陳戰(zhàn)+沈宏+許萍萍
摘要:葡萄座腔菌屬(Botryosphaeria)真菌是導(dǎo)致多種水果潰爛的重要致病菌,從形態(tài)上很難區(qū)分。選取了4個DNA片段(ITS、LSU、SSU、EF-1α)作為3種重要蘋果致病菌(Botryosphaeria stevensii、Botryosphaeria dothidea、Botryosphaeria obtusa)的候選條形碼進行PCR擴增、Sanger測序和序列分析。結(jié)果表明,PCR擴成功率ITS>SSU>LSU=EF-1α,ITS的PCR擴增成功率達到100%;序列分析發(fā)現(xiàn)ITS和EF-1α基因種內(nèi)序列保守,種間差異明顯,而且B. dothidea菌種在EF-1α基因中存在一段100 bp左右的特異片段,可以特異區(qū)分該菌株,但核糖體基因LSU和SSU種間、種內(nèi)沒有明顯差異;結(jié)合GenBank中的葡萄座腔屬真菌ITS序列進行系統(tǒng)發(fā)育分析,顯示3種葡萄座腔菌屬菌株分別位于3個獨立的分支,分析結(jié)果與形態(tài)鑒定結(jié)果一致。推薦使用ITS和EF-1α兩個基因共同作為這3種葡萄座腔屬真菌的條形碼。
關(guān)鍵詞:葡萄座腔菌(Botryosphaeria);蘋果病原菌;條形碼;EF-1α;ITS
中圖分類號:S432.4 文獻標(biāo)識碼:A 文章編號:0439-8114(2018)02-0126-06
DOI:10.14088/j.cnki.issn0439-8114.2018.02.031
Abstract: Species of Botryosphaeria are the important pathogenic fungi on many kinds of fruits. They are very always difficult to distinguish from each other based on morphological characters. In this study, to identificate of three important apple-pathogens Botryosphaeria stevensii, Botryosphaeria dothidea, Botryosphaeria obtuse. 4 gene fragments were selected, which encoded ITS、LSU、SSU、EF-1α,to be the candidate DNA barcodes. By using of PCR amplification, Sanger sequencing and data analysis,we aimed to find the molecular markers in the identification of these species. The results showed that, based on the PCR and sequencing success,it was ranked as follow:ITS>SSU>LSU=EF-1α,and ITS primer worked best(100%). According to the acquired sequences,ITS and EF-1α were quite conserved among different strains of the same species,and have the significant differences between the species. Meantime,a region of EF-1α (approx. 100 bp) was exclusively existed in the investigated strains of B. dothidea,which therefore could be used for the distinction of this species. However,the sequences of LSU and SSU have the same variation within and between the species. Combining the available ITS sequences in GeneBank,we constructed maximum likelihood tree to identify the phylogenetic relationships of Botryosphaeria. The results showed that three investigated species belonged to three monophyletic clades. These results were congruent with the taxonomic units based on the morphological characters. Accordingly, we recommended the usage of ITS and EF-1α to be the efficient molecular makers in the identification of B. stevensii、B. dothidea、B. obtuse.
Key words: Botryosphaeria;apple pathogen;barcode;EF-1α;ITS
葡萄座腔菌屬(Botryosphaeria)真菌分布廣泛,是果樹常見的致病菌,能夠引起果樹的枝干壞死、果實潰瘍和輪紋等癥狀[1,2]。在蘋果上常見該類致病菌主要有3種:蘋果殼色單隔孢潰瘍病菌(Botryosphaeria stevensii)、葡萄座腔菌(Botryosphaeria dothidea)和鈍葡萄座腔菌(Botryosphaeria obtusa)[3]。而且蘋果殼色單隔孢潰瘍病菌(Botryosphaeria dothidea B. stevensii)已被列為中國進境植物檢疫性有害生物。該菌株除了蘋果以外,還可危害葡萄、橡樹、榆樹、枇杷等11個科18個屬的植物[4]。研究發(fā)現(xiàn),葡萄座腔菌屬菌株的無性型和有性型等形態(tài)特征非常相似,很難進行準(zhǔn)確區(qū)分鑒定[5]。endprint
隨著分子生物學(xué)技術(shù)的發(fā)展與應(yīng)用,大大提高了物種鑒定的效率與準(zhǔn)確性。DNA條形碼(DNA Barcode)是近年來世界廣泛使用的一種分子生物學(xué)檢測手段[6,7]。在葡萄座腔球菌屬真菌中檢驗過的DNA條形碼包括rDNA-ITS[8]、β-tubulin[9]和IJS[10]等,但能夠精確鑒定葡萄座腔屬真菌的通用分子標(biāo)記還鮮見報道。
本試驗以2015-2016年從蘋果中分離的14株葡萄座腔菌屬真菌為研究對象,根據(jù)真菌進化樹(Tree of funngi)網(wǎng)站推薦的4種常用的真菌標(biāo)簽及NCBI基因庫中已有的葡萄座腔真菌序列(ITS、SSU、LSU、EF-1α)設(shè)計通用引物,利用ITS和EF-1α兩個基因共同作為這3種葡萄座腔菌的分子標(biāo)記。同時在EF-1α基因上找到了能準(zhǔn)確鑒定B. dothidea的一段100 bp左右的特異片段,為快速鑒定蘋果殼色單隔孢潰瘍病菌、葡萄座腔菌和鈍葡萄座腔菌提供了分子檢測方法。
1 材料與方法
1.1 菌種
2015-2016年間蘋果上的Botryosphaeria屬病原菌見表1。
1.2 菌絲DNA提取
將菌株接種于蘋果上,將存在病斑的表皮從蘋果上分離,置于PDA固體培養(yǎng)基上,25 ℃恒溫培養(yǎng)3~5 d,直至真菌生長達到對數(shù)期后,挑取菌落進行DNA的提取。真菌DNA提取采用改進的CTAB方法[11],DNA存放于-20 ℃冰箱保存。
1.3 PCR擴增、測序
50 μL的PCR反應(yīng)體系,包括10 μmol/L上下游引物各1 μL、0.25 μL Taq DNA聚合酶(Qiagen)、5 μL 10×Buffer、1 μL 10 mmol/L dNTPs、3.5 μL MgCl2以及100~200 ng DNA模板,最后加入ddH2O補足至50 μL。PCR反應(yīng)條件為95 ℃預(yù)變性5 min;95 ℃變性30 s,最佳退火溫度(ITS 55 ℃、SSU 52 ℃、LSU 42 ℃、EF-1α 51 ℃)退火30 s,72 ℃延伸,35個循環(huán);最后72 ℃延伸10 min。PCR產(chǎn)物用0.8%瓊脂糖凝膠電泳檢測,然后采用膠回收試劑盒(Qiagen)純化產(chǎn)物,送至Life Technologies公司進行序列測定。為保證測序的準(zhǔn)確性,采用雙向測序,PCR擴增引物見表2[12-15]。
1.4 序列差異分析
用SeqMan 7.1.0軟件進行正反向序列的拼接以及BioEdit 7.1.3軟件校正序列。采用MegAlign 7.1.0軟件中Cluster W進行全局比對和BLAST進行局部比對[16];BLAST軟件采用默認(rèn)的DNA分值系統(tǒng),所有生物信息數(shù)據(jù)用于評估各基因的堿基多樣性和差異。
1.5 系統(tǒng)發(fā)育分析
通過序列比對,在GenBank中尋找抑制的葡萄座腔菌屬物種的相應(yīng)序列。所有物種的序列,利用Muscle軟件[17]進行ITS序列比對,然后采用MrBayes v3.2.6軟件[18]中貝葉斯推理方法構(gòu)建系統(tǒng)發(fā)育樹,進化樹評估通過運行10 000 000代,每100代進行抽樣一次。
2 結(jié)果與分析
2.1 DNA提取、PCR擴增和測序結(jié)果
供試菌株提取的DNA樣品質(zhì)量濃度范圍為200~1 200 ng/μL,OD260 nm/OD280 nm在1.8~2.0范圍內(nèi),OD260 nm/OD230 nm在2.0~2.5范圍內(nèi)。所有測序獲得的序列已提交GenBank并獲得登入號(表1)。同時對4種候選基因的引物擴增和測序的情況進行了統(tǒng)計,其中ITS的引物成功率達到100%,SSU的引物成功率為92.8%(13/14),LSU和EF-1α都為85.7%(12/14)。
2.2 序列比對
對于樣品DNA序列編輯校正后,獲得507 bp ITS共同區(qū)域,817 bp LSU共同區(qū)域,320 bp SSU共同區(qū)域,770 bp EF-1α共同區(qū)域。然后采用Bioedit軟件中的Cluster W全局比對[19],統(tǒng)計了序列之間的堿基多樣性。同時采用BLAST軟件進行種內(nèi)、種間差異分析,先采用makeblastdb命令將基因序列建立本地數(shù)據(jù)庫,然后采用blastn輸入序列與數(shù)據(jù)庫比對得到所有序列之間的比對信息。
ITS序列比對結(jié)果(表3)顯示,這3種真菌種內(nèi)差異為B. obtusa(0~0.6%)、B. stevensii(0%)、B. dothidea(0~0.42%);種間差異B. dothidea與B. obtusa相比為7.0%~8.0%,B. dothidea與B. stevensii相比為6.25%~6.78%,B. obtusa與B. stevensii相比為2.5%~3.0%,所有序列在很多位點上都發(fā)生了明顯的種間變異。
EF-1α序列比對結(jié)果(表4)顯示,3種真菌種內(nèi)差異為B. obtusa(0~0.55%)、B. stevensii(0%)、B. dothidea(0~2%);種間差異B. dothidea與B. obtusa相比為2.0%~2.6%,B. dothidea與B. stevensii相比為2.4%~2.6%,B. obtusa與B. stevensii相比為2.65%~3.20%;同時EF-1α序列全局比對后發(fā)現(xiàn)B. dothidea菌株序列比其他參試菌株序列長100個堿基,差異序列通過R軟件中apex包可視化如圖1所示。
LSU序列比對結(jié)果(表5)顯示,種內(nèi)沒有差異,相似性為100%;種間差異B. dothidea與B. obtusa相比為2.2%~2.4%,B. dothidea與B. stevensii相比為2.2%~2.4%,B. obtusa與B. stevensii相比為0.4%~0.5%。全局比對發(fā)現(xiàn)B. dothidea有很多堿基位點種內(nèi)保守,種間差異較大,但B. obtusa與B. stevensii相比僅有3個堿基的種間差異。endprint
SSU序列比對結(jié)果(表6)顯示,3種真菌種內(nèi)種間差異都非常小,全局比對發(fā)現(xiàn)僅有B. dothidea菌株在個別位點種內(nèi)保守,種間發(fā)生了變異(表7)。
2.3 系統(tǒng)發(fā)育分析
通過BLAST比對,在GenBank中找到已知相同ITS片段的Botryosphaeria屬菌株18株,但未發(fā)現(xiàn)與本試驗擴增的EF-1α相同片段的Botryosphaeria屬菌株。在系統(tǒng)發(fā)育分析中,通過供試菌株和GenBank庫中獲得的相關(guān)菌種的ITS序列以及3種外類群Pseudofusicoccum adansoniae、Pseudofusicoccum kimberleyense、Pseudofusicoccum ardesiacumn菌株ITS序列構(gòu)建MrBayes進化樹(圖2)。在進化樹中,發(fā)現(xiàn)3種供試菌株與NCBI數(shù)據(jù)庫中的同種菌株分別聚在同一獨立分支上。Botryosphaeria stevensii和Botryosphaeria obtusa菌株兩個獨立分支明顯,與其他菌種距離都較遠。同時,Botryosphaeria stevensii菌株分支的置信值為59%,Botryosphaeria obtusa菌株獨立分支的置信值為100%。但Botryosphaeria dothidea菌株與同屬內(nèi)的很多菌種距離較近,甚至與Botryosphaeria corticis和Botryosphaeria ramosa物種聚在同一個分支上,進化分支的置信值為67%,同時3種外類群獨立分開于Botryosphaeria屬物種。
3 討論
本研究通過對ITS、LSU、SSU、EF-1a 4種分子標(biāo)記的引物成功率、種內(nèi)種間差異、系統(tǒng)進化關(guān)系進行了全面分析,4種候選基因的PCR擴增成功率ITS>SSU>LSU=EF-1α。在物種鑒定方面,采用的ITS引物(ITS1/ITS4)在3種蘋果病原菌中表現(xiàn)最好,PCR擴增成功率達到100%;擴增序列在種間及種內(nèi)的差異明顯,具有清晰的分子鑒定特征。ITS1-ITS4間約500 bp的序列作為分子標(biāo)記,結(jié)果表明,該段序列在參試的3種葡萄座腔菌屬物種的種內(nèi)相似度大于99.5%,而種間相似度則小于98.5%。張露茜等[21]曾采用ITS4-ITS5序列對蘋果殼色單隔孢潰瘍病菌進行分子輔助鑒定,而趙娜等[22]通過對國內(nèi)119株葡萄座腔菌屬菌株ITS1-ITS4區(qū)段的測序,發(fā)現(xiàn)該屬菌株在該區(qū)段上存在種內(nèi)及種間的序列差異,但差異不是特別明顯。該結(jié)果與本試驗中ITS的測序結(jié)果相同,因此認(rèn)為該區(qū)段的鑒定結(jié)果仍需其他分子標(biāo)記的輔助。而本試驗采用的EF-1α片段在Botryosphaeria obtusa與Botryosphaeria stevensii菌株中存在2.65%~3.20%差異率,同時翻譯成氨基酸序列也在多位點發(fā)生差異;而且在B. dothidea菌株EF-1α基因內(nèi)具有一段100 bp左右的特異片段,能夠從PCR擴增片段的長度上特異性地鑒定出該菌種。SSU基因幾乎沒有條碼間隔,物種鑒定能力最差。LSU基因條碼間隔優(yōu)于SSU,Botryosphaeria dothidea菌種相比較有一定的種間差異;但是考慮PCR擴增和測序錯配的可能性,Botryosphaeria obtusa與Botryosphaeria stevensii菌株LSU基因之間0.4%~0.5%差異度幾乎不能區(qū)分。
ITS系統(tǒng)發(fā)育樹中,對整個Botryosphaeria屬的進化關(guān)系分析發(fā)現(xiàn)Botryosphaeria stevensii菌株在整個屬內(nèi)進化距離較遠。這與很多前人研究一致,B. stevensii分類地位存在分歧[23]。同時Botryosphaeria dothidea菌種與同屬內(nèi)的很多菌種距離較近,甚至與Botryosphaeria corticis和Botryosphaeria ramosa物種聚在同一個分支上。相關(guān)研究也發(fā)現(xiàn)Botryosphaeria dothidea種群內(nèi)部存在著較為豐富的RAPD多態(tài)性,從不同地理環(huán)境來源的菌株之間會存在基因差別[24]。同時Botryosphaeria dothidea和Botryosphaeria ribis也無明顯差異,甚至被很多研究認(rèn)為為同種菌株。通過ITS單個基因不能完全鑒定出Botryosphaeria dothidea 菌株,需要其他基因的輔助鑒定[22]。
因此,推薦利用ITS和EF-1α基因共同作為Botryosphaeria stevensii、Botryosphaeria dothidea、Botryosphaeria obtusa這3種蘋果致病菌的分子標(biāo)記,可以滿足對蘋果上這3種病原菌的準(zhǔn)確、快速鑒定的需要。
參考文獻:
[1] SLIPPERS B,ROUX J,WINGFIELD M J,et al. Confronting the constraints of morphological taxonomy in the Botryosphaeriales[J].Persoonia,2014,33:155-168.
[2] 王 璠,黃俊斌,李國懷.葡萄座腔菌屬(Botryosphaeria)引起的果樹病害及研究進展[J].植物學(xué)報,2013,39(6):7-13.
[3] 韓青梅,王婧群,林月莉,等.葡萄座腔菌Botryosphaeria dothidea侵染及其對蘋果果實影響的組織細胞學(xué)研究[J].真菌學(xué)報,2014,33(1):36-46.
[4] VAN NIEKERK J,CROUS P J,et al. DNA phylogeny,morphology and pathogenicity of Botryosphaeria species on grapevines[J].Mycolagia,2004,96(4):781-798.endprint
[5] LYNCH S C,ESKALEN A,ZAMBINO P J,et al. Identification and pathogenicity of Botryosphaeriaceae species associated with coast live oak(Quercus agrifolia) decline in southern California[J].Mycologia,2013,105(1):125-140.
[6] VELMURUGAN S,PRASANNAKUMAR C,MANOKARAN S. DNA barcodes for marine fungal identification and discovery[J].Fungal Ecology,2013,6:408-418.
[7] SCHOCH CL,SEIFERT KA,HUHNDORF S,et al. Nuclear ribosomal internal transcribed spacer(ITS) region as a universal DNA barcode marker for Fungi[J].PNAS,2012,109(16):6241-6246.
[8] DENTINGER B T M,DIDUKH M Y,MONCALVO JM. Comparing COI and ITS as DNA Barcode Markers for Mushrooms and Allies (Agaricomycotina)[J].PLoS One,2012,6(9):1-8.
[9] WIKEE S,LOMBARD L,NAKASHIMA C,et al. A phylogenetic re-evaluation of Phyllosticta(Botryosphaeriales)[J].Studies in Mycology,2013,76:20-29.
[10] SLIPPERS B,ROUX J,WINGFIELD M L. Confronting the constraints of morphological taxonomy in the Botryosphaeriales[J].Persoonia,2014,33:155-168.
[11] M?魻LLER EM,BAHNWEG G,SANDERMANN H,et al. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi,fruit bodies,and infected plant tissues[J].Nucleic Acids Res,1992,20:6115-6116.
[12] WHITE T J,BRUNS T,LEE S,et al. Amplifcation and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In:PCR Protocols:a guide to methods and applications (Innis MA,Gelfand DH,Sninsky JJ,White TJ,eds)[J].Academic Press 1990,9:315-322.
[13] BORNEMAN J,HARTIN R J. PCR primers that amplify fungal rRNA genes from environmental samples[J].Applied and Environmental Microbiology,2000,66(10):4356-4360.
[14] VILGALYS R,HESTER M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus spp.[J].Bacteriol,1990,172:4238-4246.
[15] REHNER S A,BUCKLEY E A. Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences:Evidence for cryptic diversification and links to Cordyceps teleomorphs[J].Mycologia,2005,97:84-98.
[16] HUNG J H,WENG Z P. Sequence Alignment and Homology Search with BLAST and Clustal W[J].Cold Spring Harb Protoc,2016,DOI:10.1101/pdb.prot093088.
[17] EDGAR R C.Muscle:Multiple sequence alignment with high accuracy and high throughput[J].Nucleic Acids Research,2004, 32:1792-1797.
[18] DRUMMOND A J,SUCHARD M A,XIE D,et al. Bayesian phylogenetics with BEAUti and the BEAST 1.7[J].Molecular Biology and Evolution,2012,29:1969-1973.
[19] HALL T A. BioEdit:A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT[J].Nucleic Acids Symposium Series,1999,41:95-98.
[20] LYNCH S C,ESKALEN A,ZAMBINO P J,et al. Identification and pathogenicity of Botryosphaeriaceae species associated with coast live oak (Quercus agrifolia) decline in southern California[J].Mycologia,2013,105(1):125-140.
[21] 張露茜,宋紹祎,焦彬彬,等.進境水曲柳原木中蘋果殼色單隔孢潰瘍病菌的檢疫鑒定[J].植物檢疫,2015,29(1):25-29.
[22] 趙 娜,張偉偉,高小寧,等.中國部分省份蘋果輪紋病菌及相關(guān)類群的系統(tǒng)學(xué)關(guān)系[J].西北農(nóng)林科技大學(xué)學(xué)報,2011,39(10):55.
[23] SLIPPERS B,BOISSIN E,PHILLIPS A J,et al. Phylogenetic lineages in the Botryosphaeriales:A systematic and evolutionary framework[J].Stud Mycol,2013,76(1):31-49.
[24] PHILLIPS A J,RUMBOS I C,ALVES A,et al. Morphology and phylogeny of Botryosphaeria dothidea causing fruit rot of olives[J].Mycopathologia,2005,159(3):433-439.endprint