• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chemical stability,thermal behavior,and shelf life assessment of extruded modified double-base propellants

    2018-03-12 08:03:15SherifElbasuneyAhmedFahdHosamMostafaSherifMostafaRamySadek
    Defence Technology 2018年1期
    關(guān)鍵詞:顆粒飼料技術(shù)參數(shù)社會(huì)效益

    Sherif Elbasuney,Ahmed Fahd,Hosam E.Mostafa,Sherif F.Mostafa,Ramy Sadek

    School of Chemical Engineering,Military Technical College,Kobry El-Kobba,Cairo,Egypt

    1.Introduction

    Modified double base(MDB)propellants have found wide applications in modern military and space rocketry,in view of their superior performance[1,2].It is well known that MDB propellants are evolved from double-base by integrating energetic fillers such as HMX or RDX.There is also another trend to integrate potential oxidizers such as ammonium perchlorate(AP),as well as active metal fuels such as aluminum,magnesium,and boron[3-6].This is why MDB propellants have recently been used in booster,sustainer,and dual thrust rocket motors[7-9].

    MDB can exhibit a wide range of burning rate up to 40 mm/s;specific impulse can also be varied from 220 to 270 s[9-12].It has been reported that integration of stoichometric binary mixture of oxidizer-metal fuel(AP/Al),and energetic nitramine such as HMX offered a higher specific impulse(Fig.1)[9,13-15].

    MDB based on binary mixture of AP/Al and HMX offered higher specific impulse by 10%and 9%respectively compared with reference formulation[9].Stoichometric binary mixture of AP/Al had a dual effect by increasing the average operating pressure and burning rate[9].This action was ascribed to the gaseous decomposition nature of AP(Equation(1)),and the exothermic oxidation of Al metal fuel which could enhance the heat of combustion,and flame temperature[1,2,7,16].

    Aluminum metal fuel,with high exothermic heat of combustion(7.4 kcal/g)and excellent thermal conductivity values,tended to increase the burning rate[7,17,18].Aluminum particles are able to react not only with free oxygen resulted from oxidizer decomposition;but also it is able to react with inert decomposition gaseous products and add much more heat to the combustion process[18-20].

    The great impact of HMX on ballistic performance was attributed to the positive heat of formation(+353.8 kJ/kg).HMX is a highly effective explosive material with heat of explosion 6197 kJ/kg and gaseous product of 902 L/kg[13].HMX also has a slightly negative oxygen balance which means decomposition products of low molecular weight[13,21].Much research has been directed toward the development of MDB propellants with enhanced combustion characteristics and high specific impulse[22-25].However less attention has been directed to investigate the impact of different energetic additives on chemical stability,thermal behavior,and shelf life[26].

    1.1.Chemical stability of MDB propellants

    The nitrate esters(nitrocellulose&nitroglycerine),the main constituents of double-base propellant,are molecules that aren't chemically stable.Their decomposition is slow in ambient conditions of temperature,pressure,and humidity.In severe environments,the chemical decomposition becomes autocatalytic[11].There are many mechanisms through which chemical decomposition can occur;these mechanisms include:

    1.1.1.Chain reactions

    Chain reactions start with the homolytic breaking of the weak O-NO2bond,forming nitrogen dioxide and the corresponding alkoxyl radical[27-29].These reactive free radicals immediately undergo consecutive reactions with nearby nitrate ester molecules[29].

    1.1.2.Saponification(hydrolysis)

    Another main decomposition pathway is the neutral to acid hydrolysis of the nitrate esters[28].This reaction is catalyzed by moisture and residual acids(which weren't fully removed after nitrate ester synthesis),or by water,or by acids formed during decomposition(Equation(3)).

    A further decomposition reaction is the “enhanced hydrolysis”.This reaction was found to have low activation energy of 71 kJ/mol.Therefore it can be a dominant decomposition reaction at lower temperatures[30].

    1.1.3.Auto-catalytic reactions

    Decomposition products of reactions(2)can further transformed in presence of moisture and oxygen as follow

    Whereas the primary homolytic reaction(2)can't be suppressed,the consecutive reactions(3-6)can be slowed down nearly to zero by binding or elimination of acids,nitric oxides,and water from the system.This fact was employed for the stabilization of double-base propellants by integrating stabilizing agents[30,31].Stabilizers fulfill their purpose by reacting with the nitrogen oxides and neutralize the decomposition products[32].Conventional double-base propellants,with proper percentage of stabilizer,can offer a safe chemical life of at least 20 years[33].For modified systems containing energetic solid additives similar shelf life should be secured[34].A number of studies have been carried out on the thermal stability of MDB propellants[35-38].Complete information regarding the influence of high energy ingredients including(in organic oxidizers/high explosives)on MDB propellant stability and shelf life is vital in regards of their handling,processing,transportation,and storage.

    1.2.Impact of different energetic additives on chemical stability

    AP has a great impact on the degradation of propellants containing nitrate esters.Many researchers have studied the rate of stabilizer depletion and the time to ignition of such propellants[39].Asthana,Divekar et al.investigated the stability,auto ignition,and stabilizer depletion of MDB propellants containing NG and AP[40].It was noted that the inclusion of AP increased the autocatalytic behavior of MDB propellants over time[41].MDB based on AP demonstrated ease of ignition suggesting faster decomposition kinetics[42].AP-MDB propellants possess shorter shelf life than their conventional counterparts[40,43].Further research showed that MDB containing AP and NG exhibited less stability than conventional double-base[44].However,nitramine doublebase propellants exhibited relatively good thermalstability[45-49].This paper is devoted to investigate the effect of binary mixture of oxidizer/metal fuel(AP/Al)and energetic nitramine(HMX)on DB chemical stability,thermal behavior,as well as shelf life assessment.MDB formulation based on HMX demonstrated extended service life of 16 years compared to(AP/Al)-MDB which demonstrated 9 years.DSC outcomes demonstrated an increase in heat released with aging time.The released heat was increased by 31,41,and 25%for reference,(AP/Al)-MDB,and HMX-MDB formulations respectively.This thermal behavior was ascribed to the auto-catalytic thermal degradation over artificial aging.Correlation between the increase in heat released and the evolved nitrogen oxides was conducted.

    2.Experimental

    2.1.Manufacture of MDB formulations

    Screw extrusion technique emphasizes mixing of different ingredients to ensure good homogenization,high density,and dimensional stability.This technique included many stages such as blending,followed by rolling,grinding,granulation,and finally extrusion to obtain grains of desired shape and dimensions[50].Different MDB formulations based on stoichiometric binary mixture(AP/Al),and HMX at 10 wt%solid loading level,were manufactured by screw extrusion.

    2.2.Chemical stability of MDB

    Evaluation of chemical stability,deals with the fact that the rate of decomposition at normal temperature is judged from decomposition at higher temperature[51,52].Quantitative stability tests were employed for fast and reliable evaluation of MDB chemical stability;they were devoted to the direct measurement of evolved gasses[53].The most commonly used quantitative stability tests are Bergmann-Junk test,and Vacuum stability test.

    2.2.1.Bergmann-Junk test

    Bergmann-Junk test is the main quantitative test for DB stability evaluation.In this test,5g of the tested sample was heated at 120°C for 5 h.The evolved nitrogen oxides(NOx)were entrapped in a secondary tube containing 50 ml of de-ionized water.The evolved NOx gases were quantitatively determined by titration using potassium iodide solution.The acceptable limit for Bergmann-Junk test is 10 ml of NOx/5 g sample[23,54].

    Vacuum stability test is a controlling,measuring,enabling evaluation of temperature stability from measurements of evolved gases from tested sample during long term isothermal heating.This test was performed according to STANAG 4556,where 1 g of the sample was heated at 90°C for 40 h with pressure measurement reading each 1 min during the isothermal heating process.

    2.3.Thermal behavior of MDB

    Ignition temperature is one of the main important characteristics which need to be evaluated for developed MDB formulation,in an attempt to evaluate the impact of different energetic constituents on MDB heat sensitivity.A sample of 0.1 g was introduced in a glass tube and heated at controlled rate of 5°C/min till ignition[32].Phase change with temperature,onset decomposition temperature,and heat released upon combustion are the main parameters for MDB thermal stability evaluation.Differential scanning calorimetry(DSC)measures heat flow associated with phase changes(i.e.melting),endothermic/exothermic decomposition as a function of temperature or time.DSC measurements were performed using DSC 2920 by TA instruments.2 mg of MDB propellants were heated up to 300°C at 5°C/min,under nitrogen gas flow at 5 ml/min.

    2.4.Artificial aging

    Artificial aging was conducted in an attempt to reduce the time scale by storing the propellant at elevated temperatures so that prediction of service life can be made in shorter times.It facilitates the planning of time-temperature profile of MDB with limited knowledge about their degradation behavior[55].Artificial aging was performed by isothermal heating at 80°C in temperature controlled oven under ambient atmospheric conditions.The developed MDB formulations were stored under isothermal heating for 4,8,14 and 28 days[56].Consequently safe storagelife of the propellant can be predicted[56].

    2.5.Shelf life assessment of MDB

    Van't Hoff's formula(Equation(7))enabled the estimation of inservice periods at given in-storage temperatures,from the equivalent time-temperature loads during the artificial ageing.Van't Hoff's formula has been proved by experience to be suitable to establish the time-temperature profile[57].

    Where:TE,TT,F,and ΔTFare time in years at the in-service temperature(TEin0C),test time in days at the test temperature(TTin0C),reaction rate change factor per 10°C of temperature change(Fusually between 2 and 4),and temperature interval for actual valueFrespectively.Factor F was determined using Arrhenius Equation(8)[57].

    Where,Eais the activation energy(kJ/mol),andRis the ideal gas constant[55].Ffactor was deduced by compiling and comparing reaction rates obtained at different temperatures[55].The range for this factor is often between 2 and 4[57].Table 1 demonstrates the accelerated ageing conditions simulating an in-use time up to 32 years at 25°C for developed MDB propellants.

    The change in chemical stability of aged MDB was tracked by quantifying the evolved NOx gases with aging time.Their thermal behavior was investigated and quantified using DSC.Novel correlation between chemical stability(volume of evolved NOx gases)and thermal behavior(Heat released)was represented.

    3.Results and discussions

    3.1.Chemical stability of MDB

    The volume of nitrogen oxides evolved from freshly manufactured MDB compositions was quantified using Bergman-Junk test.The quantified NOxare listed in Table 2.

    總之,正確的水分調(diào)控對(duì)于高效、低耗地制作優(yōu)質(zhì)硬顆粒飼料具有重要作用。在實(shí)際生產(chǎn)中,由于各企業(yè)顆粒飼料產(chǎn)品的配方組成不同、原料質(zhì)量的變異、加工環(huán)境、生產(chǎn)設(shè)備、蒸汽條件等的不同或客戶的需要不同,都會(huì)對(duì)水分的調(diào)控技術(shù)參數(shù)提出不同要求。因此,飼料企業(yè)應(yīng)重視硬顆粒飼料加工技術(shù)的研究與創(chuàng)新,通過加工參數(shù)的優(yōu)化研究,獲得實(shí)現(xiàn)加工優(yōu)質(zhì)顆粒飼料的最佳參數(shù)組合,并將這些參數(shù)組合作為生產(chǎn)中的控制標(biāo)準(zhǔn),只有這樣,才能使企業(yè)和用戶獲得最佳經(jīng)濟(jì)與社會(huì)效益。

    The volume of NOxevolved from reference DB and MDB formulations were within the acceptable limits(10 ml of NOx/5 g sample)[54].HMX based formulation exhibited similar value of evolved NOxto reference.This indicated that HMX is compatible with double base constituents;no side chemical reactions could take place.However AP based formulation exhibited the largest volume of evolved NOxgases.This was attributed to the reactivity of AP oxidizer to react with nitroglycerine to form perchloric acid[30,58].Vacuum stability test represents a fast way of chemical stability determination.Results from vacuum stability test for freshly manufactured MDB propellants are listed in Table 3.The evolved NOx confirmed the obtained data from Berman-Junk test.

    3.2.Thermal behavior of MDB

    Ignition temperature test was conducted to measure the temperature of spontaneous ignition by progressive heating.Even though,MDB formulation exhibited an increase in heat released during exothermic decomposition,there was no dramatic change inignition temperature.The ignition temperature for reference,AP/Al-MDB,and HMX-MDB was found to be 171,172,170°C respectively.DSC was employed to monitor any chemical/physical changes which involve the evolution/absorption of heat.The total heat released,the maximum decomposition temperature,and the onset decomposition temperature were measured and evaluated using DSC(Fig.2).

    Table 1Ageing times calculated on the basis of thermal equivalent load at TE=25°C using the generalized Van't Hoff's rule with factor F=3.

    All Formulations demonstrated one exothermic decomposition peak.Energetic additives did not greatly affect the maximum decomposition temperature but they positively impact the total heat released upon combustion.Summary of total heat released(J/g)and maximum peak temperature(°C)are tabulated in Table 4.

    The inclusion different energetic additives including binary mixture of AP/Al,and HMX into DB propellants increased the released heat upon decomposition due to the favorable heat added by these modifiers.Formulation 2 based on HMX exhibited the highest released heat.This was ascribed to the fact that HMX decomposes with the release of large amount of heat 6197 J/g.

    Table 2Quantified NOxgases evolved from freshly manufactured MDB using Bergmann-Junk test.

    Table 3Vacuum stability test results of freshly developed MDB.

    3.3.Shelf life assessment

    The developed MDB were isothermally aged at 80°C for different periods.The increase in evolved NOxoxides was quantified with aging time and shelf life prediction using Bergman-Junk test(Table 5).

    Results demonstrated that AP based formulation demonstrated the least chemical stability.This behavior was attributed to the fact that AP can degrade to form perchloric acid;which could cause rapid hydrolysis of the nitrate ester.This degradation action could accelerate the propellant decomposition(Equations(9)-(12))[30,45,58].

    MDB propellants based on HMX revealed stability similar to reference formulation.This was ascribed to the high thermal stability of HMX.Furthermore,no side reactions could take place between HMX and DB constituents.Quantification of evolved NOx gases with aging time was performed using vacuum stability test(Table 6).Vacuum stability test outcomes confirmed the findings of Bergmann-Junk test.

    There was an increase in volume of evolved NOxwith aging time.The volume of evolved NOx gases from HMX-MDB was higher than reference formulation but lower than AP-MDB.HMX-MDB and reference formulation exhibited similar shelf life of at least 16 years.On the other hand MDB based on binary mixture of AP/Al exhibited shelf life of 9 years.This was attributed to the induced catalytic degradation upon inclusion of AP with the formation of perchloric acid.

    3.4.Thermal behavior of aged MDB

    MDB demonstrated a decrease in ignition temperature with isothermal aging time(Table 7).

    It is clear that sensitivity to heat of different MDB formulations increased with aging.This behavior was ascribed to the decrease in the required activation energy to start the chemical conversion[34].HMX based formulation demonstrated the highest thermalstability;this was attributed to the fact that higher energy is required for the activation of HMX compared with AP[13].The thermal behavior of aged MDB after aging period of 14 days were investigated with DSC to that of freshly manufactured formulation.DSC thermograms of aged MDB formulations ensured the findings of Bergman-Junk and Vacuum stability tests.The main findings from DSC thermograms included:shifting of maximum decomposition peak temperature to lower value,and an increase in total heat released with aging.Figs.3-5 demonstrate the DSC thermograms for fresh and aged formulations.

    Table 4Thermal behavior characteristics of fresh manufactured MDB.

    All investigated MDB formulations exhibited similar thermal behavior with aging.This behavior encompasses an increase in heatreleased as well as a decrease in the temperature at maximum heat released.This thermal behavior was ascribed to the degradation of MDB over aging.MDB propellants could degrade by thermal decomposition of NC and NG,which might start with the homolytic breakdown of the O-NO2bond[55].This reaction might be catalyzed by moisture and residual acids formed as products during the decomposition process[55].Table 8 summarized the increase in total heat released of aged formulations,to fresh manufactured formulations.

    Table 5Bergmann-Junk test results after aging at 80°C.

    Table 6Quantification of NOxwith aging using vacuum stability test.

    Table 7Ignition temperature for aged MDBP.

    DSC out comes ensured the findings of Bergmann-Junk and Vacuum stability tests.The total heat released was increased by 31,41 and 25%for reference formulation,binary mixture of(AP&Al),and HMX respectively.HMX based formulation demonstrated superior thermal stability.This behavior was attributed to the great consumption of heat energy for the activation of HMX compared to AP,as well as the reactivity of AP toward NG.

    Table 8The increase in heat released with isothermal aging time.

    4.Conclusion

    MDB based on HMX exhibited good chemical and thermal stabilities using quantitative chemical stability tests and DSC respectively.MDB based on HMX exhibited service life of 16 years,similar to reference formulation.MDB based on AP demonstrated service life of 9 years.Low service life of MDB based on AP was ascribed to the reactivity of AP towards NG with the formation of perchloric acid.All MDB formulations exhibited an increase in evolved NOx,and total heat released with aging time.The increase in heat released by 31%was found to be equivalent to evolved NOxgases of 6.2 cm3/5 g and 2.5 cm3/1 g for Bergman-Junk,and Vacuum stability test respectively.These values should not be exceeded for safe storage.This manuscript shaded the light on HMX which offered MDB with balanced ballistic performance,thermal and chemical stability,as well as extended service life.

    [1]Sadek R,Kassem M,Abdo M,Elbasuney S.Spectrally adapted red flare tracers with superior spectral performance.Def Technol 2017:1-7.

    [2]Sadek R,Kassem M,Abdo M,Elbasuney S.Novel yellow colored flame compositions with superior spectral performance.Def Technol 2017;13(1):33-9.

    [3]Meda L,G.L.M.,Braglia R,Abis L,Gallo R,Severini F,et al.A wide characterization of aluminum powders for propellants.In:Proceedings of the 9-IWCP,novel energetic materials and applications,grafiche g.s.s,Bergamo;November 2004.

    [4]Yetter Richard A,G.A.R.,Son Steven F.Metal particle combustion and nanotechnology.In:Proceedings of the combustion institute,32;2009.

    [5]Han X,W.T.,Lin ZK,Han DL,Li SF,Zhao FQ,et al.RDX/AP-CMDB propellants containing fullerenes and carbon black additives.Def Sci J 2009;59:284-9.

    [6]Elbasuney S,Fahd A,Mostafa HE.Combustion characteristics of extruded double base propellant based on ammonium perchlorate/aluminum binary mixture.Fuel 2017;208:296-304.

    [7]Mocella JACCJ.Chemistry of pyrotechnics,basic principles and theory.USA:Taylor&Francis Group,an informa business;2010.p.60-96.

    [8]Davenas A.Solid rocket propulsion technology.Elsevier Science;2012.

    [9]Fahd A,Mostafa HE,Elbasuney S.Certain ballistic performance and thermal properties evaluation for extruded modified double-base propellants.Central Eur J Energ Mater 2017;14(3).

    [10]CS,D.,Ultra-ultrahigh burning rate composite modified double-base propellants containing porous ammonium perchlorate.1990.

    [11]Davenas A.Solid rocket Motor Design.Progress in Astronautics and Aeronautics,AIAA.;1996.

    [12]Sutton GPB,O.Solid propellants.In:Rocket propulsion elements.Wiley;2011.p.475-512.

    [13]Gautarn GK,S.M.P.,Joshi AD,Mulage KS,Singh SN.Study of energetic nitramine extruded double-base propellants.Def Sci J 1998;48(2).

    [14]A,Z.,HMX and RDX:combustion mechanism and influence on modern double-base propellant combustion.J Propuls Power,1995.

    [15]Elbasuney S,Fahd A,Mostafa HE.Combustion characteristics of extruded double base propellant based on ammonium perchlorate/aluminum binary mixture.Fuel 2017;208(Supplement C):296-304.

    [16]Mohamed AK,Mostafa HE,Elbasuney S.Nanoscopic fuel-rich thermobaric formulations:chemical composition optimization and sustained secondary combustion shock wave modulation.J Hazard Mater 2016;301:492-503.

    [17]Mohamed AK,Mostafa HE,Elbasuney S.Nanoscopic fuel-rich thermobaric formulations:chemical composition optimization and sustained secondary combustion shock wave modulation.J Hazard Mater 2016;301:492-503.

    [18]Elbasuney S,Elsaidy A,Kassem M,Tantawy H.Stabilized super-thermite colloids:a new generation of advanced highly energetic materials.Appl Surf Sci 2017;419:328-36.

    [19]Meyer R,J.K.,Homburg A.Explosives.Sixth Edition ed.sixth ed.Weinheim:Wiley-VCH&Co.KGaA;2007.

    [20]Yaman Hayri,Ercan Degˇirmenci V?.Experimental investigation of the factors affecting the burning rate of solid rocket propellants.Fuel 2014;115:794-803.

    [21]Mocella JACCJ.Chemistry of pyrotechnics,basic principles and theory.USA:Taylor&Francis Group,an informa business;2010.

    [22]CS.,D.,Ultra-ultrahigh burning rate composite modified double-base propellants containing porous ammonium perchlorate.1990.

    [23]Meyer R,Kohler J,Homburg A,editors.Explosives.sixth ed.Weinheim:Wiley;2007.

    [24]Cohen-NIr.Combustion characteristics of advanced nitramine-based propellants.Int Symp Combust 1991;18:195-205.

    [25]Kubota N.Survey of rocket propellants and the combustion characteristics.Fundam Solid Propellant Combust 1984.

    [26]Sutton GP,Biblarz O.Solid propellant rocket fundamentals(p 426-430).In:Rocket propulsion elements.Wiley;2011.p.426-30.

    [27]G.B.Manelis,G.M.N.,Y.I.Rubtsov,V.A.Strunin,Thermal decomposition and combustion of explosives and propellants.

    [28]Albrecht,G.,Milit¨artechnik,1987.5,267.

    [29]Bohn MA.The use of kinetic equations to evaluate the ageing behaviour of energetic materials-possible problems.In:11th symp.on chemical problems connected with the stability of explosives,Bastad;1998[Sweden].

    [30]Manelis GB.In:Francis T,editor.Thermal decomposition and combustion of explosives and propellants;2003.p.210-5.

    [31]Vogelsanger B,B.O.,Schadeli U,Antenen D,Ryf K.Ballistic shelf life of propellants for medium and small calibre ammunition-influence of deterrent diffusion and nitrocellulose degradation.In:19th internafional symposium of ballisfics;2001.

    [32]Nobelkrut B.Analytical methods for powders and explosives.1974[Sweden].

    [33]Davenas A.Solid rocket propulsion technology.New York:Pergamon Press;1993.

    [34]Vogelsanger B.Chemical stability,compatibility and shelf life of explosives.2004.Chimia.

    [35]Hartman K-0,Musso RC.The thermal decomposition of nitroglycerine and its relation to the stability of CMDB propellants.CA:The Combustion Institute;1972.p.29.WSCI 72-30.

    [36]Elrick,D.E.,US Patent 3.1975.

    [37]S.W.Beckwith and H.B.Carroll,J.,Spacecraft Rockets,in Spacecraft Rockets,.1985.p.156-161.

    [38]Machida H,A.Y.,Sumikawa K,Suzuki N,Fukuda T,Sumi K,et al.In:Seventeenth int.Jahrestag Fraunhofer inst.Treib explosivst.,Karlsruhe;1986.

    [39]United States,O.T.A.C.,Disposal of chemical weapons:alternative technologies:DIANE Publishing.

    [40]Asthana SN,C.N.D,Singh H.J Hazard Mater 1989;21:35-46.

    [41]Guidelines for safe storage and handling of reactive materials.Wiley;2010.

    [42]Zukas JA,Walters W,Walters WP.Explosive effects and applications.New York:Springer;2002.

    [43]Bromberger CG,H.R.B.,Conduit CP,Howard AJ.The stability of colloidal propellants:Part 3:high impulse compositions.London,UK:Explosives Research Development Establishment;1960.

    [44]Conduit CP.The stability of colloidal propellants:Part 5:the rates of heat generation and critical charge sizes for a composite modified cast double-base propellants.London,UK:Explosives Research Development Establishment;1962.

    [45]Bunyan P.In:12th symposium on the chemical problems connected with the stability of explosives;2001[Sweden].

    [46]Teipel U.Energetic materials:particle processing and characterization.Wiley;2006.

    [47]Asthana SN,R.B.G.,Singh H.J Hazard Mater 1990;23:235-44.

    [48]Ruth Tunnell MA,Dale Roz,Tod Dave,Proud William G.Ammonium perchlorate,friend or Foe?Part 1:the influence of this antioxidizer on the aging behavior of propellant compositions.Propellants Explos Pyrotech 2010;35:1-7.

    [49]Bhalerao MM,G.K.G.,Subramanian GV,Singh SN.Nitramine double base propellants.Def Sci J 1996;46:207-14.

    [50]Lewis TJ.The effect of processing variations on the ballistics of fast burning extruded double base propellants.In:AIAA 14th joint propulsion conference;1978.

    [51]Yan Q-L,Li X-J,Wang Y.Combustion mechanism of double-base propellant containing nitrogen heterocyclic nitroamines(I):the effect of heat and mass transfer to the burning characteristics.Combust Flame 2009;156(3):633-41.

    [52]Huggins RA.Energy storage.US:Springer;2010.

    [53]Zihlman FA.Method of testing propellant stability.Google Patents;1960.

    [54]Frys O,P.B.,Eisner A,Skladal J,Ventura K.Utilization of new non-toxic substances as stabilizers for nitrocellulose-based propellants.Propell Explos Pyrotech 2011;23:22-9.

    [55]Djalal Trache aKK.Study on the influence of ageing on thermal decomposition of double-base propellants and prediction of their in-use time.Fire Mater 2013;37:328-36.

    [56]Jelisavac L.Life-time prediction of double-base propellants in accordance with Serbian and NATO standards.Sci Tech Rev 2010;60(1):12-8.

    [57]MA B.Prediction of equivalent time-temperature loads for accelerated ageing to simulate preset in-storage ageing and time-temperature profile loads.In:Proceeding of the 40th international annual conference of ICT;2009[Germany,Karlsruhe].

    [58]Lurie B,V.K.,Svetlov B.In:11th symposium on the chemical problems connected with the stability of explosives;1998.p.267-87.Sweden.

    猜你喜歡
    顆粒飼料技術(shù)參數(shù)社會(huì)效益
    青貯玉米顆粒飼料用于草魚飼養(yǎng)的初步探究
    新車技術(shù)參數(shù)
    新車技術(shù)參數(shù)
    烏蘭牧騎社會(huì)效益研究
    好刊社會(huì)效益高
    特別健康(2018年9期)2018-09-26 05:45:20
    車型技術(shù)參數(shù) 4 x 4 Vehicle Data List
    越玩越野(2016年2期)2016-12-26 04:02:14
    利用顆粒飼料養(yǎng)魚好處多
    快速檢測方法在顆粒飼料淀粉糊化度中的應(yīng)用
    論股票價(jià)格準(zhǔn)確性的社會(huì)效益
    春蠶1~2齡顆粒飼料育試驗(yàn)初報(bào)
    日韩亚洲欧美综合| av网站免费在线观看视频| 男人添女人高潮全过程视频| 久久久国产欧美日韩av| 久久精品国产a三级三级三级| 亚洲欧美日韩另类电影网站| 久久久久精品性色| 99久国产av精品国产电影| 精品国产国语对白av| 热re99久久国产66热| 夜夜骑夜夜射夜夜干| 亚洲av免费高清在线观看| 男人爽女人下面视频在线观看| 王馨瑶露胸无遮挡在线观看| 日韩亚洲欧美综合| 日韩一区二区视频免费看| 国产成人精品福利久久| 国产 一区精品| 在线观看国产h片| 久久午夜福利片| 亚洲综合精品二区| 在现免费观看毛片| 青春草国产在线视频| 久久精品国产亚洲网站| 成年av动漫网址| 国产爽快片一区二区三区| 久久久久久久国产电影| 一级爰片在线观看| a级片在线免费高清观看视频| 日韩在线高清观看一区二区三区| 国产午夜精品一二区理论片| 国产又色又爽无遮挡免| 99久久精品一区二区三区| 人人妻人人看人人澡| 在线播放无遮挡| 人人妻人人爽人人添夜夜欢视频 | 美女大奶头黄色视频| 亚洲精品乱码久久久久久按摩| 婷婷色麻豆天堂久久| 99久久中文字幕三级久久日本| 美女内射精品一级片tv| 免费黄频网站在线观看国产| 美女脱内裤让男人舔精品视频| 国产伦精品一区二区三区视频9| 亚洲色图综合在线观看| 在线亚洲精品国产二区图片欧美 | 3wmmmm亚洲av在线观看| 在线观看美女被高潮喷水网站| 秋霞在线观看毛片| 午夜福利,免费看| 亚洲真实伦在线观看| 国产亚洲最大av| 欧美xxxx性猛交bbbb| 日韩一区二区视频免费看| 交换朋友夫妻互换小说| 久久ye,这里只有精品| 99热6这里只有精品| av视频免费观看在线观看| 一级,二级,三级黄色视频| 国产精品免费大片| 日本黄色片子视频| 日韩熟女老妇一区二区性免费视频| 哪个播放器可以免费观看大片| 免费大片18禁| 三级国产精品片| 国产精品人妻久久久久久| 亚洲精品亚洲一区二区| 91在线精品国自产拍蜜月| 丝袜在线中文字幕| 大陆偷拍与自拍| 亚洲美女视频黄频| av卡一久久| 亚洲美女搞黄在线观看| 国产高清不卡午夜福利| 国产亚洲91精品色在线| 亚洲精品第二区| 午夜免费男女啪啪视频观看| 蜜臀久久99精品久久宅男| 久久久久人妻精品一区果冻| 天堂俺去俺来也www色官网| 熟女av电影| 国产黄频视频在线观看| 在线观看免费高清a一片| 亚洲不卡免费看| 人妻少妇偷人精品九色| 亚洲人成网站在线观看播放| 欧美精品人与动牲交sv欧美| 久久久精品94久久精品| 免费看日本二区| 国产欧美亚洲国产| 亚洲av中文av极速乱| 一边亲一边摸免费视频| 久久6这里有精品| 大香蕉97超碰在线| 久久久久久久国产电影| 人人妻人人看人人澡| 国产在线免费精品| 亚洲精品亚洲一区二区| 亚洲一级一片aⅴ在线观看| 国产男女内射视频| 六月丁香七月| 超碰97精品在线观看| 久久精品国产a三级三级三级| 久久狼人影院| 久久国产精品大桥未久av | 男人爽女人下面视频在线观看| 韩国高清视频一区二区三区| 又爽又黄a免费视频| 国产在线男女| 国产有黄有色有爽视频| 国产熟女午夜一区二区三区 | 夫妻午夜视频| 亚洲综合精品二区| 免费人成在线观看视频色| 99re6热这里在线精品视频| 最黄视频免费看| 91精品国产国语对白视频| 国产深夜福利视频在线观看| 国产有黄有色有爽视频| 日韩强制内射视频| 免费黄网站久久成人精品| 亚洲成色77777| 我的女老师完整版在线观看| 五月天丁香电影| 久久这里有精品视频免费| 午夜日本视频在线| 91精品国产国语对白视频| 十八禁高潮呻吟视频 | 麻豆精品久久久久久蜜桃| 色5月婷婷丁香| av免费观看日本| 大片免费播放器 马上看| av在线app专区| 日本黄大片高清| 欧美少妇被猛烈插入视频| 秋霞在线观看毛片| 岛国毛片在线播放| 欧美精品国产亚洲| 国产无遮挡羞羞视频在线观看| 成年人免费黄色播放视频 | 国产精品久久久久久精品古装| 黄色一级大片看看| 亚州av有码| 乱系列少妇在线播放| 熟女av电影| 最新中文字幕久久久久| 国产亚洲精品久久久com| 亚洲丝袜综合中文字幕| 3wmmmm亚洲av在线观看| 亚洲国产精品成人久久小说| 人人妻人人爽人人添夜夜欢视频 | 久久99热6这里只有精品| 十八禁网站网址无遮挡 | 美女中出高潮动态图| 亚洲av中文av极速乱| 啦啦啦中文免费视频观看日本| 久久久久久久久久久丰满| 寂寞人妻少妇视频99o| 欧美另类一区| 中文字幕免费在线视频6| 亚洲成人av在线免费| 啦啦啦在线观看免费高清www| 51国产日韩欧美| 亚洲在久久综合| 精品国产一区二区久久| 欧美精品亚洲一区二区| 亚洲av二区三区四区| 又粗又硬又长又爽又黄的视频| 亚洲精品第二区| 国产欧美亚洲国产| 夫妻午夜视频| 精品亚洲乱码少妇综合久久| 91久久精品电影网| 大片免费播放器 马上看| 男女无遮挡免费网站观看| av在线观看视频网站免费| 91久久精品国产一区二区成人| 久久久国产欧美日韩av| 欧美日韩视频精品一区| 午夜91福利影院| 亚洲丝袜综合中文字幕| 欧美bdsm另类| 51国产日韩欧美| 岛国毛片在线播放| 激情五月婷婷亚洲| 免费黄网站久久成人精品| 永久免费av网站大全| 欧美性感艳星| 精品久久久噜噜| 免费人妻精品一区二区三区视频| 热re99久久国产66热| 成年女人在线观看亚洲视频| 亚洲天堂av无毛| 插阴视频在线观看视频| 99国产精品免费福利视频| 日日撸夜夜添| 免费看av在线观看网站| 国产免费一级a男人的天堂| av天堂久久9| 成年av动漫网址| 男的添女的下面高潮视频| 黄色怎么调成土黄色| 中文字幕人妻熟人妻熟丝袜美| 久久热精品热| 一本大道久久a久久精品| 日韩在线高清观看一区二区三区| 99久久精品热视频| 亚洲av综合色区一区| 国产av码专区亚洲av| 丰满乱子伦码专区| 免费黄频网站在线观看国产| 国产黄频视频在线观看| 久久久久精品性色| 国产av码专区亚洲av| 久久影院123| 欧美成人午夜免费资源| 美女大奶头黄色视频| 高清不卡的av网站| 中文资源天堂在线| 日韩中文字幕视频在线看片| 成人二区视频| a级毛片在线看网站| 校园人妻丝袜中文字幕| 日韩一区二区视频免费看| 少妇丰满av| 男人爽女人下面视频在线观看| 日韩,欧美,国产一区二区三区| 女人精品久久久久毛片| 香蕉精品网在线| 男女免费视频国产| 国产免费一区二区三区四区乱码| 亚洲丝袜综合中文字幕| 久久精品久久久久久噜噜老黄| 国产 精品1| 国产精品一区二区三区四区免费观看| 91久久精品国产一区二区三区| 99久久人妻综合| 欧美精品一区二区大全| 99久久综合免费| 国产在线男女| 免费不卡的大黄色大毛片视频在线观看| 国产69精品久久久久777片| 国产av精品麻豆| 亚洲精品国产色婷婷电影| 日日啪夜夜爽| 亚洲精品日韩在线中文字幕| 性色avwww在线观看| 另类亚洲欧美激情| 一边亲一边摸免费视频| av在线app专区| 免费高清在线观看视频在线观看| 一本一本综合久久| 久久久久久久久久久免费av| 一级二级三级毛片免费看| 又爽又黄a免费视频| 亚洲欧美精品专区久久| 亚洲国产精品成人久久小说| 人人妻人人澡人人爽人人夜夜| 狂野欧美激情性xxxx在线观看| 久久精品国产鲁丝片午夜精品| 国产黄频视频在线观看| 乱系列少妇在线播放| 国产精品一区二区三区四区免费观看| 天堂8中文在线网| 国产色爽女视频免费观看| 成人黄色视频免费在线看| 亚洲欧美一区二区三区国产| 熟女电影av网| 97在线视频观看| 国产深夜福利视频在线观看| 亚洲欧美精品专区久久| 狂野欧美白嫩少妇大欣赏| 最近中文字幕2019免费版| 成人18禁高潮啪啪吃奶动态图 | 99热这里只有是精品50| 草草在线视频免费看| 久久久久国产精品人妻一区二区| 你懂的网址亚洲精品在线观看| 欧美性感艳星| 男女无遮挡免费网站观看| 日韩制服骚丝袜av| 亚洲国产欧美日韩在线播放 | 晚上一个人看的免费电影| 国产女主播在线喷水免费视频网站| 国精品久久久久久国模美| 国产午夜精品一二区理论片| 亚洲精品色激情综合| 三上悠亚av全集在线观看 | 内地一区二区视频在线| 久久99精品国语久久久| a 毛片基地| 久久久久久久久久人人人人人人| 18禁在线播放成人免费| 久久婷婷青草| 亚洲av福利一区| 国产爽快片一区二区三区| 国产精品偷伦视频观看了| 午夜老司机福利剧场| 亚洲无线观看免费| 成人18禁高潮啪啪吃奶动态图 | 亚洲精品一区蜜桃| 成人毛片60女人毛片免费| 国产真实伦视频高清在线观看| 深夜a级毛片| av免费在线看不卡| 视频中文字幕在线观看| 日韩欧美精品免费久久| 国产一区有黄有色的免费视频| 欧美三级亚洲精品| 免费大片18禁| 中文在线观看免费www的网站| 国产精品一区二区性色av| 欧美另类一区| 亚洲精品一区蜜桃| 久久久亚洲精品成人影院| 99九九线精品视频在线观看视频| 亚洲人成网站在线播| 熟女电影av网| 国产综合精华液| 久久久久久久大尺度免费视频| 久久国产精品大桥未久av | 日韩视频在线欧美| 久久99蜜桃精品久久| 国产精品久久久久久精品电影小说| av福利片在线观看| 18禁在线无遮挡免费观看视频| 精品人妻熟女毛片av久久网站| 欧美国产精品一级二级三级 | 天堂8中文在线网| a级一级毛片免费在线观看| 亚洲精品色激情综合| 亚洲精品一区蜜桃| 日日撸夜夜添| 91成人精品电影| 少妇人妻 视频| 免费看日本二区| 日本与韩国留学比较| 51国产日韩欧美| 欧美精品人与动牲交sv欧美| 亚洲精品日本国产第一区| 精品国产露脸久久av麻豆| 美女福利国产在线| 国产精品一区二区三区四区免费观看| 在线观看免费高清a一片| 精品少妇黑人巨大在线播放| 噜噜噜噜噜久久久久久91| 久久精品熟女亚洲av麻豆精品| 最近最新中文字幕免费大全7| 亚洲不卡免费看| 3wmmmm亚洲av在线观看| 九九爱精品视频在线观看| 中文欧美无线码| 性色av一级| 亚洲一区二区三区欧美精品| 少妇 在线观看| 欧美精品人与动牲交sv欧美| 亚洲欧美中文字幕日韩二区| 国产成人精品无人区| 亚洲综合精品二区| 大话2 男鬼变身卡| 精品一区二区三区视频在线| 中文天堂在线官网| 国产精品99久久99久久久不卡 | 2018国产大陆天天弄谢| 免费人成在线观看视频色| 2018国产大陆天天弄谢| 秋霞伦理黄片| 激情五月婷婷亚洲| a级片在线免费高清观看视频| 搡老乐熟女国产| 两个人免费观看高清视频 | 性高湖久久久久久久久免费观看| 一二三四中文在线观看免费高清| 看免费成人av毛片| 18禁在线无遮挡免费观看视频| 成人免费观看视频高清| 性色avwww在线观看| 久久久久久久久久人人人人人人| 国产在视频线精品| 制服丝袜香蕉在线| 日韩 亚洲 欧美在线| 中文天堂在线官网| 午夜激情福利司机影院| 街头女战士在线观看网站| 亚洲精品成人av观看孕妇| 男人舔奶头视频| 狂野欧美白嫩少妇大欣赏| 午夜日本视频在线| 日本黄色片子视频| 少妇丰满av| 中文字幕亚洲精品专区| 精品一区二区免费观看| av在线app专区| 爱豆传媒免费全集在线观看| 成人美女网站在线观看视频| 亚洲欧洲日产国产| 国产午夜精品一二区理论片| 久久人人爽av亚洲精品天堂| 亚洲久久久国产精品| 久久99热这里只频精品6学生| 久久久久久久久久成人| 国产成人a∨麻豆精品| 女人久久www免费人成看片| 搡老乐熟女国产| 一个人免费看片子| 国产精品国产三级国产av玫瑰| 国产成人精品一,二区| 十分钟在线观看高清视频www | 一区二区三区精品91| 午夜老司机福利剧场| 国产精品.久久久| 啦啦啦中文免费视频观看日本| 男女无遮挡免费网站观看| 草草在线视频免费看| 亚洲国产精品国产精品| 一本—道久久a久久精品蜜桃钙片| 国产高清三级在线| 国国产精品蜜臀av免费| 日日摸夜夜添夜夜添av毛片| 久久6这里有精品| 成人免费观看视频高清| 99久久精品国产国产毛片| 亚洲欧美精品自产自拍| 亚洲精品第二区| 国产黄频视频在线观看| 成年av动漫网址| 七月丁香在线播放| 日韩视频在线欧美| 亚洲av电影在线观看一区二区三区| 在线播放无遮挡| 日本爱情动作片www.在线观看| 一个人看视频在线观看www免费| 久久国产亚洲av麻豆专区| 伦理电影大哥的女人| 一区二区三区乱码不卡18| 久久人妻熟女aⅴ| 黄色视频在线播放观看不卡| 久久久午夜欧美精品| 韩国av在线不卡| 深夜a级毛片| 欧美成人午夜免费资源| 自拍欧美九色日韩亚洲蝌蚪91 | 国产黄片视频在线免费观看| 国产白丝娇喘喷水9色精品| 六月丁香七月| 午夜福利网站1000一区二区三区| 亚洲精品第二区| 亚洲天堂av无毛| 熟妇人妻不卡中文字幕| 亚洲精品乱久久久久久| 国产日韩欧美亚洲二区| 少妇人妻 视频| 乱码一卡2卡4卡精品| 啦啦啦在线观看免费高清www| 人妻 亚洲 视频| 综合色丁香网| 日韩熟女老妇一区二区性免费视频| 插阴视频在线观看视频| 亚洲av欧美aⅴ国产| 麻豆乱淫一区二区| 日韩伦理黄色片| 久久久国产欧美日韩av| 97在线视频观看| 精品少妇黑人巨大在线播放| 国产免费一区二区三区四区乱码| 边亲边吃奶的免费视频| 色视频www国产| 又大又黄又爽视频免费| 亚洲国产毛片av蜜桃av| 亚洲精品国产色婷婷电影| 99re6热这里在线精品视频| 亚洲婷婷狠狠爱综合网| 制服丝袜香蕉在线| 色视频www国产| 99热国产这里只有精品6| 日本91视频免费播放| 日本猛色少妇xxxxx猛交久久| 麻豆成人av视频| 91久久精品国产一区二区成人| 肉色欧美久久久久久久蜜桃| 最近的中文字幕免费完整| 亚洲天堂av无毛| 亚洲国产精品国产精品| 精品久久国产蜜桃| 一个人看视频在线观看www免费| videossex国产| 男女免费视频国产| 妹子高潮喷水视频| 久久久久精品久久久久真实原创| 黄色欧美视频在线观看| 在线观看国产h片| h日本视频在线播放| 亚洲欧美清纯卡通| 汤姆久久久久久久影院中文字幕| 亚洲人成网站在线播| 中文精品一卡2卡3卡4更新| 两个人免费观看高清视频 | 男女免费视频国产| 国产亚洲一区二区精品| 极品人妻少妇av视频| 国产亚洲av片在线观看秒播厂| 国产精品三级大全| av有码第一页| 简卡轻食公司| 国产一区二区三区av在线| 又爽又黄a免费视频| 一级a做视频免费观看| 亚洲欧美日韩东京热| 亚洲综合精品二区| 一区二区三区精品91| 丝瓜视频免费看黄片| 精品久久久久久久久av| 高清视频免费观看一区二区| 夜夜骑夜夜射夜夜干| 男人舔奶头视频| 丝瓜视频免费看黄片| 一级a做视频免费观看| 精品少妇黑人巨大在线播放| 亚洲四区av| 亚洲av国产av综合av卡| 熟妇人妻不卡中文字幕| 少妇的逼好多水| 看免费成人av毛片| 男人和女人高潮做爰伦理| 日本与韩国留学比较| 亚洲国产精品国产精品| 成人影院久久| h日本视频在线播放| 欧美精品亚洲一区二区| 亚洲av成人精品一二三区| 日韩视频在线欧美| 国产av国产精品国产| 欧美三级亚洲精品| 男人狂女人下面高潮的视频| 97超视频在线观看视频| 在线精品无人区一区二区三| 午夜福利影视在线免费观看| 自拍偷自拍亚洲精品老妇| 乱码一卡2卡4卡精品| 色哟哟·www| 久久久久久久久久久免费av| a 毛片基地| 人人妻人人澡人人看| 在线观看免费视频网站a站| 亚洲,一卡二卡三卡| 男女免费视频国产| 纯流量卡能插随身wifi吗| 日韩三级伦理在线观看| 亚洲在久久综合| 日韩亚洲欧美综合| 观看av在线不卡| 大又大粗又爽又黄少妇毛片口| 国产综合精华液| 亚洲欧美一区二区三区黑人 | 日日撸夜夜添| 在线播放无遮挡| 亚洲欧美清纯卡通| 久久国产乱子免费精品| 精品久久久噜噜| 国产av国产精品国产| av.在线天堂| 亚洲国产欧美日韩在线播放 | 国产伦在线观看视频一区| 人妻人人澡人人爽人人| 深夜a级毛片| 久久狼人影院| 中文字幕av电影在线播放| 天天躁夜夜躁狠狠久久av| 亚洲国产成人一精品久久久| 免费av中文字幕在线| 亚洲成色77777| 老司机影院成人| 日韩精品有码人妻一区| 免费人成在线观看视频色| 国产精品久久久久久av不卡| 22中文网久久字幕| 久久精品国产亚洲av天美| 久久午夜综合久久蜜桃| 全区人妻精品视频| 超碰97精品在线观看| av又黄又爽大尺度在线免费看| 欧美激情极品国产一区二区三区 | 欧美日韩国产mv在线观看视频| 2022亚洲国产成人精品| videos熟女内射| 日本av手机在线免费观看| 久久99一区二区三区| 自线自在国产av| 成人漫画全彩无遮挡| 精品熟女少妇av免费看| 特大巨黑吊av在线直播| 精品久久国产蜜桃| 精品国产一区二区三区久久久樱花| 在线免费观看不下载黄p国产| 日本vs欧美在线观看视频 | 人妻人人澡人人爽人人| 国产午夜精品久久久久久一区二区三区| 久久久国产欧美日韩av| 国产av国产精品国产| 精品人妻偷拍中文字幕| 精品亚洲乱码少妇综合久久| 视频中文字幕在线观看| 国产女主播在线喷水免费视频网站| 老熟女久久久| 9色porny在线观看| 日韩欧美 国产精品| 97在线人人人人妻| 9色porny在线观看| 欧美精品一区二区大全| 国产在线一区二区三区精| 国产精品女同一区二区软件| 天天操日日干夜夜撸| 熟妇人妻不卡中文字幕| 偷拍熟女少妇极品色| 久久人妻熟女aⅴ|