• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Contemplation on some cyclic N8isomers-A DFT treatment

    2018-03-12 08:03:04Lemirker
    Defence Technology 2018年1期

    Lemi Türker

    Middle East Technical University,Department of Chemistry,üniversiteler,Eskis?ehir Yolu No:1,06800 ?ankaya,Ankara,Turkey

    1.Introduction

    One of the most abundant elements in nature is nitrogen.It forms the highlystable N2molecule in its elemental state.However,in contrast to this form of it,polynitrogen compounds(PNC),comprising only nitrogen atoms are rare,and no molecular crystal made of these compounds has been prepared yet[1].

    Various allotropic modifications of nitrogen,namely,compounds consisting only of nitrogen atoms(of the form N2,N3,N4,etc.),are classified as polynitrogen compounds.They are considered as promising candidates of clean(green)high energy density materials(HEDM)because they produce N2gas only and have high energy content[2-5].

    In order to seek novel high energy density compounds(HEDCs)having no air pollution,attempts of scientists have been focused on the concept of polynitrogen compounds,which attract significant interest for propulsion or explosive applications.Through the years,potential candidates of polynitrogen compounds have been predicted by the theoreticians since the early 1990s and lots of systematic and great efforts have been undertaken in order to synthesize any of them[6-16].

    It is believed that use of polynitrogen compounds will allow solid rocket propellants to compete in terms of energetic efficiency with liquid propellants[2,17].According to theoretical calculations and(still scarce)experimental data,the polynitrogen compounds are characterized by high enthalpy of formation(2-5 kcal/g)and sufficiently high density in the condensed phase(2-4 g/cm3)[17].It has been theoretically estimated that the use of polynitrogen compounds can provide a specific impulse of 350-500 s with material density in a range of 2.0-3.9 g/cm3[2].

    In general polynitrogen molecules are expected to release large amounts of energy when they decompose into the very stable N2molecules.Due to that fact,these structures are potentially promising molecules as high-energy-density materials(HEDM)[18-20].In recent years,pure polynitrogen molecules have been particularly attractive,among the different energetic nitrogen compounds(such as nitrates,ammonia,nitramines,azides,polyazides and so on),not only because of both the expected high energy density but also N2is the sole product of their decomposition,which is inert,non-toxic and not a greenhouse gas[1].

    So far,the quest for HEDMs based on nitrogen atoms has produced several theoretical articles.Only one solid-state material containing a N+5cation and a gas phase N5-anion were reported experimentally in addition to the well-known N-3anion and N3radical.Other species,such as N4,were only observed as short-lived transients.Several topical reviews have portrayed the difficulty in preparing all nitrogen compounds[21-24].Christe and coworkers recently reported two breakthroughs in the field:the synthesis of the N+5cation in a salt[7]and of the cyclo-N-5anion in the gas phase[25].According to theoretical calculations,the cation is V-shaped whereas the anion is cyclic[23].

    Hirshberg et al.,made use of PW-DFT with the PBE-D[26,27]functional to investigate the relative thermodynamic stability,the enthalpies of the N8solid and cg-N form(cubic gauche)at pressures up to 50 GPa[1].Their work reveals the possibility of existence of such a molecular solids,consisting of N8molecules although it is metastable even at ambient pressure.Their calculations predict a conceptually interesting new material on condition that,if it could be prepared,as HEDM it may find some applications.

    In the present study,various cyclic N8structures have been considered within the constraints of density functional theory.

    2.Method of calculation

    Geometry optimizations of all the structures leading to energy minima were initially achieved by using MM2 method followed by semi-empirical PM3 self-consistent fields molecular orbital(SCF MO)method[28,29]at the restricted level[30,31].Subsequent optimizations were achieved at Hartree-Fock level using various basis sets.Then,geometry optimizations were managed within the framework of density functional theory(DFT,B3LYP)[32,33]finally at the level of 6-311++G(d,p)(restricted closed-shell)[30].Additionally,UB3LYP/6-311++G(d,p)and B3LYP/CC-PVTZ level of calculations were performed for energies.The exchange term of B3LYP consists of hybrid Hartree-Fock and local spin density(LSD)exchange functions with Becke's gradient correlation to LSD exchange[33,34].Note that the correlation term of B3LYP consists of the Vosko,Wilk,Nusair(VWN3)local correlation functional[35]and Lee,Yang,Parr(LYP)correlation correction functional[36].The vibrational analyses were also done.The total electronic energies are corrected for the zero point vibrational energy(ZPE).The normal mode analysis for each structure yielded no imaginary frequencies for the 3N-6 vibrational degrees of freedom,whereNis the number of atoms in the system.This indicates that the structure of each molecule corresponds to at least a local minimum on the potential energy surface.All these calculations were done by using the Spartan 06 package program[37].The NICS(0)values were calculated(B3LYP/6-311++G(d,p))by the use of Gaussian 03 package program[38].

    3.Results and discussion

    Cyclic only-nitrogen structures are interesting not only because of their extra ring-strain energy as compared to their acyclic counterparts but also due to some other properties.Note that in the present treatment yet-non-existing structures considered are called isomers rather than allotropes.

    Fig.1 shows the optimized structures of N8isomers(singlet states)obtained at the level of B3LYP/6-311++G(d,p)calculations.In the present treatise six(see Fig.1)N8isomers are considered.Bicyclic N8structure shown below was found to be unstable in the singlet and triplet states.Therefore,it has not been considered furthermore.

    3.1.Some properties and energies

    Table 1 shows some properties of the isomers.Except 1 and 3 all the others have zero dipole moment.Note that 2 is thetransform(of 4-membered rings)of 3 and it does not have any dipole moment but 1(has a 4-membered ring)and 3 have.So the 4-membered ring(s)contributes into the total asymmetry to develop dipole moment via individual bond dipoles.In thetransstructure-2,the direction of dipole moment indicates that two of the 4-membered rings are non-identical in terms of electron population.

    The structures included in Table 1 all have either low or zero dipole moments.Fig.1 also displays the direction of the dipole moments.

    Tables 2-4 show the total electronic energies,zero point vibrational energies(ZPE)and the corrected total electronic energies.The B3LYP/6-311++G(d,p)and B3LYP/cc-PVTZ level of calculations yield the stability order of 4>6>5>1>2>3 where the values of 4 and 6 are the same.The UB3LYP/6-311++G(d,p)level of calculations exhibit the stability order of 4>6>5>1=2>3.In the case of B3LYP/ccPVTZ level of calculations,the stability order mimics the order of B3LYP/6-311++G(d,p)level of calculations.Note that in every case the energies of 4 and 6 are very close to each other.The reason for it will be given in the sections below.

    The stability orders indicate that it is adversely affected by the number(s)of 4 m-membered rings.Although,structure-4 is a 4 mmembered ring(m=2)it is the most stable one among the group.Note that it does not have any dipole moment.Structures-5 and 6 do not have any 4-memebered rings.The direction of dipole moment in 1 indicates that the 4-membered ring is somewhat deprived of electrons in the favor of the 6-membered ring.At first sight,a question arises whether some aromatic character having 6π-electrons(see the following NICS section)associates with the hexagonal ring system and the 4-membered ring having a localized(N=N)double bond which is distant from the fusion site of the rings exists.

    Fig.2 shows the optimized triplet state of N8isomers considered.As seen in the figure some bonds are highly elongated indicating some fragmentation.Table 5 displays the various energies of the structures in the triplet state.Note that for the decomposed structures,the energies in the table stand for the composite(fragmented)systems.Although system 1 has the lowest energy,actually it is the decomposed one.Structure 1 and 5 seem to be splitted into N2fragments.Structures-2 and-3 have partially broken skeletons(see Fig.2).Whereas structures 4 and 6 keep their integrity having reasonable bond lengths.They show high mutual similarity in the singlet and triplet state geometry and energy.

    The triplet state stability order is 1>5>6>4>2>3.Otherwise mentioned below the structures considered are all in their singlet states.

    3.2.Heats of formation

    The heats of formation(ΔHf0)values for the N8species(singlet state)considered are obtained by using T1 method[39,40].The T1 method is a little bit less accurate than the expensive G3(MP2)method.For the comparison purpose,T1 and G3(MP2)results obtained for structure 1 and presently they have been found to be 303.94 kcal/mol and 304.67 kcal/mol,respectively(-0.09%deviation).Table 6 shows the heats of formation values for the N8species(singlet state).The order of endothermicity is 3>2>1>5>4>6.So structures-4 and 6 are distinguished as electronically the most stable and least endothermic ones in the group.

    Structure-3 which possesses thecisconfiguration of4-membered rings is the most endothermic one followed by 2 which hastransconfiguration.So the 4-membered rings,depending on their configuration in the structure contribute somewhat into the endothermicity.Since bond energies are the prime contributors of thermal nature of molecules in general,in structures 1-6 which are all composed of nitrogen,single or double bond character of nitrogen bonds and conjugation are to be blamed for the spectrum of heats of formation values in Table 6.

    Table 1Some properties of the singlet structures considered(B3LYP/6-311++G(d,p)).

    Table 2Various energies of the N8singlet state structures(B3LYP/6-311++G(d,p)).

    Table 3Various energies of the N8singlet state structures(UB3LYP/6-311++G(d,p)).

    Table 4Various energies of the N8singlet state structures(B3LYP/cc-PVTZ).

    3.3.Bond lengths

    Figs.3 and 4 display the numbering of the atoms and bond lengths(B3LYP/6-311++G(d,p))in the structures,respectively.In structure-1 the hexagonal moiety(have 6π-electrons)shows bond alternation.Although,the direction of the dipole moment is from4-memebered ring to 6-memebered one,the last one does not exhibit any comparable bond lengths which is the characteristic feature of perfect aromatic systems like benzene(see also the NICS section below).Note that bond alternation is the characteristic feature of annulenic carbocyclic compounds.

    For azapentalene(analogous to structure-6)Noyman et al.,reported CCSD/cc-PVDZ-calculated bond lenghts for structure having(C2V)symmetry as 1.324 ? (N2-N6),1.339 ? (N6-N7),1.324 ? (N7-N8)(see Fig.3 for numbering of the atoms)[41].The results are very close to the present values.

    In structure-4,N1-N8 distance(apparently there is no bond there)is the same with the bond length there in structure-6(N1-N2 bond in Fig.4)which is 1.337 ?.Note that the experimentally determined bond lengths for N-N and N=N are 1.449 ?(hydrazine)and 1.219-1.254 ?(azo compounds),respectively[42].

    Table 5Various energies of the N8triplet state structures.

    Table 6Heat of formation values of the structures.

    3.4.Mulliken and L¨owdin bond orders for structures 4 and 6

    Structures-4 and 6 exhibit a striking similarity.Table 7 shows the Mulliken and L¨owdin bond orders for structures-4 and 6.The numerical results indicate that these two structures have the same types of bonds.Moreover,there exists a bond between N1 and N8 atoms of structure-4 which has the same length in structure 6.Note that N1 and N8 atoms in structure-4 stand for N1 and N2 of structure-6,respectively(see Fig.3).

    In Table 7 all the atom numbers of structure-6 have been adjusted based on the numbering of structure-4 for the purpose of easier and better comparison.

    3.5.Electrostatic charges

    Fig.5 shows the electrostatic charges(esu)on the atoms of N8isomers.Note that the largest charge accumulation in 1 occurs at the fusion points.A similar situation happens in structure-6.

    In structure-4,although apparently there is no common bond between the pentagonal moieties to be considered as fused,the charge distribution is very similar to it is in 6(see also sections below).

    3.6.NICS

    Since nitrogens in the structures possess lone-pair electrons,their involvement in the cyclic conjugation should be checked out.For this purpose NICS(0)[43,44]values have been calculated at the B3LYP/6-311++G(d,p).

    Table 8 shows the NICS(0)values for the rings in N8isomers.In the calculations,the rings are considered as having cyclic conjugation by the participation of nitrogen lone pairs in a suitable manner.Ring-A(6-membered)and Ring-B in structure-1 are planar but highly antiaromatic(especially Ring-B).In structures-2 and-3 the 4-memebered rings in the same structure exhibit different character.Even,Ring-A of structure-2 exhibits slight aromaticity(or nonaromaticity)having a negative NICS value.Note that Ring-A of 2 is somewhat depleted of electrons,thus the dipole moment tail originates from there(see Fig.1).This cationic nature should be the cause of negative NICS value of Ring-A,namely it is not a pure 4π-system(characterized withantiaromaticity)but less.These differences in the NICS values might arise from slight structural and electronic variations in the rings.

    Table 7Mulliken and L¨owdin bond orders for structure-4 and 6.

    Table 8NICS value of the rings(singlet structures).

    Structure-4 is interesting.It is planar and apparently,it is a 8πsystem,suggesting antiaromatic nature but the NICS values for its 8π-system or its embedded 4π-system over the five nitrogens atoms(pseudo 5-membered ring)yield highly aromatic character.Thus probably a homoaromatic[45]occurrence takes place in spite of the fact that there is no bond at the fusion points of pseudo 5-membered rings complete the conjugation over.Similar to structure-4,structure-6 exhibits an aromatic character.

    Table 9HOMO,LUMO energies and interfrontier energy gaps of the singlet structures considered.

    Structure 5(tube form of N8)has not been included in Table 8,because it is not suitable for aromaticity treatment,thus for NICS calculations due to i)the whole structure is not planar;ii)any part of it cannot be considered for homoaromaticity because of the long distance between N1 and N4 or N5 and N8(see Fig.3 for the numbering of atoms)positions to construct a hypothetical planar rings.Note that these distances are 2.571 ? and 2.551 ? where as the distance between N1 and N8(see Fig.3)in structure 4(where homoaromaticity is considered)are 1.337 ? and 1.331 ? depending on the basis sets used in the present treatment.

    3.7.Spectra

    Fig.6 shows the calculated IR(upper axis)and UV(lower axis)spectra of structure 1-6.The IR spectra having 4-membered ring(s)has/have some peaks at about 1500 cm-1characteristic of N=N stretching of the 4-membered ring(s).Structure-5 also has peaks at 1500 cm-1(1526-1600 cm-1,various N=N stretchings).All theconsidered structures,with the exception of 5,possess a strong peak at 1000 cm-1(various N-N stretchings).Note that IR spectra of 4 and 6 have high resemblance.

    Table 10Molecular orbital energies for structures 4 and 6.

    The time-dependent density functional theory(TD-DFT)yields the UV-VIS spectra of the present structures shown in Fig.6.The figure indicates that structures 1 and 5 should absorb in some part of visible region as well,whereas 4 and 6 spectra have been con fined to UV region solely.The great resemblance existing between 4 and 6 is also observed in their spectra.

    3.8.Molecular orbital energies

    Table 9 shows the highest occupied,lowest unoccupied molecular orbital energies(εHOMO,εLUMO,respectively)and the frontier molecular energy gaps(namely εHOMO- εLUMO).The HOMO energy order is 4< 6<2< 3<1< 5 whereas the LUMO energy order is 4> 6>2> 3>5> 1.These energy orders dictate the FMO gap as 5< 1<3<2<6< 4.Structures 4 and 6 are characterized with the lowest lying HOMO and highest lying LUMO energies.Thus,their FMO gap is greater than the others in the group.

    Note that electron attracting factors lower both the HOMO and LUMO energy levels whereas electron donating ones raise up both of them[46].such kind of situation seems to be mutually operative in 4 and 6 to yield the resultant energies of the frontier molecular orbitals(HOMO and LUMO)which implies some polar resonance structures possible where the charges located in such a symmetrical manner that no dipole moment of 4 and 6 exists(see section 3.9).

    Table 10 displays the molecular orbital energies(up to four digits)of curiously resembled structures-4 and 6.The data reveal that their similarity so far indicated also present in their molecular orbital energies.Also note that their HOMO and LUMO patterns pair wise are the same(see Fig.7).

    3.9.Possible conversion of N8from monocyclic to bicyclic structure

    Fig.8 shows a possible route to conversion of 4 to 6 via 4a(middle structure in Fig.8).Although,4a is a charge separated structure it is more stable than 4.Moreover,4a and 6 are characterized with the same total electronic energy (B3LYP/6-311++G(d,p)).The energy values of 4,4a and 6 are-114355.06,-1149573.46 and-1149573.46 kJ/mol,respectively.The activation energy for the conversion of 4 to 4a is just 150.18 kJ/mol.Note that 6 is more charge separated resonance structure than 4a but they are degenerate in terms of the stability.The underlying reason is most probably the aromaticity of the 5-membered rings.

    Fig.9 shows the bond lengths(?)of structures 4 and 6(B3LYP/cc-PVTZ).As seen in Fig.4(which displays the bond lengths of the singlet structures considered at the level of B3LYP/6311++G(d,p))this level of calculations also indicate the very high resemblance between structures 4 and 6.In 4 the distance between atoms 1 and 8 is 1.332 ?.

    Structure-4 has a 4 m-type π-skeleton and classically such a conjugated monocyclic planar system is antiaromatic by the Hückel considerations.Whereas structure-6 has two aromatic rings(6πsystem).So the conversion of 4 to 6 should be a favorable process.The aromatic stabilization energy liberated in the process possibly counterbalance the required energy fort he conversion.However,in the optimization process,the computer program most probably conceive 4(a monocyclic structure)as 6(a bicyclic structure).Therefore,there exists a great resemblance in between them.

    3.10.Impulse values of N8structures considered

    Since it is believed that use of polynitrogen compounds will allow solid rocket propellants to compete in terms of energetic efficiency with liquid propellants[2,17]and for propellants,the material's potential is best measured by its specific impulse,Isp,presently that property has been estimated for structures 1-6.The specific impulse in units of seconds can be approximated with the following equation[5].

    Ispfor monocyclic N8is reported as 400 s(CCSD/cc-PVDZ level of calculation)[5,41].Table 11 tabulates the heats of formation and the specific impulse values.The order ofIspvalues is 3>2>1>5>4>6.The order indicates that presence of 4-membered rings highly raise theIspvalues whereas the aromaticity decreases.

    Note that the present heats of formation values have been calculated by T1 recipe which closely reproduce heats of formation values calculated from G3(MP2).The later one has been developed for thermochemical calculations.The T1 recipe operates by replacing the large basis set MP2 calculation by a dual basis set RI-MP2 calculation and replace the QCISD(T)calculation and vibrational frequency calculation by an empirical correction based on atom and bond counts[37].

    Table 11The heat of formation values and specific impulses of cyclic N8structures.

    4.Conclusions

    The considered polynitrogen structures of mono and bicyclic N8isomers have been found to be stable but highly endothermic.Structures 4 and 6 have been found to be the least endothermic and most stable ones.Isomer 4 and 6 showed great resemblance to each other in terms of many respects.The resemblance between them is independent of basis set keeping the same level of calculations in both cases.Although,the apparent structure of 4 should associate with an antiaromatic nature,NICS calculations reveals that both structures-4 and 6 are aromatic in character.The resemblance between these antiaromatic(supposedly)and aromatic pair has been attributed to existing homoaromaticity in 4 within the constrains of DFT.They are characterized with very comparable impulse values too.

    [1]Hirshberg B,Gerber RB,Krylov AI.Calculations predict a stable molecular crystal of N8.Nat Chem 2014;6:52-6.

    [2]Zarko VE.Searching for ways to create energetic materials based on polynitrogen compounds(review).Combust Explos Shock Waves 2010;46:121-31.

    [3]Klap¨otke TM,Harcourt RD.The interconversion of N12to N8and two equivalents of N2.J Mol Struct(theochem)2001;541:237-42.

    [4]Smirnov A,Lempert D,Pivina T,Khakimov D.Basic characteristics for estimation polynitrogen compounds efficiency.Central Eur J Energetic Mater 2011;8:233-47.

    [5]Wilson KJ,Perera SA,Bartlett RJ,Watts JD.Stabilization of pseudo-benzene N6ring with oxygen.J Phys Chem A 2001;105:7693-9.

    [6]Peng L,Lai W,Chang H,Li Y,Li H,Yang W,Wang Y,Wang B,Xue Y.Density functional theoretical study of polynitrogen compounds N5+Y-(Y=B(CF3)4,BF4,PF6and B(N3)4).Chin J Chem 2012;30:639-43.

    [7]Christe KO,Wilson WW,Sheehy JA,Boatz JA.N5+:a novel homoleptic polynitrogen ion as a high energy density material.Angew Chem Int Ed 1999;38:2004-9.

    [8]Vij A,Wilson WW,Vij V,Tham FS,Sheehy JA,Christe KO.Polynitrogen chemistry.Synthesis,characterization,and crystal structure of surprisingly stable fluoroantimonate salts of N5+.J Am Chem Soc 2001;123:6308-813.

    [9]Wilson WW,Vij A,Vij V,Bernhardt E,Christe KO.Polynitrogen chemistry:preparation and characterization of(N5)2SnF6,N5SnF5,and N5B(CF3)4.Chem Eur J 2003;9:2840-4.

    [10]Christe KO,Vij A.AFRL-PR-ED-TR-2004-0041.History of the AFRL/USC DARPA program on polynitrogen chemistry,vol.2;October,2004.

    [11]Hiraoka K,Yamabe S.Stabilities of the N3+(N2)ncluster ions withn=1-11.Chem Phys Lett 1989;154:139-42.

    [12]Pyykk¨o P,Runeber N.Ab initiostudies of bonding trends:Part 9.The dicyanamide-carbon suboxide-dicyanoether-cyanogen azide isoelectronic series.J Mol Struct(Theochem)1991;234:279-90.

    [13]Xu WG,Li GL,Wang LJ,Li QS.Ab initioand density functional theory study of the mechanism of synthesis of the Nq5cation.Chem Phys Lett 1999;314:300-6.

    [14]Nguyen MT,Ha TK.Theoretical study of the pentanitrogen cation N5+.Chem Phys Lett 2000;317:135-41.

    [15]Wang X,Hu HR,Tian A,Wong NB,Chien SH,Li WK.An isomeric study of N5+,N5,and N-5:a Gaussian-3 investigation.Chem Phys Lett 2000;329:483-9.

    [16]Netzloff HM,Cordon MS,Christ K,Wilson WW,Vij A,Boatz JA.On the existence of FN5,a theoretical and experimental study.J Phys Chem A 2003;107:6638-47.

    [17]Talawar MB,Sivabalan R,Aasthana SN,Singh H.Novel ultrahigh energy materials.Combust Expl Shock Waves 2005;41:264-77.

    [18]Hammert A,Klap¨otke TM,Schwerdtfeger P.Azoylpentazoles as high energy materials,a computational study.Chem Eur J 2003;9:5511-9.

    [19]Christe K.Recent advances in the chemistry of N+5,N-5and high-oxygen compounds.Prop Explos Pyrotech 2007;32:194-204.

    [20]Najafpour J,Nejad CF,Shafiee GM,Peykani MK.How does electron delocalization affect the electronic energy?A survey of neutral poly-nitrogen clusters.Comput Theor Chem 2011;974:86-91.

    [21]Cacace F,de Petris G,Troiani A.Experimental detection of tetranitrogen.Science 2002;295:480-1.

    [22]Nguyen MT.Polynitrogen compounds 1.Structure and stability of N4and N5systems.Coord Chem Rev 2003;244:93-113.

    [23]Samartzis PC,Wodtke AM.All-nitrogen chemistry:how far are we from N60?Int Rev Phys Chem 2006;25:527-52.

    [24]Klapotke TM.New nitrogen-rich high explosives,in:high energy density materials.Struct Bond 2007;125:85-121.

    [25]Vij A,Pavlovich JG,Wilson WW,Vij V,Christe KO.Experimental detection of the pentaazacyclopentadienide(pentazolate)anion,cyclo-N5-.Angew Chem Int Ed 2002;41:3051-4.

    [26]Perdew JP,Burke K,Ernzerhof M.Generalized gradient approximation made,simple.Phys Rev Lett 1996;77:3865-8.

    [27]Grimme S.Accurate description of van der Waals complexes by density functional theory including empirical corrections.J Comput Chem 2004;25:1463-73.

    [28]Stewart JJP.Optimization of parameters for semi empirical methods I.Method J Comput Chem 1989;10:209-20.

    [29]Stewart JJP.Optimization of parameters for semi empirical methods II.Appl J Comput Chem 1989;10:221-64.

    [30]Leach AR.Molecular modeling.Essex.Longman;1997.

    [31]Fletcher P.Practical methods of optimization.New York:Wiley;1990.

    [32]Kohn W,Sham L.Self-consistent equations including exchange and correlation effects.J Phys Rev 1965;140:1133-8.

    [33]Parr RG,Yang W.Density functional theory of atoms and molecules.London:Oxford University Press;1989.

    [34]Becke AD.Density-functional exchange-energy approximation with correct asymptotic behavior.Phys Rev A 1988;38:3098-100.

    [35]Vosko SH,Vilk L,Nusair M.Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis.Can J Phys 1980;58:1200-11.

    [36]Lee C,Yang W,Parr RG.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Phys Rev B 1988;37:785-9.

    [37]SPARTAN 06.Irvine CA,USA:Wave function Inc.;2006.

    [38]Frisch MJ,Trucks GW,Schlegel HB,Scuseria GE,Robb MA,Cheeseman JR,Montgomery Jr JA,Vreven T,Kudin KN,Burant JC,Millam JM,Iyengar SS,Tomasi J,Barone V,Mennucci B,Cossi M,Scalmani G,Rega N,Petersson GA,Nakatsuji H,Hada M,Ehara M,Toyota K,Fukuda R,Hasegawa J,Ishida M,Nakajima T,Honda Y,Kitao O,Nakai H,Klene M,Li X,Knox JE,Hratchian HP,Cross JB,Bakken V,Adamo C,Jaramillo J,Gomperts R,Stratmann RE,Yazyev O,Austin AJ,Cami R,Pomelli C,Ochterski JW,Ayala PY,Morokuma K,Voth GA,Salvador P,Dannenberg JJ,Zakrzewski VG,Dapprich S,Daniels AD,Strain MC,Farkas O,Malick DK,Rabuck AD,Raghavachari K,Foresman JB,Ortiz JV,Cui Q,Baboul AG,Clifford S,Cioslowski J,Stefanov BB,Liu G,Liashenko A,Piskorz P,KomaromiI,Martin RL,FoxDJ,Keith T,Al-Laham MA,PengCY,Nanayakkara A,Challacombe M,Gill PMW,Johnson B,Chen W,Wong MW,Gonzalez C,Pople JA.Gaussian 03.Revision C.02.Wallingford CT:Gaussian,Inc.;2004.

    [39]Ohlinger WS,Klunzinger PE,Deppmeier BJ,Hehre WJ.Efficient calculation of heats of formation.J Phys Chem A ACS Publ 2009;113:2165-75.

    [40]Curtiss La,Raghavachari K,Redfern PC,Rassolov V,Pople JA.Gaussian-3(G3)Theory for molecules containing first and second-row atoms.J Chem Phys 1998;109:7764-76.

    [41]Noyman M,Zilberg S,Haas Y.Stability of polynitrogen compounds:the importance of separating the σ and π electron systems.J Phys Chem A 2009;113:7376-82.

    [42]Vilkov LV,Mastryukov VS,Sadova NI.Determination of the geometrical structure of free molecules.Moscow:Mir Pub;1983.

    [43]Pulay P,Hinton JF,Wolinski K.Nuclear magnetic shieldings and molecular structure.In:Tossel JA,editor.NATO ASI series C,vol.386.Netherlands:Kluwer;1993.p.243.

    [44]Hehre WJ,Radom L,Schleyer PR,Pople JA.Ab Initio molecular orbital theory.New York:Wiley;1986.

    [45]Minkin VI,Glukhovtsav MN,Simkin BY.Aromaticity and antiaromaticity.New York:Wiley;1994.

    [46]Fleming I.Frontier orbitals and organic chemical reactions.London:Wiley;1976.

    成人鲁丝片一二三区免费| 综合色av麻豆| 黄片wwwwww| av免费在线看不卡| 日韩三级伦理在线观看| 一级二级三级毛片免费看| 成年人午夜在线观看视频| 性插视频无遮挡在线免费观看| 在线免费十八禁| 真实男女啪啪啪动态图| 成人亚洲欧美一区二区av| 亚洲欧美日韩无卡精品| 欧美日韩视频高清一区二区三区二| 黄色视频在线播放观看不卡| 美女被艹到高潮喷水动态| 成人亚洲欧美一区二区av| 在线观看一区二区三区| 卡戴珊不雅视频在线播放| 热re99久久精品国产66热6| 赤兔流量卡办理| 寂寞人妻少妇视频99o| 色吧在线观看| 美女内射精品一级片tv| 亚洲人成网站在线播| 色5月婷婷丁香| 亚洲精品视频女| 一边亲一边摸免费视频| 黄色视频在线播放观看不卡| 青春草视频在线免费观看| 国产伦在线观看视频一区| 中文资源天堂在线| 九草在线视频观看| 国内揄拍国产精品人妻在线| 一区二区三区免费毛片| 国产大屁股一区二区在线视频| 白带黄色成豆腐渣| 成人国产麻豆网| 亚洲欧美日韩卡通动漫| 高清毛片免费看| 色综合色国产| 最新中文字幕久久久久| 插阴视频在线观看视频| 又爽又黄a免费视频| 国产精品.久久久| av国产免费在线观看| 久久综合国产亚洲精品| 天堂俺去俺来也www色官网| 久久久精品免费免费高清| 国内精品美女久久久久久| 国产精品国产三级国产av玫瑰| 欧美日韩国产mv在线观看视频 | 欧美成人午夜免费资源| 白带黄色成豆腐渣| 丰满人妻一区二区三区视频av| 精品久久久精品久久久| 国产日韩欧美在线精品| 日韩人妻高清精品专区| 国产精品国产三级国产av玫瑰| 一本久久精品| 尤物成人国产欧美一区二区三区| 精品久久久久久久人妻蜜臀av| 午夜视频国产福利| 丰满乱子伦码专区| 国产成人a∨麻豆精品| 国产精品伦人一区二区| 高清视频免费观看一区二区| 男女边摸边吃奶| 精品午夜福利在线看| 亚洲色图综合在线观看| 精品一区二区三区视频在线| 久久精品久久久久久久性| av专区在线播放| 亚洲欧美精品自产自拍| 久久久久久久久大av| 久久精品久久精品一区二区三区| 高清欧美精品videossex| 中文字幕亚洲精品专区| 国产伦理片在线播放av一区| 制服丝袜香蕉在线| 一区二区av电影网| 亚洲精品国产成人久久av| 欧美一区二区亚洲| 国产欧美日韩一区二区三区在线 | 日韩av免费高清视频| 五月天丁香电影| 精品久久久噜噜| 男的添女的下面高潮视频| 一级毛片电影观看| 91精品国产九色| 大香蕉久久网| 亚洲一级一片aⅴ在线观看| 国产亚洲av嫩草精品影院| 免费黄频网站在线观看国产| 成年女人看的毛片在线观看| 麻豆国产97在线/欧美| 国产精品一区www在线观看| 看黄色毛片网站| 午夜日本视频在线| 中国国产av一级| 91精品国产九色| 伦理电影大哥的女人| 国产精品秋霞免费鲁丝片| 亚洲精品影视一区二区三区av| 久久精品国产亚洲av天美| 亚洲成人av在线免费| 国产成人91sexporn| 亚洲综合精品二区| 18+在线观看网站| 日产精品乱码卡一卡2卡三| 欧美性感艳星| 99久久人妻综合| av.在线天堂| 国产亚洲91精品色在线| 国产精品国产三级国产专区5o| 国产成人一区二区在线| 精品久久久久久电影网| 久久久久精品性色| 亚洲最大成人中文| 久久久久精品久久久久真实原创| 日本欧美国产在线视频| 尾随美女入室| 久久久久久伊人网av| 91精品伊人久久大香线蕉| 欧美 日韩 精品 国产| 国产 一区 欧美 日韩| 国产成人a∨麻豆精品| 国产精品一二三区在线看| 国产淫语在线视频| 国产免费福利视频在线观看| 久久久国产一区二区| 18禁裸乳无遮挡免费网站照片| 久久久久久久久久久丰满| 夫妻性生交免费视频一级片| 午夜福利网站1000一区二区三区| 一级毛片 在线播放| 久久午夜福利片| 欧美极品一区二区三区四区| 高清视频免费观看一区二区| 亚洲精品视频女| 久久精品综合一区二区三区| 国产老妇伦熟女老妇高清| 亚洲三级黄色毛片| 麻豆久久精品国产亚洲av| xxx大片免费视频| 丰满少妇做爰视频| 男人爽女人下面视频在线观看| 国产91av在线免费观看| 全区人妻精品视频| 国产视频首页在线观看| 97在线人人人人妻| 麻豆久久精品国产亚洲av| 嫩草影院精品99| 国产精品蜜桃在线观看| 日本黄大片高清| 久久久精品94久久精品| 亚洲av在线观看美女高潮| 1000部很黄的大片| 国精品久久久久久国模美| av在线app专区| 亚洲欧美精品自产自拍| 亚洲色图综合在线观看| 久久这里有精品视频免费| 亚洲自拍偷在线| 一二三四中文在线观看免费高清| 亚洲人成网站高清观看| av在线蜜桃| 听说在线观看完整版免费高清| 熟妇人妻不卡中文字幕| 成年女人看的毛片在线观看| 久久精品久久精品一区二区三区| 成人综合一区亚洲| 欧美日韩精品成人综合77777| 午夜老司机福利剧场| 久热这里只有精品99| 黄片无遮挡物在线观看| 久久午夜福利片| 久久这里有精品视频免费| 免费观看a级毛片全部| 最近手机中文字幕大全| 国产精品99久久久久久久久| 又粗又硬又长又爽又黄的视频| 免费黄色在线免费观看| 国产男女超爽视频在线观看| 成人漫画全彩无遮挡| 蜜桃久久精品国产亚洲av| 亚洲第一区二区三区不卡| 国产精品精品国产色婷婷| 蜜桃久久精品国产亚洲av| 纵有疾风起免费观看全集完整版| 少妇猛男粗大的猛烈进出视频 | 国产成人91sexporn| 97精品久久久久久久久久精品| 欧美激情久久久久久爽电影| 国产精品爽爽va在线观看网站| 免费在线观看成人毛片| kizo精华| 成年女人看的毛片在线观看| 丰满人妻一区二区三区视频av| 最近手机中文字幕大全| 久久鲁丝午夜福利片| 精品一区二区免费观看| 国产乱来视频区| 波野结衣二区三区在线| 夫妻午夜视频| 日日啪夜夜爽| 亚洲欧美日韩无卡精品| 亚洲欧美一区二区三区国产| 三级经典国产精品| 久久影院123| 极品教师在线视频| 国产探花极品一区二区| 国产免费福利视频在线观看| av免费在线看不卡| 晚上一个人看的免费电影| 制服丝袜香蕉在线| 美女内射精品一级片tv| 欧美+日韩+精品| av免费在线看不卡| 成人亚洲精品av一区二区| 纵有疾风起免费观看全集完整版| 91精品伊人久久大香线蕉| 久久这里有精品视频免费| 在线观看一区二区三区| 日本黄色片子视频| 久久热精品热| 一本久久精品| 久久久久久久久久久免费av| 亚洲精品国产成人久久av| 伊人久久国产一区二区| 国产真实伦视频高清在线观看| 最近手机中文字幕大全| 网址你懂的国产日韩在线| 久久久久久国产a免费观看| 丝瓜视频免费看黄片| 久久热精品热| 春色校园在线视频观看| 搞女人的毛片| 激情 狠狠 欧美| 国产亚洲av片在线观看秒播厂| 午夜福利在线在线| 日本欧美国产在线视频| 久久久久久久久久久免费av| 国产亚洲最大av| 亚洲精品一区蜜桃| 婷婷色综合大香蕉| 一级黄片播放器| 成人亚洲欧美一区二区av| 欧美性猛交╳xxx乱大交人| 又黄又爽又刺激的免费视频.| 国产精品偷伦视频观看了| 亚洲四区av| 伊人久久精品亚洲午夜| 91久久精品国产一区二区三区| 免费黄网站久久成人精品| 日韩av不卡免费在线播放| 日韩欧美精品免费久久| 高清视频免费观看一区二区| 日韩强制内射视频| 免费少妇av软件| 日韩精品有码人妻一区| 国产精品国产三级国产专区5o| 免费观看在线日韩| 午夜老司机福利剧场| 99re6热这里在线精品视频| 国产av不卡久久| 国产爽快片一区二区三区| 婷婷色麻豆天堂久久| 亚洲综合精品二区| 夫妻性生交免费视频一级片| 亚洲国产精品成人综合色| 小蜜桃在线观看免费完整版高清| xxx大片免费视频| 欧美高清性xxxxhd video| 男女边摸边吃奶| 最近手机中文字幕大全| 99精国产麻豆久久婷婷| av卡一久久| 亚洲精华国产精华液的使用体验| 亚州av有码| 欧美 日韩 精品 国产| 亚洲激情五月婷婷啪啪| 国产 精品1| 一级毛片黄色毛片免费观看视频| 91精品伊人久久大香线蕉| av在线亚洲专区| 大片电影免费在线观看免费| 国产日韩欧美在线精品| 国产精品国产三级国产av玫瑰| 成人亚洲精品av一区二区| 成人国产av品久久久| 99久久精品一区二区三区| 亚洲精品久久久久久婷婷小说| 一本久久精品| kizo精华| 我的女老师完整版在线观看| 少妇人妻精品综合一区二区| 国产伦在线观看视频一区| 免费av毛片视频| 干丝袜人妻中文字幕| 国产乱人视频| 乱系列少妇在线播放| 在线天堂最新版资源| 亚洲,一卡二卡三卡| 国产又色又爽无遮挡免| 精品久久久久久久久av| 亚洲av成人精品一区久久| 26uuu在线亚洲综合色| 麻豆精品久久久久久蜜桃| 三级国产精品欧美在线观看| 日本一二三区视频观看| 国产精品久久久久久久电影| 国产免费一区二区三区四区乱码| 少妇高潮的动态图| 亚洲aⅴ乱码一区二区在线播放| 尾随美女入室| 久久影院123| 国产伦精品一区二区三区四那| 丰满人妻一区二区三区视频av| 熟妇人妻不卡中文字幕| 成人国产麻豆网| 美女视频免费永久观看网站| 97人妻精品一区二区三区麻豆| 少妇人妻精品综合一区二区| 亚洲av中文av极速乱| 国产精品久久久久久精品电影小说 | 在线观看人妻少妇| 99久久中文字幕三级久久日本| 亚洲久久久久久中文字幕| 日本色播在线视频| 欧美日韩亚洲高清精品| 97人妻精品一区二区三区麻豆| 99热这里只有是精品在线观看| 男女啪啪激烈高潮av片| 乱系列少妇在线播放| 国产成人精品久久久久久| 日韩欧美精品免费久久| 全区人妻精品视频| 久久国内精品自在自线图片| 亚洲成人av在线免费| 大片免费播放器 马上看| 伊人久久精品亚洲午夜| 观看美女的网站| 国产午夜精品一二区理论片| 久久久国产一区二区| 国产日韩欧美在线精品| 国产亚洲91精品色在线| 男女无遮挡免费网站观看| 国产一区亚洲一区在线观看| 国产色婷婷99| 国产精品三级大全| 成人欧美大片| 激情五月婷婷亚洲| 免费看不卡的av| 久久久精品94久久精品| 日韩在线高清观看一区二区三区| av在线天堂中文字幕| 18+在线观看网站| 一级毛片电影观看| 18+在线观看网站| 久久久精品94久久精品| 中文资源天堂在线| 色视频在线一区二区三区| 亚洲无线观看免费| 在线观看国产h片| 赤兔流量卡办理| 久久久精品94久久精品| 熟女av电影| 舔av片在线| 欧美高清成人免费视频www| 精品一区在线观看国产| 国产午夜精品一二区理论片| 久久影院123| 中文资源天堂在线| 日本av手机在线免费观看| 人人妻人人爽人人添夜夜欢视频 | 亚洲精品亚洲一区二区| 国产精品国产三级国产专区5o| freevideosex欧美| 免费看av在线观看网站| 少妇被粗大猛烈的视频| 久久久久久久国产电影| 亚洲欧美成人综合另类久久久| 免费黄网站久久成人精品| 少妇人妻 视频| 欧美高清性xxxxhd video| 一区二区av电影网| 丝袜喷水一区| 国产黄a三级三级三级人| 亚洲三级黄色毛片| 亚洲精品国产色婷婷电影| 日韩在线高清观看一区二区三区| 观看美女的网站| 不卡视频在线观看欧美| 天天躁日日操中文字幕| 欧美区成人在线视频| 国模一区二区三区四区视频| 日本-黄色视频高清免费观看| 国内精品宾馆在线| 男女啪啪激烈高潮av片| 国产精品国产三级国产专区5o| 亚洲精品,欧美精品| 超碰97精品在线观看| 久久国产乱子免费精品| 久久精品国产亚洲av天美| 久久久久久伊人网av| 最近最新中文字幕大全电影3| 色吧在线观看| 美女被艹到高潮喷水动态| 一级毛片电影观看| 在线精品无人区一区二区三 | 如何舔出高潮| 99久久精品热视频| 国产色爽女视频免费观看| 亚洲av福利一区| 精品视频人人做人人爽| 听说在线观看完整版免费高清| 欧美人与善性xxx| 精品少妇久久久久久888优播| 岛国毛片在线播放| 插阴视频在线观看视频| 身体一侧抽搐| 51国产日韩欧美| 国产极品天堂在线| 一级av片app| 3wmmmm亚洲av在线观看| 亚洲天堂国产精品一区在线| 少妇的逼好多水| 国产又色又爽无遮挡免| 免费观看性生交大片5| 白带黄色成豆腐渣| 美女cb高潮喷水在线观看| 亚洲av日韩在线播放| 亚洲人与动物交配视频| 亚洲天堂av无毛| 成人亚洲精品av一区二区| 亚洲国产精品专区欧美| 国产成人a区在线观看| 国产一区二区亚洲精品在线观看| 国产毛片在线视频| 欧美激情在线99| 三级男女做爰猛烈吃奶摸视频| 春色校园在线视频观看| 久久精品人妻少妇| 如何舔出高潮| 最近最新中文字幕免费大全7| 日韩视频在线欧美| 成人漫画全彩无遮挡| www.av在线官网国产| 性插视频无遮挡在线免费观看| 全区人妻精品视频| 久久精品夜色国产| 精品久久久久久久久亚洲| 精品人妻一区二区三区麻豆| 国产成人福利小说| 亚洲性久久影院| 午夜福利视频精品| 免费观看在线日韩| 久久人人爽人人片av| av免费观看日本| 亚洲不卡免费看| 亚州av有码| 另类亚洲欧美激情| 国产黄片视频在线免费观看| 精品国产露脸久久av麻豆| 在现免费观看毛片| 国产精品人妻久久久影院| 在线观看一区二区三区激情| 一级毛片电影观看| 国产精品一区二区三区四区免费观看| 日韩免费高清中文字幕av| 91久久精品电影网| 性色av一级| 草草在线视频免费看| 久久久a久久爽久久v久久| 欧美国产精品一级二级三级 | 亚洲丝袜综合中文字幕| 国产综合精华液| av天堂中文字幕网| 国产成人aa在线观看| 国产精品福利在线免费观看| av线在线观看网站| 精品久久久久久久久av| 国产一区二区三区综合在线观看 | videos熟女内射| 男女边吃奶边做爰视频| 十八禁网站网址无遮挡 | 亚洲av一区综合| 国产高清不卡午夜福利| 欧美xxxx性猛交bbbb| 97人妻精品一区二区三区麻豆| 涩涩av久久男人的天堂| 激情五月婷婷亚洲| 久久久久久久久久久免费av| 亚洲欧美中文字幕日韩二区| 97人妻精品一区二区三区麻豆| 乱码一卡2卡4卡精品| 男女国产视频网站| 国产白丝娇喘喷水9色精品| 五月天丁香电影| 中文欧美无线码| 亚洲不卡免费看| 日韩av免费高清视频| 一个人看视频在线观看www免费| 好男人视频免费观看在线| 国产精品一区二区性色av| 国产69精品久久久久777片| 国产精品久久久久久精品电影| 成人午夜精彩视频在线观看| 啦啦啦中文免费视频观看日本| 欧美三级亚洲精品| 性色av一级| 一级毛片 在线播放| 18+在线观看网站| 国产成人a∨麻豆精品| 交换朋友夫妻互换小说| 亚洲国产成人一精品久久久| 午夜激情久久久久久久| 成人高潮视频无遮挡免费网站| 国内精品宾馆在线| 精品人妻视频免费看| 国产日韩欧美亚洲二区| 91久久精品国产一区二区三区| 久久久久久久久久久免费av| 国产精品99久久99久久久不卡 | 97在线人人人人妻| 久久ye,这里只有精品| h日本视频在线播放| 水蜜桃什么品种好| 搡女人真爽免费视频火全软件| 国产伦精品一区二区三区四那| 69av精品久久久久久| 日韩欧美 国产精品| 18禁动态无遮挡网站| 大片电影免费在线观看免费| 免费大片黄手机在线观看| 国内精品宾馆在线| 日本色播在线视频| 中文字幕久久专区| 一区二区三区四区激情视频| 边亲边吃奶的免费视频| 亚洲精品国产av蜜桃| 国产成人精品婷婷| 不卡视频在线观看欧美| 国产片特级美女逼逼视频| 精品久久久久久久久亚洲| 国产淫语在线视频| 在线观看免费高清a一片| 天天躁夜夜躁狠狠久久av| 成人亚洲精品av一区二区| 麻豆国产97在线/欧美| 看十八女毛片水多多多| 午夜激情福利司机影院| 久久久久久伊人网av| 中国美白少妇内射xxxbb| 久久久久九九精品影院| 国产精品无大码| 天堂网av新在线| 视频中文字幕在线观看| 午夜福利在线观看免费完整高清在| 热re99久久精品国产66热6| 国产成年人精品一区二区| 伊人久久精品亚洲午夜| 丝袜脚勾引网站| 亚洲欧美成人综合另类久久久| 小蜜桃在线观看免费完整版高清| 日韩欧美精品免费久久| 亚洲成人精品中文字幕电影| 夜夜爽夜夜爽视频| 91久久精品国产一区二区成人| 久久精品人妻少妇| av黄色大香蕉| 观看美女的网站| 国产免费一级a男人的天堂| 中文字幕免费在线视频6| 国产男女内射视频| 波野结衣二区三区在线| 久久99热6这里只有精品| 99久久中文字幕三级久久日本| 99re6热这里在线精品视频| 国产淫片久久久久久久久| 搡女人真爽免费视频火全软件| 国产成人午夜福利电影在线观看| 精品久久久久久久末码| 国产精品成人在线| 亚洲三级黄色毛片| 天天躁日日操中文字幕| 亚洲精品,欧美精品| 欧美一级a爱片免费观看看| 69人妻影院| 在线观看av片永久免费下载| 中文字幕人妻熟人妻熟丝袜美| 在线观看美女被高潮喷水网站| 制服丝袜香蕉在线| 中文字幕免费在线视频6| 亚洲最大成人av| 免费观看av网站的网址| 久热久热在线精品观看| 有码 亚洲区| 人体艺术视频欧美日本| 蜜桃亚洲精品一区二区三区| 一级a做视频免费观看| 亚洲av二区三区四区| 性色av一级| 一边亲一边摸免费视频| 看十八女毛片水多多多| 韩国高清视频一区二区三区| 亚洲精品色激情综合| 国产精品.久久久| 国产视频内射| 高清av免费在线| 99精国产麻豆久久婷婷| 国产精品久久久久久久久免| 男女边吃奶边做爰视频| 国产精品久久久久久久电影| 中文字幕制服av|