• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An experimental study on shock wave mitigation capability of polyurea and shear thickening fluid based suspension pads

    2018-03-12 08:03:02AndiHarisHeowPuehLeeVincentBengChyeTan
    Defence Technology 2018年1期

    Andi Haris,Heow Pueh Lee,Vincent Beng Chye Tan

    Department of Mechanical Engineering,National University of Singapore,9 Engineering Drive 1,Singapore 117576,Singapore

    1.Introduction

    Improvised explosive devices(IEDs)are mainly homemade bombs that are usually hidden in signboards,guardrails,roadside structures,debris,animal carcasses,containers,briefcases or back packs carried by suicide bombers,and vehicles driven by suicide bombers.These explosive devices can be detonated manually or remotely by a variety of triggering mechanisms or devices such as hand phones,satellite phones,radio,remote controllers,or garage door openers[1].The threat of IED hinders troop mobility as well as security forces and moving vehicles.Although their targets are primarily military personnel,IED attacks also routinely cause unintentional civilian injuries.

    Besides high velocity shrapnel,injuries from IEDs could be due to shock waves.Despite improvements in combat helmets,propagation and reflection of shock waves(within the intracranial cavity)[2]produced by IEDs have caused traumatic brain injury(TBI)-the signature wound of the US armed forces in Iraq and Afghanistan.This type of TBI is referred to as primary TBI and has often no externally visible signs of trauma.As the design parameters for ballistic protection and shock wave mitigation are different,improved impact resistance has not led to improved pressure wave attenuation.Although improved ballistic protection by helmets has saved lives,many military survivors from Iraq and Afghanistan suffer irreversible traumatic brain injuries[3-6].

    The commonly used combat helmets are the personnel armor system ground troops(PASGT),modular integrated communications helmet(MICH),lightweight helmet(LWH),advanced combat helmet(ACH),and enhanced combat helmet(ECH).In general,the helmets consist of a protective shell and a pad suspension system.The shell is usually made from multiple layers of anti-ballistic fabrics such as Kevlar,Twaron,Spectra and Dynemaa due to their excellent properties in defeating bullets and fragments[7-9].The suspension pad is often made from conventional foam materials[10].While current combat helmets have been successful in terms of providing an effective protection against penetrating ballistic injury,their protective performance against shock wave has yet to be established[3,12].Preliminary studies by Mott et al.[13]and Moss et al.[14]showed that the helmets tend to enhance local blast overpressure on the head by focused interactions of the blast waves.Ganpule et al.[11]computationally investigated the role of helmets in mitigating the effect of primary shock waves.In their work,the primary shock wave interactions for various helmet head configurations were evaluated,and the pressure and impulse intensification effects were elucidated as a function of geometry,head-helmet gap and surface curvature.Grujicic et al.[10]developed a simple “core-sample”finite element model of the helmet/head assembly to investigate computationally the potential of polyurea as a shock wave impact mitigating helmet suspension-pad material.Lately,they have extended the simple “core-sample”finite element model to a fully three dimensional(3D) finite element model[15].The simulation results of both simple and 3D models showed that the use of polyurea suspension pads is associated with a substantially greater decrease in the peak pressure experienced by the brain relative to that observed in the case of the conventional foam.Other computational studies by Radovitzky's group[16]and Karami's group[17]reported that wearing an advanced combat helmet(ACH)can reduce level of the blast induced traumatic brain injury.

    Shock waves from IEDs can also interact with other body organs such as lungs and gastrointestinal tract causing primary blast injury[18].Used together with anti-trauma(suspension)pads which can reduce injury due to dynamic deformation of the armor into the wearer,ballistic vests and bomb suits made from multiple layers of anti-ballistic fabrics have been successful in providing an effective protection against the resulting high velocity shrapnel produced by IEDs.However,their protective performance is highly questionable when they are subjected to shock waves[19].Previous studies showed that the severity of primary blast injury(i.e.caused by the impact of a shock or blast wave generated by an explosion)is increased when protective fabrics are used since the transmitted over pressures are significantly amplified through the fabrics[19-23].Besides polyurea and conventional foams,shear thickening fluid(STF)may be used as suspension pad material.STF has huge potential for many industrial applications ranging from devices with adaptive stiffness and damping to body armour[24].In body armour,the application of STF has received substantial attention.Particularly,STF has been used in combination with high strength ballistic fabrics to enhance their stab,puncture and ballistic resistance properties with little or no increase in thickness or stiffness of the fabrics.A recent study by Haris et al.[25]found that STF treated fabrics have potential applications not only for ballistic protection but also for shock wave mitigation.The STF treated fabrics can provide lower peak pressure and lower maximum rate of pressure rise as compared to(untreated)neat fabric and fabric impregnated with PEG only revealing that STF contributes to the increase in performance.

    As outlined above,research on this area is still limited and minimal.More studies are needed to improve the performance of current fabric ballistic vests and combat helmets for optimal protection;not only for protecting from projectiles,but also from shock waves.Most of the earlier studies are computational works which need experimental validation.In the present study,shock wave mitigation capabilities of potentially new suspension pads made of polyurea,shear thickening fluid(STF),and STF-infused foam is experimentally investigated and compared with conventional foam pad.

    2.Materials and method

    2.1.Flexible polyurethane foam

    The foam pad used in this study is made of a flexible open cell polyurethane foam.The polyurethane foam has the following specifications:density of 22 kg/m3and an average pore diameter of 715μm.Fig.1 shows a photograph of the foam taken with a digital microscope.The thickness of the foam pad and other pads used in this study is limited to at most 20 mm as systems thicker than this are deemed to be too bulky for personnel protection purposes and may affect soldier performance like visual awareness,aiming of weapons and mobility.The foam pads of current combat helmets have thicknesses of approximately 0.75 in or~19.05 mm.

    2.2.Polyurea

    Polyurea is a multiblock polymer with alternating soft(linear hydrocarbon chain)and hard(aromatic moiety)segments along its backbone.At room temperature,the soft domains are above their Tgand impart polyurea its elastomeric properties,whereas the hard domains are below their Tgand impart polyurea its mechanical toughness and compressive stiffness,allowing polyurea to be used in a wide range of coating applications[26,27].In recent years,polyurea has attracted much attention due to its excellent dissipative properties and thus has been used as external and internal wall-slidings and foundation coating for buildings aimed at minimizing the degree of structure fragmentation and minimizing the extent of the associated collateral damage in the case of a bomb blast.Besides,it has been used as ballistic resistant and blast mitigating coating for military vehicles and structures[26].As mentioned earlier,the feasibility of using polyurea as a combat helmet pad was recently explored computationally in three studies[10,15,28].

    The polyurea used in the present study is Dragonshield-HT ERC with an elongation percentage of 619%and density of 1000 kg/m3.It was purchased from Specialty Products Incorporated(SPI).The manufacturer's specifications for the polyurea are presented in Table 1.Due to its high density,the thickness of the polyurea pad was set at 4 mm.Fig.2 shows the polyurea pad specimen.

    2.3.Shear thickening fluid and STF-infused foam

    An STFis a non-Newtonian fluid and is often termed as a dilatant fluid.It is characterized by significant,and sometimes discontinuous,increase in viscosity when the applied shear rate reaches a critical value[29].The fluid has low viscosity at shear rates lower than a critical value and high viscosity when the shear rate exceeds the critical value.There are two main mechanisms of shear thickening behaviour which have been proposed:order-disorder theory and hydrocluster theory.The earlier theory postulates that the flow structure changes from ordered layers to a disordered structure with increasing shear rate resulting in an increase in lubrication drag forces between particles[30].According to the latter theory,the particles tend to push together into clusters under shear and the drag forces between particles increase due to this rearrangement[31].

    In the present study,the shear thickening fluid comprising cornstarch particles of approximately 5-20μm in diameter suspended in water.The STF was prepared at a concentration of 55 wt%and synthesized using a combination of mechanical and ultrasonic mixing.This weight fraction was selected to ensure shear thickening behaviour while maintaining a workable solution[32].At weight fractions higher than 55 wt%,cornstarch-water suspension becomes less workable.At weight fractions lower than 55 wt%,its thickening effect becomes very weak.Crawford et al.[33]who studied cornstarch-water suspension at concentrations ranging from 0 to 55 wt%reported that only the suspensions containing at least 52.5 wt%thicken to high enough viscosities.This very narrow range of cornstarch weight fraction(52.5-55 wt%)limits the authors to investigate the effects of weight fraction of STF on the shock wave mitigation capability in this study.The mechanical mixing was carried out using a vortex mixer(Cole-Parmer vortex mixer)whereas the ultrasonic mixing was performed using an ultrasonic bath(Telsonic power cleaning TPC-25).Ultrasound sonication can help to enhance the distribution of particles within a suspension by reducing aggregation of the particles and expel entrained air bubbles[32].Figs.3 and 4 show the STF pad specimen and STF-infused foam pad specimen,respectively.The STF pad specimen was prepared by filling a thin rubber pouch with the STF.The STF-infused foam pad specimen was prepared by filling the foam with the STF and then sealing it in a ziplock bag.

    Table 1Dry properties of Dragonshield-HT ERC(explosive resistant coating)@0.8 mm.

    2.4.Twaron ballistic fabric

    The ballistic fabric used in this study is a plain woven paraaramid(Twaron T717)ballistic fabric having an areal density of 285 g/m2and thickness of 0.4 mm purchased from Teijin Aramid BV.The weave densities of the warp and weft are 8.4 ends/cm and 8.2 ends/cm,respectively.Table 2 presents the manufacturer's specifications for Twaron T717 fibre and fabric.

    2.5.Shock tube tests

    Explosives and shock tubes are commonly used to produce blast loading.The shock tube is preferred for the laboratory scale tests over explosive testing because of simpler safety operating procedures and better control over the rate of explosive loading.A compressed gas-driven shock tube was built and used for the present study.The shock tube has a single diaphragm and a total length of 4.7 m.The driver,driven and muzzle sections of the shock tube all have a round cross-section of 58.4 mm inner diameter and 15.2 mm wall thickness.Stainless steel(316L grade)was used to build the sections.The shock tube is able to withstand a maximum pressure of 7.6 MPa.Hydrostatic testing was performed on the whole setup by filling the tube with water up to a pressure of 12 MPa for a duration of 20 min.The driven section is 3.3 m in length giving a length to inner diameter ratio of about 56.This would insure that the driven section is long enough for the full development of the shock wave.The driver section is 1.3 m long which is long enough to prevent the head of the expansion reflected wave from reaching the shock wave during its travel towards the driven end[34].The muzzle section is of length 0.1 m and is fastened securely inside a steel testing chamber.

    The driven gas was ambient air while the driver section was pressurized with helium until the diaphragm burst releasing a shock wave through the driven and muzzle section towards the target specimen.A gasket with a thickness of 3 mm was placed on each side of the diaphragm to prevent leakage.Mylar sheet was selected as the diaphragm due to its strength and ability to burst at a consistent pressure.The burst pressure at which the mylar sheet ruptured was recorded using a digital pressure gauge(Ashcroft D1005PS).Different burst pressures and consequently shock wave strengths can be obtained by varying the thickness of the mylar diaphragm.

    Table 2Properties of para-aramid Twaron T717 fiber and fabric.

    Fig.5 shows a schematic of the shock tube setup and target specimen being clamped before the shock tube tests.The target specimens consisted of multiple layers of Twaron fabric and various suspension pads were prepared with dimensions of 120 mm(length)x 110 mm(width)and were mounted at the exit of the muzzle section.A circular plate with thickness of 30 mm made of stainless steel(316L grade)was used to support the specimens.Two pressure transducers,Kistler type 603B,were employed to monitor the pressure profile of the shock wave.One of them was mounted on the muzzle sidewall to record the side-on shock wave profile near the exit.The other was mounted on the support plate to record the face-on shock wave profile.The signals were sent through a signal conditioner and amplifier(Kistler 5015 charge meter)before being recorded by the GW Instek GDS-3154 oscilloscope.

    3.Results and discussion

    Based on limited available literature,the effect of pure primary air blast is estimated to occur in the range of 2-100 kg of explosive C4 when the object is in the range of 2-10 m away.The resulting peak pressure is in the range of 60-400 kPa and time duration of 2-8 ms[35].All specimens in our shock tube tests were subjected to the same incident peak pressure of 186 kPa produced by bursting a 0.1 mm thick mylar diaphragm.The measured incident shock speed was 651 m/s.The typical side-on and face-on pressure profiles for shock wave tests with no target specimen(bare surface)are presented in Fig.6.A step pressure rise resulting from head-on impact of a plane shock wave on a flat surface is observed in the figure.The face-on peak pressure of the bare surface is 748 kPa.A successive spike in the pressure wave due to the wave travelling back and forth through the shock tube is also observed.

    The typical face-on pressure profiles for shock wave tests with target specimens are presented in Fig.7.In the presence of foam pad alone,the typical step pressure rise of bare surface is obviously amplified(Fig.7(a)).Its peak pressure is 1.68 MPa.The use of either STF pad alone or STF-infused alone appears to give roughly the same result with that of the foam alone.Differently,polyurea pad alone slightly attenuates the step pressure rise of the bare surface.The peak pressure of the polyurea pad alone is 681 kPa.The shock wave amplification due to the use of foam pad tends to increase when it is used in combination with multiple layers of Twaron fabric,i.e.,when the foam pad is positioned behind the fabric(Fig.7(b)-(e)).It can be seen that such a combination is highly undesirable in terms of protection against shock wave as peak pressure can reach values of more than 6 MPa.Interestingly,the potentially new suspension pads do not exhibit such property.When they are jointly used with the fabric,their face-on pressure profiles are only slightly affected by the thickness of the Twaron fabric.

    The shock wave parameters considered in this study are:peak pressure and impulse.The peak pressure is defined as the maximum height of the signal.The impulse is defined as the area under the curve of the pressure-time signal within a time range from 0 to approximately 15 ms(before the second spike as illustrated in Fig.6).Based on experimental evidence reported in the past,peak pressure and impulse are some important parameters associated with the shock wave which governs blast-related injury.For example,Baker et al.[36]used peak pressure and impulse parameters to develop the human lethality curve.Previously,Bowen et al.[37]and White et al.[38]used peak pressure and duration parameters to develop the lethality curve.The peak pressure and impulse appear to be more appropriate because impulse is dependent on peak pressure as well as on duration and the tendency for peak pressure-impulse lethality curve to approach asymptotic limits is also very aesthetically appealing from a mathematical point of view[39].By increasing the peak pressure or its impulse,the severity of shock wave injury will also increase.

    To evaluate the performance of the suspension pads,their shock wave test result is directly compared with that of the conventional foam pad.As shown in Fig.8(b)-(e),it is clear that the replacement of the foam pad with the STF,STF-infused foam and polyurea pads within the fabric thickness range of 2 mm-18 mm has a favourable effect since the normalized peak pressure is greatly reduced(by about 72%,72%and 74%,respectively).Unfortunately,this great reduction in the normalized peak pressure for STF and STF-infused foam pads is not accompanied by a reduction in the normalized impulse.As shown in Fig.9(b)-(e),the two pads may increase the normalized impulse by about 78%and 131%,respectively.This may reduce their shock wave mitigation.Interestingly,this does not happen when the polyurea pad is used.The normalized impulse can also be reduced by about 49%or at least remain the same.

    The above results show that among the potentially new suspension pads tested,the polyurea pad displays the best shock wave mitigation performance.This experimental finding is in good agreement with the numerical one reported previously[10,15,28].According to Grujicic et al.[28,40]who performed detailed examination of the molecular-level microstructure evolution in the shock wave wake,this superior shock wave mitigation behavior of polyurea is believed to be closely related to its micro-phase segregated microstructure consisting of the so-called hard domains and a soft matrix.Their simulation results revealed that shock loading causes extensive hydrogen bond breaking in the micro-phase segregated polyurea in which these processes are associated with substantial energy absorption and dissipation and are believed to be related to the experimentally observed high blast mitigation potential of polyurea.

    Moreover,in contrast to flexible polyurethane foam which is highly compressible,polyurea is a bulk and nearly incompressible material[10].Gibson[23]who studied the dynamics of shock wave propagation and reflection in flexible and porous materials both analytically and experimentally by using an air driven shock tube reported that the shock wave slows down as porous and compressible materials are compressed, which allows more compression waves to add to the shock wave strength,thereby increasing the peak pressure.As a consequence of this,compared to the flexible foam,polyurea has lower peak pressure and impulse because no compression waves are added to the shock wave strength.

    4.Conclusions

    This study demonstrates that polyurea exhibits the best shock wave mitigation capability among the potentially new suspension pad materials tested.For different Twaron fabric thicknesses ranging from 2 mm to 18 mm,the replacement of 20 mm thick conventional foam pad made from a flexible polyurethane foam with 4 mm thick polyurea pad can reduce the normalized peak pressure and impulse by about 74%and 49%,respectively.The other pads(20 mm thick STF pad and STF-infused foam pad)perform better than the conventional foam pad in terms of peak pressure but worse in terms of impulse.Therefore,polyurea has potential to replace conventional flexible foam for use as a suspension pad in PPE requiring shock wave mitigation capability such as cloth ballistic vests,bomb suits and combat helmets.

    Acknowledgements

    This work has been supported by the Ministry of Education,Singapore(R265000533112).

    [1]Wilson C.Improvised explosive devices in Iraq:effects and countermeasures.CRS Report for Congress.2005.http://www.dtic.mil/dtic/tr/fulltext/u2/a443388.pdf/[Accessed 13 December 2016].

    [2]Cernak I,Wang Z,Jiang J,Bian X,Savic J.Ultrastructural and functional characteristics of blast injury-induced neurotrauma.J Trauma 2001;50(4):695-706.

    [3]Lew HL,Poole JH,Alvarez S,Moore W.Soldiers with occult traumatic brain injury.Amer J Phys Med Rehab 2005;84:393-8.

    [4]Peota C.Invisible wounds.Minn Med 2005;88(1):13-4.

    [5]DePalma RG,Burris DG,Champion HR,Hodgson MJ.Blast injuries.N Engl J Med 2005;352:1335-42.

    [6]Gawande A.Casualties of war-military care for the wounded from Iraq and Afghanistan.N Eng J Med 2004;351(24):2471-5.

    [7]Liu S,Wang J,Wang Y,Wang Y.Improving the ballistic performance of ultra high molecular weight polyethylene fiber reinforced composites using conch particles.Mater Des 2010;31(4):1711-5.

    [8]Tham CY,Tan VBC,Lee HP.Ballistic impact of a Kevlar?helmet:experiment and simulation.Int J Impact Eng 2008;35(5):304-18.

    [9]David NV,Gao XL,Zheng JQ.Ballistic resistance body armor:contemporary and prospective materials and related protection mechanisms.Appl Mech Rev 2009;62(5):50802.

    [10]Grujicic M,Bell WC,Pandurangan B,He T.Blast-wave impact-mitigation capability of polyurea when used as helmet suspension-pad material.Mater Des 2010;31(9):4050-65.

    [11]Ganpule S,Gu L,Alai A,Chandra N.Role of helmet in the mechanics of shock wave propagation under blast loading conditions.Comput Meth Biomech Biomed Eng 2012;15(11):1233-44.

    [12]Bhattacharjee Y.Shell shock revisited:solving the puzzle of blast trauma.Science 2008;319(5862):406-8.

    [13]Mott DR,Schwer DA,Young TR,Levine J,Dionne JP,Makris A,et al.Blastinduced pressure fields beneath a military helmet.Oslo,Norway.In:Proceedings of the 20th international symposium on military aspects of blast and shock;September 2008.

    [14]Moss WC,King MJ,Blackman EG.Skull flexure from blast waves:a mechanism for brain injury with implications for helmet design.Phys Rev Lett 2009;103(10):108702.

    [15]Grujicic A,LaBerge M,Grujicic M,Pandurangan B,Runt J,Tarter J,et al.Potential improvements in shock-mitigation efficacy of a polyurea-augmented advanced combat helmet.J Mater Eng Perform 2012;21(8):1562-79.

    [16]Nyein MK,Jason AM,Yu L,Pita CM,Joannopoulos JD,Moore DF,Radovitzky R.Reply to Moss et al.:military and medically relevant models of blast-induced traumatic brain injury vs.ellipsoidal heads and helmets.Proc Natl Acad Sci 2011;108:E83.

    [17]Jazi MS,Rezaei A,Karami G,Azarmi F.Biomechanical parameters of the brain under blast loads with and without helmets.Int J Exp Comput Biomech 2014;2:223-44.

    [18]Owers C,Morgan JL,Garner JP.Abdominal trauma in primary blast injury.Br J Surg 2011;98:168-79.

    [19]Zhu F,Chou CC,Yang KH.Shock enhancement effect of lightweight composite structures and materials.Compos part B 2011;42(5):1202-11.

    [20]Cripps NPJ,Cooper GJ.The influence of personal blast protection on the distribution and severity of primary blast gut injury.J Trauma 1996;40(3):S206-11.

    [21]Phillips YY,Mundie TG,Yelverton JT,Richmond DR.Cloth ballistic vest alters response to blast.J Trauma 1988;28(suppl):S149-52.

    [22]Skews BW,Bugarin S.Blast pressure amplification due to textile coverings.Text Res J 2006;76(4):328-35.

    [23]Gibson PW.Amplification of air shock waves by textile materials.J Text Inst 1995;86(1):119-28.

    [24]Ding J,Tracey P,Li WH,Peng GR,Whitten PG,Wallace GG.Review on shear thickening fluids and applications.TLIST 2013;2(4):161-73.

    [25]Haris A,Lee HP,Tay TE,Tan VBC.Shear thickening fluid impregnated ballistic fabric composites for shock wave mitigation.Int J Impact Eng 2015;80:143-51.

    [26]Arman B,Reddy AS,Arya G.Viscoelastic properties and shock response of coarse-grained models of multiblock versus diblock copolymers:insights into dissipative properties of polyurea.Macromolecules 2012;45(7):3247-55.

    [27]Chattopadhyay DK,Raju KVSN.Structural engineering of polyurethane coatings for high performance applications.Prog Polym Sci 2007;32(3):352-418.

    [28]Grujicic M,Pandurangan B,Bell WC,Cheeseman BA,Yen CF,Randow CL.Molecular-level simulations of shock generation and propagation in polyurea.Mat Sci Eng A-Stuct 2011;528(10-11):3799-808.

    [29]Barnes HA.Shear-thickening(‘Dilatancy’)in suspensions of non aggregating solid particles dispersed in Newtonian liquids.J Rheol 1989;33:329-66.

    [30]Hoffman RL.Discontinuous and dilatant viscosity behaviour in concentrated suspensions.II.Theory and experimental tests.J Coll Int Sci 1974;46:491-506.

    [31]Brady JF,Bossis G.The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation.J Fluid Mech 1985;155:105-29.

    [32]Bischoff White EE,Chellamuthu M,Rothstein JP.Extensional rheology of a shear-thickening cornstarch and water suspension.Rheol Acta 2010;49:119-29.

    [33]Crawford NC,Popp LB,Johns KE,Caire LM,Peterson BN,Liberatore MW.Shear thickening of corn starch suspensions:does concentration matter?J Colloid Interface Sci 2013;396:83-9.

    [34]Colombo M,di Prisco M,Martinelli P.A new shock tube facility for tunnel safety.Exp Mech 2011;51(7):1143-54.

    [35]Chandra N,Ganpule S,KleinschmitNN,Feng R,Holmberg AD,Sundaramurthy A,et al.Evolution of blast wave profiles in simulated air blasts:experiment and computational modelling.Shock Waves 2012;22(5):403-15.

    [36]Baker WE,Kulesz JJ,Ricker RE,Bessey RL,Westine PS,Parr VB,et al.Workbook for predicting pressure wave and fragment effects of exploding propellant tanks and gas storage vessels.Technical Report.NASA;1977.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19760012208.pdf/ [Accessed 13 December 2016].

    [37]Bowen IG,Fletcher ER,Richmond DR.Estimate of man's tolerance to the direct effects of air blast.Technical Report.Defense Atomic Support Agency and Lovelace Foundation for Medical Education and Research;1969.http://www.dtic.mil/dtic/tr/fulltext/u2/693105.pdf/[Accessed 13 December 2016].

    [38]White CS,Jones RK,Damon EG,Fletcher ER,Richmond DR.The biodynamics of air blast.Technical Report.Defense Nuclear Agency and Lovelace Foundation for Medical Education and Research;1971.http://www.dtic.mil/dtic/tr/fulltext/u2/a384508.pdf[Accessed 13 December 2016].

    [39]Baker WE,Westine PS,Kulesz JJ,Wilbeck JS,Cox PA.A manual for the prediction of blast and fragment loadings on structure.Technical Report.US Department of Energy;1981.http://www.dtic.mil/dtic/tr/fulltext/u2/a476207.pdf[Accessed 13 December 2016].

    [40]Grujicic M,Yavari R,Snipes JS,Ramaswami S,Runt J,Tarter J,et al.Molecularlevel computational investigation of shock-wave mitigation capability of polyurea.J Mater Sci 2012;47(23):8197-215.

    久久 成人 亚洲| 欧美乱码精品一区二区三区| 天堂俺去俺来也www色官网| 丁香欧美五月| 五月开心婷婷网| 中国美女看黄片| 婷婷丁香在线五月| 国产熟女xx| 亚洲成人久久性| 99热只有精品国产| 99riav亚洲国产免费| av网站在线播放免费| 欧美日韩国产mv在线观看视频| ponron亚洲| 国产精品一区二区三区四区久久 | 欧美精品亚洲一区二区| 女人高潮潮喷娇喘18禁视频| 久久久水蜜桃国产精品网| 免费人成视频x8x8入口观看| 少妇的丰满在线观看| 91精品国产国语对白视频| 超碰97精品在线观看| 久久天堂一区二区三区四区| 一级,二级,三级黄色视频| av网站在线播放免费| 免费在线观看视频国产中文字幕亚洲| 亚洲美女黄片视频| 国产av精品麻豆| 美女 人体艺术 gogo| 亚洲 欧美一区二区三区| 久久精品91蜜桃| 国产免费av片在线观看野外av| 亚洲aⅴ乱码一区二区在线播放 | 欧美黑人欧美精品刺激| 欧美乱妇无乱码| av天堂久久9| 亚洲专区国产一区二区| 精品国产美女av久久久久小说| 交换朋友夫妻互换小说| 国产亚洲欧美精品永久| 亚洲午夜精品一区,二区,三区| 日韩成人在线观看一区二区三区| 久久中文字幕一级| 欧美黄色淫秽网站| 搡老熟女国产l中国老女人| 韩国精品一区二区三区| 久久久国产精品麻豆| 99香蕉大伊视频| 高潮久久久久久久久久久不卡| 亚洲欧美激情在线| 日韩欧美三级三区| 久久久久国内视频| 国产日韩一区二区三区精品不卡| 亚洲中文字幕日韩| 人人妻人人爽人人添夜夜欢视频| 久久性视频一级片| 怎么达到女性高潮| 老熟妇仑乱视频hdxx| 亚洲熟妇熟女久久| 在线观看日韩欧美| 国产成人精品久久二区二区免费| 999久久久国产精品视频| www.999成人在线观看| 超色免费av| 国产高清国产精品国产三级| 妹子高潮喷水视频| 国产黄a三级三级三级人| 国产欧美日韩一区二区精品| 亚洲中文日韩欧美视频| 国产av在哪里看| 琪琪午夜伦伦电影理论片6080| 中文字幕人妻熟女乱码| 在线国产一区二区在线| 91成人精品电影| 极品教师在线免费播放| 自拍欧美九色日韩亚洲蝌蚪91| 超碰成人久久| 男女下面进入的视频免费午夜 | 在线观看66精品国产| 国产精品香港三级国产av潘金莲| 久久久久久久精品吃奶| 欧美日韩亚洲国产一区二区在线观看| 欧美不卡视频在线免费观看 | 夜夜躁狠狠躁天天躁| 久久精品91蜜桃| 人人妻人人爽人人添夜夜欢视频| 免费在线观看黄色视频的| 国产精品野战在线观看 | 国产亚洲欧美精品永久| 黑人巨大精品欧美一区二区mp4| 免费在线观看完整版高清| 男人的好看免费观看在线视频 | 国产精品日韩av在线免费观看 | 搡老熟女国产l中国老女人| 久久人人精品亚洲av| 欧美激情高清一区二区三区| 国产单亲对白刺激| 亚洲国产精品合色在线| 少妇被粗大的猛进出69影院| 成年人黄色毛片网站| 窝窝影院91人妻| 韩国精品一区二区三区| 狠狠狠狠99中文字幕| 一级片'在线观看视频| 国产精品一区二区精品视频观看| 他把我摸到了高潮在线观看| 69精品国产乱码久久久| 国产成人免费无遮挡视频| 嫩草影视91久久| 国产有黄有色有爽视频| 欧美一级毛片孕妇| 女同久久另类99精品国产91| 亚洲中文av在线| 国产麻豆69| 好看av亚洲va欧美ⅴa在| 日本欧美视频一区| 又大又爽又粗| 真人做人爱边吃奶动态| 精品久久久久久,| 日韩av在线大香蕉| 国产精品一区二区在线不卡| 国产欧美日韩一区二区三区在线| 亚洲狠狠婷婷综合久久图片| 一级片'在线观看视频| 在线观看免费视频日本深夜| 国产午夜精品久久久久久| x7x7x7水蜜桃| 欧美激情久久久久久爽电影 | 桃红色精品国产亚洲av| 真人做人爱边吃奶动态| 国产真人三级小视频在线观看| 日韩人妻精品一区2区三区| 久久午夜综合久久蜜桃| 波多野结衣高清无吗| av在线天堂中文字幕 | 99国产极品粉嫩在线观看| 欧美激情高清一区二区三区| 国产人伦9x9x在线观看| 男人舔女人的私密视频| 香蕉丝袜av| 欧美日韩亚洲国产一区二区在线观看| 久久香蕉精品热| 欧美日本中文国产一区发布| 日本vs欧美在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | 在线视频色国产色| 午夜福利在线观看吧| 精品久久久久久久久久免费视频 | 久久精品91无色码中文字幕| 亚洲色图综合在线观看| 波多野结衣av一区二区av| 一级片免费观看大全| 久久人妻av系列| 自线自在国产av| 免费女性裸体啪啪无遮挡网站| 免费久久久久久久精品成人欧美视频| 亚洲精品在线美女| 久久久国产精品麻豆| 99久久综合精品五月天人人| 亚洲三区欧美一区| 亚洲人成77777在线视频| 久久久国产一区二区| 一边摸一边做爽爽视频免费| 视频区欧美日本亚洲| 首页视频小说图片口味搜索| 久久香蕉精品热| 国产一区二区激情短视频| 欧美黄色淫秽网站| 精品国产超薄肉色丝袜足j| 五月开心婷婷网| 自拍欧美九色日韩亚洲蝌蚪91| 天堂俺去俺来也www色官网| 午夜福利免费观看在线| www.精华液| 老汉色∧v一级毛片| 久久久精品欧美日韩精品| √禁漫天堂资源中文www| 12—13女人毛片做爰片一| 黄频高清免费视频| 免费在线观看日本一区| 天天影视国产精品| 大香蕉久久成人网| 欧美乱色亚洲激情| 欧美黑人欧美精品刺激| 欧美一级毛片孕妇| 午夜视频精品福利| 人成视频在线观看免费观看| 亚洲精品av麻豆狂野| 亚洲国产精品sss在线观看 | 欧美日韩精品网址| 亚洲中文av在线| 精品久久久久久成人av| 老司机靠b影院| 中文字幕人妻丝袜制服| 夜夜躁狠狠躁天天躁| 亚洲欧美日韩无卡精品| 香蕉国产在线看| 亚洲专区字幕在线| 99国产精品免费福利视频| 亚洲免费av在线视频| 一级a爱视频在线免费观看| 亚洲精品粉嫩美女一区| 国产精品久久电影中文字幕| 国产精品影院久久| 十八禁人妻一区二区| 久久久久久久久中文| 国产主播在线观看一区二区| 99热国产这里只有精品6| 国产精品乱码一区二三区的特点 | 在线观看日韩欧美| 亚洲欧美精品综合一区二区三区| 国产精品亚洲av一区麻豆| 欧美激情久久久久久爽电影 | 中文字幕人妻熟女乱码| 亚洲欧美精品综合一区二区三区| 极品教师在线免费播放| 淫妇啪啪啪对白视频| 亚洲美女黄片视频| 99精品久久久久人妻精品| 亚洲国产精品合色在线| 一个人免费在线观看的高清视频| 黄片播放在线免费| 亚洲欧美日韩无卡精品| 国产欧美日韩综合在线一区二区| 久久国产精品影院| 香蕉丝袜av| 我的亚洲天堂| 久久亚洲精品不卡| 两人在一起打扑克的视频| 黄网站色视频无遮挡免费观看| 国产有黄有色有爽视频| 一级毛片精品| 在线免费观看的www视频| 国产成人欧美在线观看| 国产高清视频在线播放一区| 在线观看午夜福利视频| 老司机深夜福利视频在线观看| 免费在线观看完整版高清| 可以免费在线观看a视频的电影网站| 色哟哟哟哟哟哟| 18禁美女被吸乳视频| 亚洲欧美日韩高清在线视频| 精品一品国产午夜福利视频| 国产亚洲欧美98| 天堂俺去俺来也www色官网| 日本免费a在线| 日韩大尺度精品在线看网址 | 色精品久久人妻99蜜桃| 美国免费a级毛片| 亚洲男人天堂网一区| 少妇的丰满在线观看| 午夜视频精品福利| 国产精品偷伦视频观看了| 国产精品久久久久成人av| 久久精品影院6| 亚洲国产中文字幕在线视频| 在线视频色国产色| 亚洲人成伊人成综合网2020| 欧美日韩亚洲高清精品| 日韩高清综合在线| 女性被躁到高潮视频| 国产午夜精品久久久久久| 久久久久精品国产欧美久久久| 亚洲全国av大片| 中亚洲国语对白在线视频| 韩国av一区二区三区四区| 人人妻人人爽人人添夜夜欢视频| 免费av中文字幕在线| 精品人妻1区二区| 久久精品亚洲av国产电影网| 在线观看66精品国产| 黄频高清免费视频| 在线观看舔阴道视频| 99国产精品免费福利视频| √禁漫天堂资源中文www| 男女午夜视频在线观看| 国产成人一区二区三区免费视频网站| 成人av一区二区三区在线看| 黄片大片在线免费观看| 亚洲欧美精品综合一区二区三区| 男女下面插进去视频免费观看| 国产成人精品久久二区二区免费| 亚洲精品粉嫩美女一区| 成人18禁高潮啪啪吃奶动态图| 欧美av亚洲av综合av国产av| 国产麻豆69| 亚洲精品国产区一区二| 这个男人来自地球电影免费观看| 手机成人av网站| 天天添夜夜摸| 色播在线永久视频| 亚洲精品粉嫩美女一区| 免费在线观看日本一区| 天堂动漫精品| 国产精品一区二区免费欧美| 久久中文看片网| 免费久久久久久久精品成人欧美视频| 国产xxxxx性猛交| 99久久国产精品久久久| 18禁观看日本| 一级作爱视频免费观看| 老司机靠b影院| 嫁个100分男人电影在线观看| 女性被躁到高潮视频| 成在线人永久免费视频| 美女福利国产在线| 五月开心婷婷网| 国产成人av激情在线播放| 国产av一区二区精品久久| 可以免费在线观看a视频的电影网站| 嫩草影视91久久| 99在线视频只有这里精品首页| 麻豆成人av在线观看| 99国产精品一区二区蜜桃av| 免费日韩欧美在线观看| 天天添夜夜摸| 91九色精品人成在线观看| 亚洲精品国产精品久久久不卡| 91大片在线观看| 两个人免费观看高清视频| 狂野欧美激情性xxxx| 韩国精品一区二区三区| 精品一区二区三区四区五区乱码| 99久久人妻综合| 国产精品美女特级片免费视频播放器 | 变态另类成人亚洲欧美熟女 | 免费久久久久久久精品成人欧美视频| 国产又色又爽无遮挡免费看| 国产精品久久电影中文字幕| 两个人免费观看高清视频| 高清av免费在线| 亚洲成人精品中文字幕电影 | 女人被躁到高潮嗷嗷叫费观| 亚洲人成电影免费在线| 午夜视频精品福利| 99热国产这里只有精品6| 国产成人欧美| 99香蕉大伊视频| 久久婷婷成人综合色麻豆| 超色免费av| 在线观看免费视频日本深夜| 国产精品偷伦视频观看了| 久久香蕉精品热| 亚洲一区二区三区欧美精品| 久热爱精品视频在线9| 亚洲黑人精品在线| 老熟妇乱子伦视频在线观看| 欧美成人性av电影在线观看| 欧美不卡视频在线免费观看 | 女人被躁到高潮嗷嗷叫费观| 国产欧美日韩综合在线一区二区| 波多野结衣高清无吗| 三级毛片av免费| 成人国产一区最新在线观看| 97超级碰碰碰精品色视频在线观看| 国产深夜福利视频在线观看| 色婷婷av一区二区三区视频| 欧美日本亚洲视频在线播放| 久久久久国产一级毛片高清牌| 亚洲国产精品999在线| 桃色一区二区三区在线观看| 搡老岳熟女国产| 久久草成人影院| 一级a爱片免费观看的视频| 久久精品国产99精品国产亚洲性色 | 老熟妇乱子伦视频在线观看| 中亚洲国语对白在线视频| 777久久人妻少妇嫩草av网站| 亚洲国产精品一区二区三区在线| 精品福利观看| 欧美在线一区亚洲| 亚洲专区国产一区二区| 久久精品亚洲av国产电影网| 少妇粗大呻吟视频| 精品无人区乱码1区二区| 波多野结衣高清无吗| 精品久久久久久电影网| 亚洲av成人不卡在线观看播放网| x7x7x7水蜜桃| 国产在线观看jvid| √禁漫天堂资源中文www| 国产av一区二区精品久久| 在线播放国产精品三级| 两性夫妻黄色片| 亚洲专区国产一区二区| 成人手机av| 麻豆久久精品国产亚洲av | 国产又爽黄色视频| 久久伊人香网站| 免费av毛片视频| 国产高清videossex| 一区福利在线观看| 国产高清国产精品国产三级| 久久精品影院6| 丁香六月欧美| 久久中文字幕一级| 亚洲av五月六月丁香网| 黄片大片在线免费观看| 欧美日韩亚洲高清精品| 日本撒尿小便嘘嘘汇集6| 最好的美女福利视频网| 自拍欧美九色日韩亚洲蝌蚪91| 久久狼人影院| 国产片内射在线| 欧美黄色片欧美黄色片| 国产99久久九九免费精品| 亚洲av日韩精品久久久久久密| 99久久99久久久精品蜜桃| 久久人妻福利社区极品人妻图片| 757午夜福利合集在线观看| 电影成人av| 国产视频一区二区在线看| 欧美乱妇无乱码| 纯流量卡能插随身wifi吗| 无人区码免费观看不卡| 成人三级黄色视频| 法律面前人人平等表现在哪些方面| 两个人免费观看高清视频| 最新美女视频免费是黄的| 亚洲av美国av| 人妻丰满熟妇av一区二区三区| 美女高潮到喷水免费观看| 精品国产国语对白av| 丝袜美腿诱惑在线| 亚洲色图av天堂| 又大又爽又粗| ponron亚洲| 免费不卡黄色视频| 午夜a级毛片| 国产高清videossex| 亚洲久久久国产精品| 真人做人爱边吃奶动态| 男女之事视频高清在线观看| 亚洲欧美日韩另类电影网站| 欧美日韩视频精品一区| 男人舔女人的私密视频| 久久久久国产一级毛片高清牌| 久热这里只有精品99| 国产精品一区二区免费欧美| 久久久久久大精品| 超碰成人久久| 十八禁人妻一区二区| 丝袜在线中文字幕| 亚洲精品在线观看二区| 国产单亲对白刺激| 婷婷六月久久综合丁香| 一级毛片女人18水好多| 黄色视频,在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产aⅴ精品一区二区三区波| 国产蜜桃级精品一区二区三区| 91老司机精品| 成在线人永久免费视频| 97人妻天天添夜夜摸| 青草久久国产| av天堂在线播放| 久久久久国产一级毛片高清牌| 黄色女人牲交| 一级毛片精品| 亚洲国产精品一区二区三区在线| 成人特级黄色片久久久久久久| 99热国产这里只有精品6| 波多野结衣av一区二区av| 免费av中文字幕在线| 免费高清视频大片| 在线观看舔阴道视频| 免费搜索国产男女视频| 欧美亚洲日本最大视频资源| 性少妇av在线| 午夜福利一区二区在线看| 午夜免费鲁丝| 国内毛片毛片毛片毛片毛片| 国产精品98久久久久久宅男小说| 亚洲色图 男人天堂 中文字幕| 韩国精品一区二区三区| 免费久久久久久久精品成人欧美视频| 十八禁网站免费在线| 精品久久久精品久久久| 在线观看午夜福利视频| 97碰自拍视频| 久久精品国产99精品国产亚洲性色 | 18禁观看日本| 大码成人一级视频| 在线免费观看的www视频| 一级毛片高清免费大全| 免费搜索国产男女视频| 一进一出抽搐gif免费好疼 | 91精品三级在线观看| 在线观看舔阴道视频| 老鸭窝网址在线观看| 亚洲 欧美 日韩 在线 免费| 极品人妻少妇av视频| 日韩精品免费视频一区二区三区| 一级毛片女人18水好多| 日本a在线网址| 变态另类成人亚洲欧美熟女 | 看黄色毛片网站| 狠狠狠狠99中文字幕| 女同久久另类99精品国产91| 亚洲人成伊人成综合网2020| 黄色女人牲交| 我的亚洲天堂| 啦啦啦 在线观看视频| 国产精品电影一区二区三区| 日本免费a在线| 国产精品1区2区在线观看.| 久久久久久久久久久久大奶| 亚洲专区国产一区二区| 日本一区二区免费在线视频| 久久亚洲精品不卡| 91精品国产国语对白视频| 久久久久久久精品吃奶| 99久久久亚洲精品蜜臀av| 国产成人欧美在线观看| 亚洲成av片中文字幕在线观看| 一本综合久久免费| 日韩大码丰满熟妇| 国产男靠女视频免费网站| 在线播放国产精品三级| 一个人免费在线观看的高清视频| 在线观看66精品国产| 美女 人体艺术 gogo| 日韩欧美一区视频在线观看| 一区二区三区国产精品乱码| 久久天躁狠狠躁夜夜2o2o| 天天躁夜夜躁狠狠躁躁| svipshipincom国产片| videosex国产| 老司机在亚洲福利影院| 欧美日韩一级在线毛片| 一a级毛片在线观看| 国产激情欧美一区二区| cao死你这个sao货| 国产精品综合久久久久久久免费 | 一级毛片女人18水好多| 日日干狠狠操夜夜爽| 免费在线观看影片大全网站| 人妻久久中文字幕网| 亚洲精品美女久久av网站| 757午夜福利合集在线观看| 国产熟女午夜一区二区三区| 国产一区在线观看成人免费| 窝窝影院91人妻| cao死你这个sao货| 久久人人97超碰香蕉20202| 国产精品 欧美亚洲| 91成年电影在线观看| 精品少妇一区二区三区视频日本电影| 97超级碰碰碰精品色视频在线观看| 午夜免费观看网址| 欧美乱码精品一区二区三区| 久久精品亚洲av国产电影网| 国产在线观看jvid| 国产精品电影一区二区三区| 电影成人av| 久久久久亚洲av毛片大全| 国产精品永久免费网站| 99精国产麻豆久久婷婷| 精品国产超薄肉色丝袜足j| 亚洲第一欧美日韩一区二区三区| 国产91精品成人一区二区三区| 美国免费a级毛片| 成年人黄色毛片网站| 国产真人三级小视频在线观看| 可以在线观看毛片的网站| 亚洲国产欧美一区二区综合| 午夜免费成人在线视频| 亚洲情色 制服丝袜| 午夜亚洲福利在线播放| 女人被躁到高潮嗷嗷叫费观| 久久伊人香网站| av在线天堂中文字幕 | 久久精品91无色码中文字幕| 国产av在哪里看| 精品一区二区三区av网在线观看| 国产成人精品久久二区二区91| 18禁观看日本| 成人影院久久| 午夜亚洲福利在线播放| 一进一出抽搐gif免费好疼 | 亚洲av日韩精品久久久久久密| 侵犯人妻中文字幕一二三四区| 极品人妻少妇av视频| 人人妻人人爽人人添夜夜欢视频| 欧美激情久久久久久爽电影 | 在线观看舔阴道视频| 中文欧美无线码| av在线播放免费不卡| 亚洲av成人一区二区三| 成年人黄色毛片网站| 日韩精品免费视频一区二区三区| 99久久99久久久精品蜜桃| 91国产中文字幕| 男女下面进入的视频免费午夜 | 欧美黄色淫秽网站| 久久精品影院6| 女人被躁到高潮嗷嗷叫费观| 成人18禁在线播放| 亚洲九九香蕉| 亚洲精品中文字幕在线视频| 日韩欧美在线二视频| 久久久精品欧美日韩精品| 国产一区二区三区视频了| 久久久国产一区二区| 嫩草影院精品99| 国产一区二区三区视频了| 久久伊人香网站| 免费女性裸体啪啪无遮挡网站| 欧美一区二区精品小视频在线| 中文字幕最新亚洲高清| 亚洲精品中文字幕一二三四区| 欧美一区二区精品小视频在线| 正在播放国产对白刺激| 在线看a的网站| 精品人妻1区二区|