 国产午夜精品久久久久久一区二区三区| 青春草国产在线视频| av播播在线观看一区| 91精品国产九色| 91午夜精品亚洲一区二区三区| 亚洲欧美日韩另类电影网站 | 久久久久精品久久久久真实原创| 97在线人人人人妻| 精品午夜福利在线看| 国产免费又黄又爽又色| 精品一区在线观看国产| 内射极品少妇av片p| 久久久久久久精品精品| 黄色日韩在线| 99久久精品国产国产毛片| 成人毛片60女人毛片免费| av女优亚洲男人天堂| 国产乱人视频| 成人二区视频| 久久久久精品久久久久真实原创| 国产综合懂色| 精品久久国产蜜桃| 老师上课跳d突然被开到最大视频| 国产亚洲5aaaaa淫片| 国产在视频线精品| 免费大片黄手机在线观看| 麻豆国产97在线/欧美| 18禁动态无遮挡网站| 亚洲第一区二区三区不卡| 色视频在线一区二区三区| 中文字幕久久专区| 视频区图区小说| 97精品久久久久久久久久精品| 欧美区成人在线视频| 日本爱情动作片www.在线观看| 一级毛片aaaaaa免费看小| 黄片无遮挡物在线观看| 下体分泌物呈黄色| 精品酒店卫生间| 国产精品爽爽va在线观看网站| videos熟女内射| 亚洲成人中文字幕在线播放| av女优亚洲男人天堂| 欧美日韩综合久久久久久| 午夜免费鲁丝| 午夜视频国产福利| 舔av片在线| 国产欧美亚洲国产| 婷婷色综合www| 成人毛片60女人毛片免费| 亚洲精品成人av观看孕妇| 亚洲成人精品中文字幕电影| 亚洲图色成人| 亚洲内射少妇av| 国产伦理片在线播放av一区| 91精品伊人久久大香线蕉| 国产精品久久久久久久电影| 97精品久久久久久久久久精品| 日韩欧美精品v在线| 国产爽快片一区二区三区| 亚洲一级一片aⅴ在线观看| 成人综合一区亚洲| 久久综合国产亚洲精品| 女人久久www免费人成看片| 婷婷色综合www| 国产乱人视频| 欧美 日韩 精品 国产| 少妇人妻 视频| 免费黄频网站在线观看国产| a级毛片免费高清观看在线播放| 搞女人的毛片| 成人无遮挡网站| 麻豆久久精品国产亚洲av| 麻豆乱淫一区二区| 草草在线视频免费看| 黄色欧美视频在线观看| 深爱激情五月婷婷| 黄色日韩在线| 精品人妻熟女av久视频| 美女国产视频在线观看| 欧美一级a爱片免费观看看| 日韩强制内射视频| 大香蕉久久网| 中文乱码字字幕精品一区二区三区| 日产精品乱码卡一卡2卡三| 国产欧美日韩一区二区三区在线 | 日韩在线高清观看一区二区三区| 亚洲,一卡二卡三卡| 欧美三级亚洲精品| 韩国高清视频一区二区三区| 国产精品久久久久久精品电影| 黄色欧美视频在线观看| 午夜亚洲福利在线播放| 欧美日韩一区二区视频在线观看视频在线 | 亚洲丝袜综合中文字幕| 黄色怎么调成土黄色| 美女脱内裤让男人舔精品视频| 国产成人aa在线观看| 五月伊人婷婷丁香| 国产免费又黄又爽又色| 综合色丁香网| 精品熟女少妇av免费看| 国产精品国产三级国产专区5o| 搡女人真爽免费视频火全软件| 国产成人精品一,二区| 成人漫画全彩无遮挡| 亚洲经典国产精华液单| 亚洲欧美一区二区三区国产| 精品国产三级普通话版| 久久这里有精品视频免费| 亚洲精品久久午夜乱码| 一级毛片黄色毛片免费观看视频| 在线 av 中文字幕| 纵有疾风起免费观看全集完整版| 亚洲四区av| 免费观看av网站的网址| 亚洲欧美清纯卡通| 国产白丝娇喘喷水9色精品| 偷拍熟女少妇极品色| 久久久欧美国产精品| 色哟哟·www| 国产淫语在线视频| 高清av免费在线| 成人欧美大片| 97在线视频观看| 欧美变态另类bdsm刘玥| 久久久精品94久久精品| 国产又色又爽无遮挡免| av在线天堂中文字幕| 国产伦在线观看视频一区| 国产综合精华液| 亚洲最大成人中文| 丝袜美腿在线中文| 亚洲经典国产精华液单| 精品久久久久久久末码| 精品国产露脸久久av麻豆| 国产精品嫩草影院av在线观看| 国产真实伦视频高清在线观看| 日本一本二区三区精品| 日本av手机在线免费观看| 全区人妻精品视频| 干丝袜人妻中文字幕| 亚洲av免费在线观看| 欧美人与善性xxx| 国产亚洲精品久久久com| 欧美日韩在线观看h| av在线老鸭窝| 嫩草影院新地址| 我的老师免费观看完整版| 女的被弄到高潮叫床怎么办| 又粗又硬又长又爽又黄的视频| 国产一区二区三区综合在线观看 | 国产探花在线观看一区二区| 欧美激情在线99| 国内少妇人妻偷人精品xxx网站| 亚洲av不卡在线观看| 又粗又硬又长又爽又黄的视频| 久久久久国产网址| 日韩 亚洲 欧美在线| 亚洲怡红院男人天堂| 亚洲精华国产精华液的使用体验| 国产免费一区二区三区四区乱码| 欧美亚洲 丝袜 人妻 在线| 国产亚洲av片在线观看秒播厂| 国产精品女同一区二区软件| 国产成人精品久久久久久| 香蕉精品网在线| 国产成人福利小说| 波野结衣二区三区在线| 国产乱来视频区| 免费不卡的大黄色大毛片视频在线观看| 欧美+日韩+精品| 老司机影院成人| 国产一区二区在线观看日韩| 亚洲av中文字字幕乱码综合| 成人无遮挡网站| 亚洲欧美精品专区久久| 成人综合一区亚洲| 国产精品久久久久久av不卡| 国产极品天堂在线| tube8黄色片| 天美传媒精品一区二区| 交换朋友夫妻互换小说| 欧美高清性xxxxhd video| 国产亚洲最大av| 夜夜看夜夜爽夜夜摸| 如何舔出高潮| 久久久精品94久久精品| 在线天堂最新版资源| 国产v大片淫在线免费观看| 国产国拍精品亚洲av在线观看| 黄色一级大片看看| 一级黄片播放器| 一本色道久久久久久精品综合| 国产成人freesex在线| 熟女人妻精品中文字幕| 国产成人免费观看mmmm| 国产成人freesex在线| 乱系列少妇在线播放| 99热网站在线观看| 日韩国内少妇激情av| 亚洲欧美一区二区三区国产| 国产精品一及| 国产一区二区三区综合在线观看 | 成年版毛片免费区| 国产精品国产三级国产专区5o| 国产精品人妻久久久影院| 白带黄色成豆腐渣| 国产中年淑女户外野战色| 99久久中文字幕三级久久日本| 国产精品不卡视频一区二区| 免费观看的影片在线观看| av国产免费在线观看| 看黄色毛片网站| 婷婷色综合www| 少妇丰满av| 中文资源天堂在线| 亚洲四区av| 亚洲美女视频黄频| 亚洲,欧美,日韩| 国产黄色视频一区二区在线观看| av免费在线看不卡| 大香蕉久久网| 天堂俺去俺来也www色官网| 日韩av免费高清视频|