楊瀟瀟,叢堃林,張衍國,李清海
?
木薯高/低溫二段式干燥工藝參數優(yōu)化試驗
楊瀟瀟,叢堃林,張衍國,李清?!?/p>
(熱科學與動力工程教育部重點實驗室,清華大學-滑鐵盧大學微納米能源環(huán)境聯合研究中心,清華大學能源與動力工程系,北京 100084)
木薯收獲時含水率約為65%~70%,為了便于儲存和運輸,必須在短時間內對木薯進行干燥處理。為開發(fā)和優(yōu)化木薯干燥工藝,該文在干燥箱中試驗研究了木薯切片厚度、干燥溫度對干燥過程的影響。試驗結果表明,干燥溫度過高,木薯經過高溫后易糊化變質,溫度太低,則干燥不充分;切片太薄,干燥過程中木薯片會斷裂,切片太厚,達到合格含水率所需時間將延長。用Wang and Singh模型關聯木薯干燥過程,根據干基含水率曲線確定了木薯干燥過程中的臨界含水率為105%。對于一段式木薯干燥工藝,木薯在干燥過程中達到臨界含水率時后段干燥速率呈下降趨勢,為了避免這一趨勢出現而導致干燥效率下降,提出了先高溫、后低溫的二段式優(yōu)化干燥方案,確定了各段工藝的參數,為木薯干燥設備的設計提供了必要的依據。
干燥;水分;質量控制;木薯
木薯是熱帶和亞熱帶根莖植物,是世界三大薯(馬鈴薯、木薯、紅薯)之一。原產于亞馬遜流域,在我國及東南亞等地被廣泛種植,主要應用于食品、醫(yī)藥、工業(yè)等領域,有“淀粉之王”之稱[1-4]。
木薯成熟時含水率在65%~70%之間,收獲3~7 d內若不進行干燥則很容易變質腐爛。為便于存儲和運輸,收獲后應盡快將其含水率降低到安全含水率以下,需利用工業(yè)化干燥設備對木薯進行快速干燥[5-10]。
截至目前,國內外已有許多學者對木薯干燥進行了大量的研究,但有關木薯干燥過程、干燥工藝及干燥設備的研究還不多見。國外研究人員大多針對太陽能干燥對木薯干燥過程進行研究,主要研究了環(huán)境溫度、相對濕度、光線強度、氣體流速、裝載密度等因素對木薯干燥過程的影響,結果表明溫度、光線強度和氣體流速與干燥速率成正相關,裝載密度與干燥速率呈負相關[11-14]。由于薯類作物大多含淀粉和糖分,其干燥過程具有相似性,因而其他薯類的研究可以參考。李業(yè)波等[15]對馬鈴薯進行了內部的傳熱傳質研究,建立了馬鈴薯內部水分擴散系數的數學模型。孟岳成等[16]研究了溫度、風速和厚度對紅薯煩躁過程的影響,比較了12種干燥模型在紅薯熱風干燥中的適用性,結果表明與Wang and Singh 模型的擬合程度最高。龍銘等[17]設計了用負壓氣流對木薯進行干燥的設備。劉琨等[18-21]分別對木薯淀粉、木薯酒糟的干燥特性,結果表明干燥曲線為指數曲線。張鵬等[22-23]研究了紅薯、馬鈴薯、芋頭和山藥在干燥過程中溫度、厚度和切法對干燥特性的影響,對4種物料分別進行了干燥特性與動力學模型的擬合,結果表明,它們在熱風干燥過程中各類指標變化基本一致,具有共性。上述研究分別是針對馬鈴薯、紅薯、木薯淀粉、木薯酒糟、芋頭、山藥等進行的研究,但均未與木薯的干燥工藝相結合。
為了設計木薯干燥設備,本文利用干燥箱[24-25]研究了干燥過程中溫度和木薯切片厚度對干燥過程的影響,并提出相應的木薯干燥工藝。
試驗采用的新鮮木薯購于廣西省容縣,木薯洗凈晾干后密封放置在2~5℃的冰箱中冷藏備用。
用切片模具將新鮮木薯分別切成厚度分別為5、6、7、8、9 mm的圓片,再將切好的木薯片放入提前設定好溫度為60、70、80、90、100 ℃的鼓風干燥箱(DGF25012C)中,利用鼓風干燥箱模擬熱風干燥過程,每隔5 min從干燥箱中取出1個試樣,將取出來的木薯片放入到裝有變色硅膠的干燥器中冷卻降溫,冷卻至室溫后用電子天平(德國Sartorius BS210S,稱量范圍為0~210 g,精度為0.000 1 g)稱其質量。根據實際稱量的質量計算木薯的水分。
木薯的原始水分用GB28733-2012[26]的方法進行測量。
木薯的干基含水率是表示木薯在干燥過程中的某一時刻水分與干物料的比,每個樣品的干基含水率按照式(1)進行計算。
用水分比來表示一定干燥條件下的木薯的含水率,具體計算方法如下
式中MR為水分比;M為干燥過程中某一時刻樣品的含水率,%;M,木薯的終點含水率,%;0為木薯的原始含水率,%。
木薯干燥過程中的干燥速率用式(3)表示。
式中為干燥速率,%/min;為干燥時間,min。
木薯的原始水分為62%,根據預試驗結果,若木薯切片太薄,干燥過程中會出現斷裂的現象,木薯片太厚干燥不完全,因此選取切片厚度為8 mm的試驗數據研究溫度對木薯干燥特性的影響。
木薯主要成分為蛋白質和淀粉,由于蛋白質和淀粉在高溫下易變性,因此選取干燥溫度為80 ℃的試驗數據分析厚度對木薯干燥特性的影響。
圖1給出了厚度為8 mm時干基含水率隨時間變化的干燥曲線。木薯與熱風之間的傳熱傳質機理主要受溫差的影響,干燥過程中的溫度越高,木薯與熱風的溫度差越大,木薯內部水分的蒸發(fā)速率加快,圖1中曲線的斜率增大,即木薯的干燥速率增大。試驗結果表明,提高干燥溫度對木薯干燥過程有利,但考慮木薯的化學性質會隨干燥溫度的升高而糊化、變質,根據試驗結果擬定干燥設備的干燥溫度為80~100 ℃,不僅能夠避免低溫造成能耗損失,同時也不會出現因高溫引發(fā)的木薯變質、糊化的現象。
圖2給出了80℃下不同切片厚度的干燥曲線,試驗結果表明,切片厚度越薄,達到特定含水率需要的時間越短。但在實際干燥過程中當切片厚度為5 mm時,由于厚度太薄,干燥一段時間后木薯片表面易產生收縮裂口最終導致木薯片斷裂;當厚度為9 mm時由于木薯內部水分蒸發(fā)速率較低導致木薯干燥時間延長。木薯干燥時,薯片厚度6~8 mm為宜。
圖1 厚度為8 mm時不同干燥溫度下的干燥曲線
圖2 溫度為80 ℃時不同厚度的干燥曲線
圖3 溫度為80℃水分比的擬合曲線
圖4 厚度為8 mm比水分的擬合曲線
相同溫度下5種不同厚度、相同厚度下5種不同溫度的木薯水分比MR干燥模型、干基含水率模型與試驗數據擬合結果的相關系數22分別見表1、表2,其中22的值均在0.98~0.99之間。根據擬合得到的水分比干燥模型方程可以對木薯實際干燥過程進行預測,便于判斷某一時刻的木薯水分比MR的值;根據不同條件下木薯片干基含水率的擬合方程式可以推出木薯片在不同溫度、不同厚度下的臨界含水率的值,及木薯干燥過程中恒速干燥與降速干燥的臨界點。確定相應的臨界含水率后可得到與之對應的達到木薯片臨界含水率的時間。
表1 80℃下不同厚度木薯片水分比MR和干基含水率M的擬合方程式
表2 8 mm切片厚度下不同溫度木薯片水分比MR和干基含水率M的擬合方程式
圖5 厚度8 mm木薯片在溫度80 ℃時的干燥速率曲線
干燥過程中為了避免干燥速率下降的情況,木薯干燥設備的設計過程中一般木薯的干燥過程可分為恒溫一段式干燥和變溫分段式干燥[30]。試驗結果表明,采用恒定溫度的一段式干燥方案在70 min內只能將木薯的含水量降到35%左右,并不能滿足在60 min內將木薯含水率降到安全含水率的設計要求。因此在實際干燥工藝的設計過程中考慮采用二段式干燥方案,即干燥過程中前后兩段選取不同的干燥溫度,利用前半段時間將含水率降低到原始水分的一半,后半段時間將含水率降到安全含水率。
二段式干燥試驗分別在不同的溫度和不同的時間內完成,將木薯切片后分別放入鼓風干燥箱,在1溫度下干燥1時間后,將鼓風干燥箱的溫度調至2溫度繼續(xù)干燥2時間,最終將木薯取出,分別測得在不同試驗工況下干燥后木薯的含水率,以判斷經過木薯是否達到安全含水率。其中設計的2種干燥試驗方案見表3,其中方案1設定先低溫后高溫的干燥方案,即前半段干燥溫度為80 ℃,干燥時間為30 min,后半段干燥溫度為100 ℃,干燥時間為30 min;方案2設定先高溫后低溫的干燥方案,即前半段干燥溫度為100 ℃,干燥時間為30 min,后半段干燥溫度為80 ℃,干燥時間為30 min。
表3 二段式干燥試驗方案
圖6a是先低溫后高溫的二段式干燥方案結果,圖6b是先高溫后低溫的二段式干燥方案結果。對比以上二段式干燥試驗結果,發(fā)現木薯干燥過程中方案2的最終含水率均低于方案1的最終含水率。根據試驗結果,擬定木薯干燥工藝中采用第一段溫度為100 ℃、第二段溫度為80 ℃的二段式干燥方案。
a. 第1干燥段80 ℃,第2干燥段100℃
a. 80℃at first stage and 100℃ at second stage
b. 第1干燥段100℃,第2干燥段80℃
b. 100℃at first stage and 80℃ at second stage
注:為分段干燥溫度。
Note:is stage drying temperature.
圖6 不同溫度的二段式木薯干燥工藝對比圖
Fig.6 Comparison chart of two-stage cassava drying process at different temperatures
圖7給出了木薯干燥工藝方案示意,該方案的設備主要包括風機、給料機、第一干燥段、第二干燥段、熱交換器等。實際干燥過程中將具有一定原始含水率的木薯切成6~8 mm的片狀,用給料機將切好的木薯片送入第一干燥段內,其中第一干燥段內的熱風由風機1提供,經熱交換器1加熱到1=100 ℃,第一干燥段的干燥時間1=30 min。經第1干燥段干燥后的中間產品被送入第二干燥段,第二干燥段的干燥時間2=30 min,經第二干燥段處理后的木薯達到13%的安全含水率,能夠進行大量的儲存和運輸。
其中干燥工藝的第二干燥段的熱風由風機2提供,并由熱交換器2加熱,其熱風溫度為2=80 ℃。由于第1干燥段反應后的氣體濕度較大不適合被循環(huán)利用,因此直接經干燥氣流出口排放到大氣中。第二干燥段出口流出的氣體濕度小,因此設計將第二干燥段反應后的干燥氣體流出后返回到熱交換器2中繼續(xù)循環(huán)利用,這樣在增加了第二干燥段循環(huán)風流量的同時,提高了木薯的傳熱傳質效率,加快木薯實際的干燥速率、節(jié)約了大量的能源。
圖7 木薯二段式干燥工藝流程圖
在干燥箱內模擬木薯干燥設備,對不同溫度、不同厚度的木薯片進行了干燥試驗。試驗研究發(fā)現,干燥溫度過低則干燥時間延長,溫度過高木薯則會變質、糊化;木薯片厚度太薄,則在干燥過程中易斷裂;木薯片厚度太厚,達到安全含水率所需時間過長。用Wang and Singh模型對木薯干燥過程的水分比進行了擬合,吻合較好。利用干基含水率曲線確定了木薯干燥的臨界含水率為105%。本文結果表明,干燥溫度取80~100 ℃、厚度選6~8 mm為宜,采用先高溫后低溫的二段式木薯干燥方案。
[1] 董丹丹,趙黛青,廖翠萍,等. 木薯燃料乙醇生產技術提升機全生命周期能耗分析[J]. 農業(yè)工程學報,2008,24(7):160-164.
Dong Dandan, Zhao Daiqing, Liao Cuiping, et al. Energy consumption ananlysis in life cycle of cassava fuel ethanol production and the advantages of the new technology in energy consumption[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(7): 160-164. (in Chinese with English abstract)
[2] 蔣小靜,呂飛杰,呂小文,等. 熱處理對木薯全粉品質的影響[J]. 農業(yè)工程學報,2012,28(9):257-263.
Jiang Xiaojing, Lü Feijie, Lü Xiaowen, et al. Preparation and functional properties of whole cassava flour[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(9): 257-263. (in Chinese with English abstract)
[3] 柴沁虎,申威,張阿玲,等. 中國木薯產業(yè)的供給價格彈性[J]. 清華大學學報:自然科學版,2009,49(6):913-916.
Chai Qinhu, Shen Wei, Zhang Aling, et al. Chinese cassava industry price supply elasticity[J]. Journal of Tsinghua University(Science and Technology), 2009, 49(6): 913-916. (in Chinese with English abstract)
[4] 陳曉明,李開綿,臺建祥,等. 超聲波輔助提取木薯皮活性物質工藝[J]. 農業(yè)工程學報,2011,27(增刊1):389-396.
Chen Xiaoming, Li Kaimian, Tai Jianxiang, at al. Technology of ultrasonic-assisted extracting active substance from cassava peel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(Supp.1): 389-396. (in Chinese with English abstract)
[5] 張芹,李廣利,于迎輝,等. 我國木薯深加工現狀及發(fā)展分析[J]. 糧食與飼料工業(yè),2017,12(1):31-34.
Zhang Qin, Li Guangli, Yu Yinghui, et al. Present situation and development analysis of cassava deep processing in China[J]. Cereal & Feed Industry, 2017, 12(1): 31-34. (in Chinese with English abstract)
[6] Ye F, Li Y, Lin Q, et al. Modeling of China’s cassava-based bioethanol supply chain operation and coordination[J]. Energy, 2017, 120, 217-228.
[7] 梁海波,魏云霞,黃潔,等. 世界木薯生產對中國的啟示[J]. 中國農學通報,2016,32(9):94-99.
Liang Haibo, Wei Yunxia, Huang Jie, et al. Enlightenment of world cassava production to China[J]. Chinese Agricultural Science Bulletin, 2016, 32(9): 94-99. (in Chinese with English abstract)
[8] 楊麗英, Sriroth K, Piyachomkwan K, 等. 泰國木薯淀粉特性研究[J]. 云南大學學報:自然科學版,2003,25(增刊):110-114.
Yang Liying, K Sriroth, K Piyachomkwan, et al. Thailand cassava starch phy-chemical properties analysis[J]. Journal of Yunnan University: Natural Sciences, 2003, 25(Supp.): 110-114. (in Chinese with English abstract)
[9] 田宜水,孫麗英,孟海波,等. 中國木薯燃料乙醇原料供需現狀和預測[J]. 農業(yè)現代化研究,2011,32(3):340-343.
Tian Yishui, Sun Liying, Meng Haibo, et al. Status and forecast of cassava fuel feedstock demand and supply in China[J]. Research of Agricultural Modernization, 2011, 32(3): 340-343. (in Chinese with English abstract)
[10] 文玉萍. 我國木薯產業(yè)的發(fā)展趨勢與市場分析[J]. 熱帶農業(yè)科學,2014,34(5):81-85.
Wen Yuping. Development trend of cassava industry and market analysis in China[J]. Chinese Journal of Tropical Agriculture, 2014, 34(5): 81-85. (in Chinese with English abstract)
[11] Njie D N, Rumsey T R. Influence of process conditions on the drying rate of cassava chips in a solar simulator[J]. Drying Technology, 1998, 16(1/2): 181-197.
[12] Anyanwu C N, Oparaku O U, Onyegegbu S O, et al. Experimental investigation of a photovoltaic-powered solar cassava dryer[J]. Drying Technology, 2012, 30(4): 398-403.
[13] Monroy-Rivera J A, Angulo O, Sanchez T, et al. Elimination of cyanogenic compounds of cassava curing solar drying[J]. Drying Technology, 1996, 14(10): 2371-2385.
[14] Njie D N, Rumsey T R. Experimental study of cassava sun drying[J]. Drying Technology, 1997, 15(3/4): 921-938.
[15] 李業(yè)波,于慶龍,趙麗華. 土豆干燥過程中內部傳熱傳質的試驗研究[J]. 農業(yè)工程學報,1996,12(4):62-65.
Li Yebo, Yu Qinglong, Zhao Lihua. Experiment and study on the heat and mass transfer in potato during drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1996, 12(4): 62-65. (in Chinese with English abstract)
[16] 孟岳成,王君,房升,等. 熟化紅薯熱風干燥特性及數學模型適用性[J]. 農業(yè)工程學報,2011,27(7):387-392.
Meng Yuecheng, Wang Jun, Fang Sheng, et al. Drying characteristics and mathematical modeling of hot air drying of cooked sweet potatoes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(2): 387-392. (in Chinese with English abstract)
[17] 龍銘,凌江華. 木薯淀粉干燥設備的設計[J].中國農機化,2003(5):43-44.
Long Ming, Ling Jianghua. The design of cassava starch dryness equipment[J]. Chinese Agricultural Mechanization, 2003(5): 43-44. (in Chinese with English abstract)
[18] 劉琨,康洪. 木薯酒糟機械脫水及干燥方法的研究[J]. 廣西大學學報:自然科學版,1996,21(2):190-193.
Liu Kun, Kang Hong. Mechanical dewatering and drying methods of cassava alcohol distiller’s grains[J]. Journal of Guangxi University: Natural Science Edition, 1996, 21(2): 190-193. (in Chinese with English abstract)
[19] 劉琨,康洪. 木薯酒糟臨界含水量與干燥曲線[J]. 化學工程,1999,27(3):21-23.
Liu Kun, Kang Hong. The critical water content and drying curves of a distiller’s grains[J]. Chemical Engineering, 1999, 27(3): 21-23. (in Chinese with English abstract)
[20] 劉琨. 木薯酒糟在旋轉閃蒸干燥器中的干燥特性[J]. 化學工程,2003,31(3):17-19.
Liu Kun. Basic drying characteristics of the cassava lees in spin flash dryer[J]. Chemical Engineering, 2003, 31(3): 17-19. (in Chinese with English abstract)
[21] 劉琨. 木薯淀粉渣的干燥特性探討[J]. 廣西大學學報:自然科學版,2001,26(3):165-167.
Liu Kun. Research in drying characteristics of cassava starch dregs[J]. Journal of Guangxi University: Natural Science Edition, 2001, 26(3): 165-167. (in Chinese with English abstract)
[22] 張鵬,趙士杰,趙滿全. 4種薯類作物熱風干燥特性的比較[J]. 農機化研究,2016(9):239-243.
Zhang Peng, Zhao Shijie, Zhao Manquan. Comparative study of drying characteristics of hot air drying of four root and tuber crops[J]. Journal of Agricultural Mechanization Research, 2016(9): 239-243. (in Chinese with English abstract)
[23] 張鵬. 薯類作物熱風干燥特性與動力學模型研究[D]. 呼和浩特:內蒙古農業(yè)大學,2016.
Zhang Peng. Hot Air Characteristics and Dynamic Model for Root and Tuber Crops[D]. Huhhot: Inner Mongolia Agricultural University, 2016. (in Chinese with English abstract)
[24] 李清海,甘超,蒙愛紅,等. 干燥對乏垃圾熱值影響的試驗研究[J]. 清華大學學報:自然科學版,2011,51(12):1865-1868.
Li Qinghai, Gan Chao, Meng Aihong, et al. Expermental study on effect of drying on heating value of spent waste[J]. Journal of Tsinghua University: Science and Technology, 2011, 51(12): 1865-1868. (in Chinese with English abstract)
[25] 陳梅倩,蒙愛紅,阮仔龍,等. 高水分垃圾基元中溫干燥特性的試驗研究[J]. 清華大學學報:自然科學版,2010,50(11):1838-1842.
Chen Meiqian, Meng Aihong, Ruan Zilong, et al. Experimental investigation of medium-temperature drying behavior of MSW matrix[J]. Journal of Tsinghua University: Science and Technology, 2010, 50(11): 1838-1842. (in Chinese with English abstract)
[26] 固體生物質燃料全水分的測定方法:GB/T 28733-2012[S]. 北京:中國標準出版社,2012.
[27] Wang C Y, Singh R P. A Single layer drying equation for rough rice[J]. In: ASAE Paper, 1978: 3001.
[28] Babalis S J, Papanicolaou E, Kyriakis N, et al. Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficus carica)[J]. Journal of Food Engineering, 2005, 75(2): 205-214.
[29] Fatemeh N, Saman A M. An Investigation into the effect of drying conditions on kinetic drying of medicinal plant of echium amoenum[J]. International Medical Journal, 2017, 24(1): 87—91.
[30] 劉廣文. 干燥設備設計手冊[M]. 北京:機械工業(yè)出版社,2009.
Optimization experiment on two-stage drying process of high and low temperatures for cassavas
Yang Xiaoxiao, Cong Kunlin, Zhang Yanguo, Li Qinghai※
(,-/&,,,100084,)
Cassava is widely distributed in tropical and subtropical regions of the world. Cassava, potato and sweet potato are known as the world’s 3 major potatoes. Cassava is native to the Amazon basin, which are now widely grown in China and Southeast Asia. Cassava is mainly used in food, medicine, industry and other fields, and known as the king of starch. Cassava has to be dried in a period of short time prior to storage or transportation, since the water content of the fresh cassava is as much as 65%-70% at harvest. Up to now, many scholars have done a lot of research on cassava. However, there are few studies on the drying process, drying technology and drying equipment for cassava. In order to develop and optimize drying process of cassava, the effects of the thickness of cassava slices and the temperature of drying process were experimentally investigated. Fresh cassavas were obtained from Rongxian County, Guangxi Zhuang Autonomous Region. They were washed and dried before being stored in a fridge at 2-5 ℃. Cassavas were cut into 5-9 mm pieces, and then were placed in a drying oven with a preset temperature that could be adjusted from 60 to 100 ℃ with a 10 ℃ interval for different cases. The drying process by hot air was simulated with an electric drying oven with forced convective air flow. The samples were taken from the oven every 5 min during the experiment. The cassava slices taken from the drying oven were placed in a silica gel dryer. The cassava slices were cooled to room temperature and weighed with an electronic balance. The moisture of cassava was calculated according to the actual weight change. The effects of different temperatures and different thicknesses on the drying process of cassava were compared. The results showed that cassavas were denatured due to the high temperature, however, the low temperature made water evaporation incomplete. The slice with thinner thickness was prone to be broken up, and on the contrary, the thicker thickness prolonged the drying time to reach the targeted water content. The experimental results show that the drying temperature of 80-100 ℃ and the thickness of 6-8 mm are better. It was found that the cassava drying process was fitted well with the Wang and Singh model. Based on the water content curves on dry basis, the critical water contents of cassava with different thicknesses were obtained. The experimental results show that the one-stage scheme with constant temperature can only reduce the water content of cassava to about 35% when being dried for 70 min, and fails to reduce moisture content of cassava to safe moisture in the limited short time. In order to avoid the undesired sharp decrease in the drying rate as the water content reached the critical value during single-stage drying process, an optimal two-stage drying scheme of first low temperature and then high temperature was proposed. According to the two-stage drying scheme, the cassava drying process was also proposed. The equipment of the proposed drying process mainly includes the fan, the feeder, the first drying section, the second drying section, the heat exchanger, and so on. The cassava slices of 6-8 mm in thickness were fed into the first drying section by feeder. After the moisture content was reduced to a certain value, the cassavas were fed into the second drying section. Finally, the cassava slices eventually reached the safe moisture content. This cassava drying process provides a good solution for cassava drying and production.
drying; moisture; quality control; cassava
10.11975/j.issn.1002-6819.2018.02.037
S375
A
1002-6819(2018)-02-0272-06
2017-09-22
2017-12-29
國家重點研發(fā)計劃資助(No. 2017YFB0603901)
楊瀟瀟,工程師,主要從事熱能轉換與利用方向的研究。Email:yangxiaoxiao2589@126.com。
李清海,副研究員,博士,博士生導師,主要從事熱能轉換與利用的研究。Email:liqh@tsinghua.edu.cn
楊瀟瀟,叢堃林,張衍國,李清海. 木薯高/低溫二段式干燥工藝參數優(yōu)化試驗[J]. 農業(yè)工程學報,2018,34(2):272-277. doi:10.11975/j.issn.1002-6819.2018.02.037 http://www.tcsae.org
Yang Xiaoxiao, Cong Kunlin, Zhang Yanguo, Li Qinghai. Optimization experiment on two-stage drying process of high and low temperatures for cassavas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 272-277. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.02.037 http://www.tcsae.org