劉 鍇,趙燕燕,習(xí) 崗,楊運經(jīng),杜光源
?
基于葉片電信號邊際譜熵的玉米耐鹽堿性無損評價方法
劉 鍇1,趙燕燕2,習(xí) 崗1※,楊運經(jīng)3,杜光源3
(1. 西安理工大學(xué)理學(xué)院,西安 710054; 2. 鄭州工業(yè)應(yīng)用技術(shù)學(xué)院基礎(chǔ)教學(xué)部,鄭州 451100; 3. 西北農(nóng)林科技大學(xué)理學(xué)院,楊凌 712100)
為了探索能夠早期、靈敏、在位和無損檢測與評價植物耐鹽堿性的方法,將NaCl、Na2SO4、NaHCO3和Na2CO3配置成復(fù)合鹽堿溶液對耐鹽堿性較弱的玉米品種鄭單958和耐鹽堿性較強的玉米品種名玉20的玉米幼苗進行鹽堿脅迫,采集了鹽堿脅迫過程中鄭單958和名玉20幼苗葉片電信號,應(yīng)用HHT(Hilbert-Huang transformation)方法得到了2種玉米葉片電信號的邊際譜,分析了鹽堿脅迫過程中2個玉米品種葉片電信號邊際譜熵MSE(marginal spectrum entropy)變化的差異和生物學(xué)意義。結(jié)果顯示:鹽堿脅迫過程中,鄭單958葉片電信號的MSE表現(xiàn)出不斷下降的趨勢,葉片中丙二醛MDA(malondialdehyde)含量迅速升高;名玉20的MSE表現(xiàn)出波動性的變化,MDA含量變化不大,表明鄭單958葉片細(xì)胞的離子跨膜運輸被抑制,名玉20的葉片細(xì)胞存在著復(fù)雜的代謝調(diào)節(jié),鹽堿脅迫造成的葉片細(xì)胞膜脂過氧化可能是葉片電信號MSE變化的原因。研究發(fā)現(xiàn),鹽堿脅迫下耐鹽堿性不同的2個玉米品種的葉片電信號響應(yīng)指數(shù)RI(response index)差異明顯,在脅迫2、3和4 d時鄭單958的RI值分別比名玉20增長了42%、193%和332%。根據(jù)RI值的大小有可能對鹽堿脅迫下玉米葉片細(xì)胞離子運輸和細(xì)胞膜傷害的影響程度進行靈敏和早期的定量診斷,進而實現(xiàn)對玉米幼苗期耐鹽堿性強弱的在位和無損傷的評價。
脅迫;作物;無損檢測;玉米;鹽堿脅迫;電信號;邊際譜熵;評價
目前,全球范圍的土壤鹽堿化不斷擴大[1]。土壤鹽堿化對植物會形成鹽脅迫導(dǎo)致滲透脅迫和離子毒害,還會形成堿脅迫下pH值升高造成營養(yǎng)脅迫[2-4],嚴(yán)重影響植物生長[5]。挖掘植物的耐鹽堿能力, 開發(fā)和選育耐鹽堿植物品種正成為研究的熱點[6]。
要開發(fā)和選育耐鹽堿性植物,必須首先建立能夠?qū)χ参锬望}堿性強弱進行準(zhǔn)確判斷的評價方法。在現(xiàn)有研究中,植物耐鹽堿性評價采用的是基于多個形態(tài)指標(biāo)和生理生化指標(biāo)的隸屬函數(shù)法、聚類分析法和灰色關(guān)聯(lián)度分析法等綜合數(shù)量分析方法[7-11]。這些評價方法需要測量的指標(biāo)多,樣品量大,周期長,不能進行早期診斷,而且許多指標(biāo)必須通過試管試驗的破壞性測量來獲取,無法做到無損檢測。
由于植物抗逆性是由多因素控制的,在細(xì)胞層面上體現(xiàn)的綜合性狀,是植物在逆境下通過代謝調(diào)節(jié)維持細(xì)胞功能狀態(tài)的能力[12-13],植物耐鹽堿性應(yīng)該基于鹽堿脅迫下植物細(xì)胞發(fā)出的生命信息,根據(jù)細(xì)胞代謝調(diào)節(jié)和功能狀態(tài)的變化程度來評價,其評價指標(biāo)必須能夠?qū)崿F(xiàn)活細(xì)胞或組織的無損和在位檢測,此外,還要求做到反應(yīng)靈敏,可以進行早期診斷。顯然,現(xiàn)有評價方法難以滿足這些要求。
植物電信號是來自活細(xì)胞的生命信息,大量研究表明,植物電信號與化學(xué)信號、力學(xué)信號和水信號等構(gòu)成了植物的信息系統(tǒng)[14]。植物電信號一方面在組織和器官中傳遞信息流,另一方面直接參與代謝控制[15-19],調(diào)節(jié)呼吸代謝、光合作用、水分吸收和氣孔導(dǎo)度變化等核心生理過程,維持細(xì)胞的功能狀態(tài)[20-22]。分析和解讀植物電信號能夠?qū)χ参锶~片細(xì)胞代謝調(diào)節(jié)和功能狀態(tài)進行定量診斷和評價,并做到實時、在位和無損檢測[22-25]。因此,研究鹽堿脅迫下植物葉片電信號的變化規(guī)律及其生物學(xué)意義有可能為植物耐鹽堿性的無損檢測與評價提供一種新方法,然而有關(guān)研究未見報道。
植物葉片電信號邊際譜是基于HHT(Hilbert-Huang transformation)方法獲得的信號在頻域上的分布[26],邊際譜熵MSE(marginal spectrum entropy)是邊際譜分布混亂程度的量度,其綜合反映了葉片細(xì)胞群跨膜電位和細(xì)胞之間的電偶聯(lián)狀況[27]。玉米是全球主要的糧食作物,其對鹽堿脅迫十分敏感[7,28],研究玉米耐鹽堿性評價方法具有重要的現(xiàn)實意義。鑒于此,本文對比研究了鹽堿脅迫下2個玉米品種葉片電信號邊際譜MSE變化的差異及其生物學(xué)意義,探討了基于葉片電信號邊際譜MSE評價植物耐鹽堿性的可行性,為開發(fā)能夠早期、靈敏、快速和無損傷在位檢測和評價植物耐鹽堿性的技術(shù)提供參考。
玉米品種鄭單958和名玉20為種子市場購得。試驗前選取2個品種外觀一致、顆粒飽滿的玉米種子各200粒,用蒸餾水洗掉外層紅色包衣,用質(zhì)量分?jǐn)?shù)為0.2%的HgCl2溶液消毒并用大量蒸餾水洗滌,隨后放置在溫度35 ℃,濕度50%和光照3 000 lx的PRX-1000A型人工培養(yǎng)箱中進行催芽,待種子萌發(fā)后選取發(fā)芽一致的種子進行培養(yǎng)。
由于現(xiàn)有玉米耐鹽堿性評價研究一般采用的脅迫方式是NaCl脅迫或NaCl和Na2CO3混合脅迫[7],脅迫方式較為簡單。而實際鹽堿地多是中性鹽(NaCl、Na2SO4)和堿性鹽(Na2CO3、NaHCO3)的復(fù)合鹽堿地,其pH值較高[8],這種復(fù)合鹽堿脅迫下玉米的研究報道較少?;诖耍疚膮⒖嘉墨I[29]的方法,將2種中性鹽NaCl、Na2SO4和2種堿性鹽NaHCO3、Na2CO3按照1:9:9:1摩爾質(zhì)量比混合后加入蒸餾水,定容成pH值為9.09±0.05的重度復(fù)合鹽堿溶液。在試驗中證實,在該復(fù)合鹽堿溶液處理下耐鹽堿性不同的玉米可以被有效地區(qū)分開來。因此,本研究采用此種復(fù)合鹽堿溶液對玉米幼苗進行鹽堿處理。試驗時待2個玉米品種的幼苗長至3片真葉(株高約15 cm)時,將培養(yǎng)皿中的蒸餾水(pH值為7.08)換為復(fù)合鹽堿溶液對玉米進行鹽堿脅迫處理。
在鹽堿脅迫的不同時間,每個品種各取15株長勢均勻的玉米幼苗,分為3組,每組5株,剪下全部葉片部分,用濾紙清理和擦干玉米葉片表面雜質(zhì)和水分,將其放入樣品杯子中置于烘箱內(nèi)以105 ℃殺青15 min,80 ℃烘干至質(zhì)量恒定。然后取出樣品,冷卻至室溫,用電子天平分別測量葉片干質(zhì)量,取每個品種3組葉片干質(zhì)量的平均值。
參照文獻[23,27]的方法在鹽堿脅迫開始后每天上午10:00測量葉片干質(zhì)量的同時,分別采集2個玉米品種另外各3株玉米相同葉位的葉片電信號。采集儀器為BL420S生物機能試驗系統(tǒng)(成都泰盟科技有限公司生產(chǎn)),該系統(tǒng)具備高輸入阻抗(>1010Ω)、高共模抑制比(>120 dB)和低噪聲(<1V)、低漂移等特點。研究已經(jīng)證明,該系統(tǒng)能夠滿足采集植物葉片電信號的要求[23,27-30]。測試電極為丹麥Ambu公司生產(chǎn)的P-00-S型醫(yī)用高靈敏度Ag/AgCl心電電極。試驗之前對電極進行的測試表明,溫度在20~45 ℃范圍內(nèi)變化時,電極采集到的0~50 Hz頻段內(nèi)的信號振幅波動幅度小于0.5%,表明電極的穩(wěn)定性好[27]。
采集葉片電信號時,1片采集電極貼于玉米葉片正面靠近葉尖位置,另1片電極貼于玉米葉片反面根部位置,電極間距15 cm,參考電極通過導(dǎo)線直接連接至培養(yǎng)槽中放置的銅片上。采集電極通過導(dǎo)電膠與葉片保持良好接觸,系統(tǒng)設(shè)置的采樣頻率為2 kHz,開啟50 Hz工頻抑制[23,27]。同時將被采集的玉米植株和采集系統(tǒng)放置在Faraday籠內(nèi)屏蔽環(huán)境電磁干擾。此外,植物生長和每次采集電信號時的環(huán)境條件相同,環(huán)境溫度為20 ℃,濕度為50%,光照強度為3 000 lx。為了減少對葉片細(xì)胞活動的影響,每次信號采集完畢后,及時拆去采集電極。
研究發(fā)現(xiàn),當(dāng)采集到的玉米葉片電信號時域波形的數(shù)據(jù)時長在200 s以上時,信號的復(fù)雜度是穩(wěn)定的[27],因此,本文在采集到的葉片電信號時域波形的數(shù)據(jù)中,取數(shù)據(jù)時長為200 s的信號進行HHT變換,得到鹽堿脅迫過程中2個玉米品種各3個處理組葉片電信號的希爾伯特譜,再由希爾伯特譜得到邊際譜,然后分別計算各邊際譜的相對譜熵MSE,分別取2個品種各3個處理組的平均值進行動態(tài)分析。
式中為()的序列長度。
在鹽堿脅迫下,玉米葉片電信號MSE將發(fā)生改變,其變化程度可以通過基于邊際譜熵的電信號響應(yīng)指數(shù)RI(response index)來表征
式中MSE0為脅迫發(fā)生前的邊際譜熵,MSE為脅迫過程中的邊際譜熵。
在上述采集玉米葉片電信號的同時,測量鹽堿脅迫過程中其他玉米植株相同葉位的葉片中MDA(Malondialdehyde)含量,MDA含量的測量方法見參考文獻[31]。將葉片先用濾紙吸干表面培養(yǎng)液,然后放入電子天平稱量鮮質(zhì)量并記錄。將樣品剪碎后,加入2 mL預(yù)冷的5%三氯乙酸,加入少量石英砂,在經(jīng)過冰浴的研缽內(nèi)研磨至勻漿,轉(zhuǎn)移到5 mL刻度離心試管,將研缽用緩沖液洗凈,清洗液移入離心管中,用5%三氯乙酸定容至5 mL,4 000 r/min下離心10 min,吸取上清液2 mL,加入0.67%硫代巴比妥酸的10%三氯乙酸溶液3 mL,于沸水浴中加熱30 min,迅速冷卻,再于4 000 r/min離心機中離心10 min,取上清液,以蒸餾水為空白調(diào)透光率,測定450、532、600 nm波長下的吸光度,按照下式計算MDA的濃度
(mol/L)=6.45(532-600)-0.56450(4)
再根據(jù)葉片鮮質(zhì)量計算測定樣品中MDA的含量
每次試驗重復(fù)3次,取平均值。
各測量結(jié)果均用平均值±標(biāo)準(zhǔn)差表示,差異顯著性采用SPSS軟件進行分析,<0.05表示差異到達顯著水平,<0.01表示差異達到極顯著水平。數(shù)值擬合采用origin軟件進行。
葉片是植物進行物質(zhì)累積的主要場所,葉片干質(zhì)量是葉片物質(zhì)生產(chǎn)量的最終體現(xiàn)。葉片干質(zhì)量的變化是植物葉片對鹽堿脅迫的綜合反映,也是判斷植物耐鹽堿性強弱最可靠的指標(biāo)[7,32]。為了確定試驗的2個玉米品種耐鹽堿性的強弱,首先測量了鹽堿脅迫下鄭單958和名玉20玉米品種葉片干質(zhì)量變化的差異,結(jié)果見圖1。由圖1可見,在鹽堿脅迫過程中鄭單958品種葉片干質(zhì)量的增長緩慢,在脅迫4 d時干質(zhì)量反而有所下降;而名玉20品種的葉片干質(zhì)量則一直明顯增長,在脅迫4 d時干質(zhì)量才停止增長,此后保證基本不變的趨勢。在表觀上,在脅迫3 d時鄭單958品種的葉片開始卷曲,葉色變黃,名玉20品種的葉片形態(tài)和葉色變化不明顯。結(jié)果表明:鹽堿脅迫抑制了鄭單958品種葉片物質(zhì)的積累(<0.01),對名玉20品種物質(zhì)積累的影響相對較小。由此可見鄭單958品種的耐鹽堿性較差,這個結(jié)論與文獻報道是一致的[9]。
圖1 鹽堿脅迫對玉米幼苗葉片干質(zhì)量的影響
圖2和圖3分別為電極采集到的鹽堿脅迫下鄭單958和名玉20玉米各3株相同葉位的葉片電信號平均值的時域波形,其具有非平穩(wěn)和隨機的特征。在正常情況下(未脅迫時),振幅波動的幅度在1 000~2 000V以內(nèi),與以往報道的結(jié)果是一致的[23,27,30]。鹽堿脅迫對玉米葉片電信號有明顯影響,隨著脅迫時間的延長,葉片電信號的振幅呈現(xiàn)出減小的趨勢;在脅迫第5天時,鄭單958玉米葉片電信號的振幅降至20V以內(nèi),已經(jīng)被噪聲所湮沒;與此對應(yīng),名玉20品種還存在振幅在100V以內(nèi)的微弱電信號。圖2和圖3中測量開始后電信號出現(xiàn)的漸變過程,可能是采集電極貼附在葉片上時細(xì)胞的適應(yīng)過程。
圖2 鹽堿脅迫下鄭單958玉米葉片電信號時域波形
圖3 鹽堿脅迫下名玉20玉米葉片電信號的時域波形
電極采集到的玉米葉片電信號是一種微弱和非穩(wěn)定的隨機信號,HHT方法特別適合于這種信號的信息提取[27,33]?;贖HT方法分別計算出2個玉米品種葉片電信號的邊際譜如圖4和圖5所示。貌似無序的玉米葉片電信號的邊際譜具有連續(xù)的特征,經(jīng)歷不同時間的鹽堿脅迫,邊際譜的復(fù)雜度發(fā)生了變化。
圖4 鹽堿脅迫下鄭單958玉米葉片電信號邊際譜
圖5 鹽堿脅迫下名玉20玉米葉片電信號的邊際譜
邊際譜的復(fù)雜度通過邊際譜熵MSE來描述,邊際譜越狹窄,MSE越小,表示信號中存在明顯的振蕩節(jié)律,復(fù)雜度??;反之,邊際譜越平坦,MSE越大,表明信號的復(fù)雜程度越高[27]。根據(jù)圖4和圖5計算得到的鹽堿脅迫下鄭單958和名玉20玉米葉片電信號邊際譜熵MSE的變化如圖6a所示。由圖6a可見,鄭單958玉米葉片正常生長時的MSE在0.53附近,在鹽堿脅迫過程中MSE出現(xiàn)了單調(diào)下降的趨勢,在脅迫3、4和5 d時,MSE分別下降了39.3%、48.9%和51.2%。與此相對應(yīng),在鹽堿脅迫過程中,名玉20品種的MSE呈現(xiàn)出波動的變化,在脅迫4 d時,MSE才開始迅速下降,說明此時名玉20品種葉片細(xì)胞膜的結(jié)構(gòu)才發(fā)生了不可逆的變化。
圖6 鹽堿脅迫下2種玉米品種葉片電信號邊際譜熵MSE和丙二醛MDA含量的變化
為了說明玉米葉片電信號邊際譜MSE變化的生物學(xué)意義,本文在鹽堿脅迫的不同時間采集玉米葉片電信號的同時,對比研究了同批次復(fù)合鹽堿脅迫處理的2個玉米品種相同葉位的葉片中MDA含量的變化,如圖6 b所示。研究MDA的原因在于MDA含量常作為植物細(xì)胞膜受損的主要指示物,通過MDA含量的變化可以了解細(xì)胞膜脂過氧化的程度,進而對膜系統(tǒng)受損程度進行評價[34-35]。在植物耐鹽堿性的研究中,MDA作為最重要的生化評價指標(biāo),被廣泛的采用[8,36]。由圖6b可見,在復(fù)合鹽堿脅迫2 d時,鄭單958品種的葉片MDA含量開始迅速上升,在脅迫3、4和5 d時MDA的相對增長率分別為72.7%、125.8%和143.8%,差異均達到了極顯著的水平(<0.01),MDA的這種變化趨勢與一些有關(guān)鹽脅迫的研究報道是類似的[37-39]。與此相對應(yīng),在脅迫1~4 d期間,名玉20品種的葉片中MDA含量變化不大,從4d開始才顯著升高,在脅迫5 d時相對增長率達到了114.0%,差異達到了極顯著的水平(<0.01)。
比較圖6a和圖6b可知,鄭單958和名玉20品種的MSE和MDA之間可能具有一定的相關(guān)性,擬合結(jié)果如圖7所示。
圖7 鹽堿脅迫下2種玉米品種葉片邊際譜熵MSE和丙二醛MDA的相關(guān)性
由于在相同的鹽堿脅迫過程中,耐鹽堿性不同的鄭單958和名玉20葉片電信號MSE的變化程度有所差異。為了定量表示MSE的變化程度,本文定義了基于MSE的葉片電信號響應(yīng)指數(shù)RI。RI越大表明葉片電信號MSE的變化越大,即葉片電信號邊際譜的復(fù)雜程度變化越大。鹽堿脅迫過程中鄭單958和名玉20品種的RI值如圖8所示。在相同的鹽堿脅迫條件下,耐鹽堿性較弱的鄭單958品種的RI值在脅迫開始后就呈現(xiàn)出單調(diào)上升的趨勢,在脅迫2 d后迅速增大,而耐鹽堿性較強的名玉20品種的RI值在脅迫第4 d以后才開始明顯增大,從脅迫2 d開始,鄭單958的RI值就一直明顯高于名玉20。在脅迫2、3和4 d時鄭單958的RI值分別比名玉20的RI值相對增長了42%、193%和332%,差異十分顯著。
圖8 鹽堿脅迫下2個玉米品種電信號響應(yīng)指數(shù)RI的變化
植物電信號的來源非常復(fù)雜,包括系統(tǒng)電位(system potential,SP)、動作電位(action potential, AP)和變異電位(variation potential, VP),AP與細(xì)胞膜上Ca2+、Cl-和K+等離子通道的活性有關(guān),VP與細(xì)胞膜上H+泵的失活有關(guān),SP與H+泵的激活有關(guān)[40]。本文的研究發(fā)現(xiàn),在正常的生理狀態(tài)下(脅迫開始時),葉片電信號的MSE數(shù)值相對最大,表明葉片細(xì)胞生理電活動的復(fù)雜度較高;在鹽堿脅迫下,MSE表現(xiàn)出下降的趨勢。由于在鹽堿脅迫過程中,植物首先遭遇滲透脅迫和離子毒害[4,41],堿脅迫下pH 的升高會進一步破壞細(xì)胞的離子吸收[42],使根系細(xì)胞膜的H+泵失活和K+等離子通道活性變化,離子外流增強[43-44],其結(jié)果導(dǎo)致根系細(xì)胞膜上的SP發(fā)生變化、并誘發(fā)AP產(chǎn)生[45-47]。當(dāng)AP傳遞到葉片時葉片細(xì)胞膜上的H+泵將受到抑制,導(dǎo)致葉片電信號中SP信號的振幅和復(fù)雜度減少,影響葉片細(xì)胞的光合作用[22]、呼吸作用[48-49]和ATP含量產(chǎn)生[50]等重要的生理過程。因此,鹽堿脅迫下葉片細(xì)胞膜上離子跨膜運輸?shù)囊种瓶赡苁侨~片電信號MSE減小的原因。在鹽堿脅迫的持續(xù)進行下,葉片細(xì)胞膜會發(fā)生嚴(yán)重?fù)p傷,造成細(xì)胞膜上各種離子通道的破壞和離子泵的瓦解,大量電解質(zhì)外滲[51],結(jié)果使葉片電信號的節(jié)律性大為增強,MSE進一步減小。由此看來,鹽堿脅迫下植物葉片電信號MSE發(fā)生變化意味著葉片細(xì)胞膜上的離子運輸受到了影響,而MSE的快速下降則表明細(xì)胞膜受到了損傷。由于MSE的變化發(fā)生在細(xì)胞功能狀態(tài)變化之前,采集電極所涵蓋的任何一個細(xì)胞生理電活動的變化都會導(dǎo)致葉片電信號MSE的變化,因此,依據(jù)MSE的變化判斷葉片細(xì)胞功能狀態(tài)的變化具有早期和靈敏的特點;又由于貼片電極是將表面電極直接貼附在植物葉片上活體測量,不會對植物造成傷害,所以還具有在位和無損傷的優(yōu)點。
本研究發(fā)現(xiàn),鹽堿脅迫下耐鹽堿性不同的鄭單958和名玉20品種葉片電信號MSE和丙二醛MDA的變化規(guī)律不同。由于2個玉米品種葉片中MDA含量的變化與MSE的變化呈現(xiàn)負(fù)相關(guān),說明鹽堿脅迫造成的葉片細(xì)胞膜脂過氧化可能是MSE下降的原因。
基于鹽堿脅迫下耐鹽堿性不同的2個玉米品種MSE的變化程度不同,本文定義了電信號響應(yīng)指數(shù)RI,用于表征MSE的變化程度。RI值越大,表明葉片細(xì)胞受到的傷害越大,耐鹽堿性越差。因此,依據(jù)RI的大小可以對鹽堿脅迫下不同品種的植物葉片細(xì)胞傷害的影響程度進行定量診斷,進而對耐鹽堿性強弱做出評價。在本文中,相同的鹽堿脅迫下耐鹽堿性不同的2個玉米品種的RI值差異明顯,根據(jù)這種差異可以方便的確定出玉米耐鹽堿性的強弱。將RI作為評價指標(biāo)的優(yōu)點在于RI值始終處于0和1之間,與作物種類和品種無關(guān),是統(tǒng)一的量化標(biāo)準(zhǔn),易于計算機定量分析與自動評判。
應(yīng)該指出,本文中電信號是在植物葉片上無損和在位采集的,MSE和RI的數(shù)值大小反映的是鹽堿脅迫下葉片細(xì)胞群離子運輸和細(xì)胞膜發(fā)生的變化,評價指標(biāo)RI值與物種無關(guān),因此,本文提出的評價植物耐鹽堿性的方法不但具有早期、靈敏和無損傷的特點,同時還具有普適性。
1)在pH值為9.09的復(fù)合鹽堿溶液脅迫過程中,耐鹽堿性較差的鄭單958品種葉片電信號MSE(marginal spectrum entropy)表現(xiàn)出不斷下降的趨勢,在脅迫3、4和5 d時,MSE分別下降了39.3%、48.9%和51.2%。耐鹽堿性較強的名玉20品種的MSE呈現(xiàn)出波動的變化,表明鹽堿脅迫下鄭單958品種葉片細(xì)胞的離子跨膜運輸被抑制,名玉20品種的葉片細(xì)胞內(nèi)存在復(fù)雜的代謝調(diào)節(jié),以維持葉片細(xì)胞離子運輸?shù)膭討B(tài)平衡和正常的功能狀態(tài)。
2)在復(fù)合鹽堿脅迫2 d時,鄭單958品種的葉片MDA(malondialdehyde)含量迅速上升,在脅迫3、4和5 d時MDA的相對增長率分別為72.7%、125.8%和143.8%,名玉20品種的MDA含量在脅迫4 d后才開始明顯上升,表明鄭單958品種在脅迫初期就出現(xiàn)了膜脂過氧化現(xiàn)象,隨著脅迫過程的進行,膜脂過氧化現(xiàn)象越來越嚴(yán)重,名玉20品種在脅迫4 d以后才發(fā)生顯著的膜脂過氧化現(xiàn)象,鹽堿脅迫造成的葉片細(xì)胞膜脂過氧化可能是葉片電信號MSE下降的原因。
3)從鹽堿脅迫2 d開始,鄭單958玉米品種葉片電信號響應(yīng)指數(shù)RI(response index)的數(shù)值一直顯著高于名玉20。在脅迫2、3和4 d時鄭單958的RI值分別比名玉20的RI值相對增長了42%、193%和332%,根據(jù)RI值的大小可以對鹽堿脅迫下玉米葉片細(xì)胞離子運輸和細(xì)胞膜傷害的影響程度進行靈敏和早期的定量診斷,進而實現(xiàn)對玉米幼苗耐鹽堿性強弱的在位和無損傷的評價。
[1] Wang W X, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance[J]. Planta, 2003, 218(1): 1-14.
[2] Yang J Y, Zhang W, Tian Y, et al. Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations ofseedlings[J]. Photosynthetica, 2011, 49(2): 275-284.
[3] Gong B, Wang X F, Wei M, et al. Overexpression of S-adenosylmethionine synthetase 1 enhances tomato callus tolerance to alkali stress through polyamine and hydrogen peroxide cross-linked networks[J]. Plant Cell, Tissue and Organ Culture, 2016, 124(2): 377-391.
[4] Wang X P, Jiang P, Ma Y, et al. Physiological strategies of sunflower exposed to salt or alkali stresses: Restriction of ion transport in the cotyledon node zone and solute accumulation[J]. Agronomy Journal, 2015, 107(6): 2181-2192.
[5] Wang J C, Yao L R, Li B C, et al. Comparative proteomic analysis of cultured suspension cells of the halophyteby iTRAQ provides insights into response mechanisms to salt stress[J]. Frontiers in Plant Science, 2016, 7(30): 1-12.
[6] 王佺珍,劉倩,高婭妮,等. 植物對鹽堿脅迫的響應(yīng)機制研究進展[J]. 生態(tài)學(xué)報,2017,37(16):5565-5577.
Wang Quanzhen, Liu Qian, Gao Yani, et al. Review on the mechanism of the response to salinity-alkalinity stress in plants[J]. Acta Ecologica Sinica, 2017, 37(16): 5565-5577. (in Chinese with English abstract)
[7] 張春宵,袁英,劉文國,等. 玉米雜交種苗期耐鹽堿篩選與大田鑒定的比較分析[J]. 玉米科學(xué),2010,18(5):14-18.
Zhang Chunxiao, Yuan Ying, Liu Wenguo, et al. Comparative analysis between salt-alkali tolerance in seedling stage and production in the field of maize hybrid[J]. Corn Science, 2010, 18(5): 14-18. (in Chinese with English abstract)
[8] 趙俊香,任翠梅,吳鳳芝,等. 16份菊芋種質(zhì)苗期耐鹽堿性篩選與綜合鑒定[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,2015,23(5):620-627.
Zhao Junxiang, Ren Cuimei, Wu Fengzhi, et al. Comprehensive identification of saline-alkaline tolerance of 16 Jerusalem artichoke accessions at seedling stage[J]. Chinese Journal of Eco-Agriculture, 2015, 23(5): 620-627. (in Chinese with English abstract)
[9] 孫浩,張保望,李宗新,等. 夏玉米品種鹽堿脅迫耐受能力評價[J]. 玉米科學(xué),2016,24(1):81-87.
Sun Hao, Zhang Baowang, Li Zongxin, et al. Different tolerance ability of maize varieties to saline-alkali soil conditions [J]. Journal of Maize Sciences, 2016, 24(1): 81-87. (in Chinese with English abstract)
[10] 張婷婷,于崧,于立河,等. 松嫩平原春小麥耐鹽堿性鑒定及品種(系)篩選[J]. 麥類作物學(xué)報,2016,36(8):1008-1019.
Zhang Tingting,Yu Song,Yu Lihe,et al. Saltine-alkaline tolerance identification and varieties (Line) screening of spring wheat in songnen plain[J]. Journal of Triticeae Crops, 2016,36(8):1008?1019. (in Chinese with English abstract)
[11] 王晨,陳吉寶,龐振凌,等. 甜高粱對混合鹽堿脅迫的響應(yīng)及耐鹽堿種質(zhì)鑒定[J]. 作物雜志,2016(1):56-61. Wang Chen, Chen Jibao, Pang Zhenling, et al. The Response and screening of germplasm tolerant to mixed saline-alkali stress in sweet sorghum[J]. Crops, 2016(1): 56-61. (in Chinese with English abstract)
[12] Zhu J K. Salt and drought stress signal transduction in plant[J]. Annual Review of Plant Biology, 2002, 53: 247-273.
[13] 張燦軍,冀天會,楊子光,等. 小麥抗旱性鑒定方法及評價指標(biāo)研究Ⅰ,鑒定方法及評價指標(biāo)[J]. 中國農(nóng)學(xué)通報,2007,23(9):226-230.
Zhang Canjun, Ji Tianhui, Yang Ziguang, et al. Study on resistance drought identify method and evaluation index of wheat Ⅰ, identify method and evaluation index[J]. Chinese Agricultural Science Bulletin, 2007, 23(9): 226-230. (in Chinese with English abstract)
[14] Fromm J, Lautner S. Electrical signals and their physiological significance in plants[J]. Plant, Cell & Environment, 2007, 30(3): 249-257.
[15] Fromm J, Fei H. Electrical signaling and gas exchange in maize plants of drying soil[J]. Plant Science, 1998, 132(2): 203-213.
[16] Lautner S, Erhard T, Matyssek R, et al. Characteristics of electrical signals in poplar and responses in photosynthesis[J]. Plant Physiology, 2005, 138(4): 2200-2209.
[17] Volkov A, Adesina T, Markin V, et al. Kinetics and mechanism of Dionaea muscipula trap closing[J]. Plant Physiology, 2008, 146(2): 694-702.
[18] Gil P M, Gurovich L, Schaffer B, et al. Root to leaf electrical signaling in avocado in response to light and soil water content[J]. Journal of Plant Physiology, 2008, 165(10): 1070-1078.
[19] Gurovich L,Hermosilla P.Electric signaling in fruit trees in response to water applications and light-darkness conditions[J]. Journal of Plant Physiology, 2009, 166(3): 290-300.
[20] Koziolek C, Grams T E E, Schreiber U, et al. Transient knockout of photosynthesis mediated by electrical signals[J]. New Phytologist, 2004, 161(3): 715-722.
[21] Masi E, Ciszak M, Stefano G, et al. Spatiotemporal dynamics of the electrical network activity in the root apex[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(10): 4048-4053.
[22] Oyarce P, Gurovich L. Evidence for the transmission of information through electric potentials in injured avocado trees[J]. Journal of Plant Physiology, 2011, 168(2): 103-108.
[23] Zhang X H, Yu N M, Xi G, et al. Changes in the power spectrum of electrical signals in maize leaf induced by osmotic stress[J]. Chinese Science Bulletin, 2012, 57(4): 413-420.
[24] Gil P M, Saavedra J, Schaffer B, et al. Quantifying effects of irrigation and soil water content on electrical potentials in grapevines (Vitis vinifera) using multivariate statistical methods[J]. Scientia Horticulturae, 2014, 173(3): 71-78.
[25] Gallé A, Lautner S, Flexas J, et al. Environmental stimuli and physiological responses: The current view on electrical signalling[J]. Environmental & Experimental Botany, 2015, 114: 15-21.
[26] 董紅生,邱天爽,張愛華,等. 基于HHT邊際譜熵和能量譜熵的心率變異信號的分析方法[J]. 中國生物醫(yī)學(xué)工程學(xué)報,2010,29(3):336-344.
Dong Hongsheng, Qiu Tianshuang, Zhang Aihua, et al. The analysis method of heart rate variability signal based on the HHT marginal spectrum entropy and energy spectrum entropy[J]. Chinese Journal of Biomedical Engineering, 2010, 29(3): 336-344. (in Chinese with English abstract)
[27] 劉鍇,習(xí)崗,賀瑞瑞,等. 滲透脅迫下玉米葉片電位波動邊際譜的變化與意義[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(1):199-205.
Liu Kai, Xi Gang, He Ruirui, et al. Changes and significance of marginal spectrum on maize leaves potential fluctuations under osmotic stress[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(1): 199-205. (in Chinese with English abstract)
[28] 馮艷,江鵬,王亞峰,等. 玉米種質(zhì)資源親緣關(guān)系的分子標(biāo)記鑒定及其耐鹽性評價[J]. 中國農(nóng)學(xué)通報,2013,29(33):79-84.
Feng Yan, Jiang Peng, Wang Yafeng, et al. Identification of genetic relationship of corn germplasms with molecular markers and evaluation of their salt tolerance[J]. Chinese Agricultural Science Bulletin, 2013, 29(33): 79-84. (in Chinese with English abstract)
[29] 陳金元,陳學(xué)林,滿吉琳,等. 混合鹽堿脅迫對紅砂種子萌發(fā)的影響[J]. 西北農(nóng)林科技大學(xué)學(xué)報:自然科學(xué)版,2016,44(5):113-119. Chen Jinyuan, Chen Xuelin, Man Jilin, et al. Effects of mixed saline-alkali stress on germination of Reaumuria songarica seeds[J]. Journal of Northwest A&F University: Nat. Sci.Ed., 2016, 44(5): 113-119. (in Chinese with English abstract)
[30] Zhang X H, Sun H Q, Ma H B, et al. The changes of power spectrum of electrical signal in aloe under several damage conditions[J]. International Journal of Control and Automation, 2016, 9(6): 161-172.
[31] 張玉榮,周顯青,張勇. 儲存玉米膜脂過氧化與生理指標(biāo)的研究 [J]. 中國農(nóng)業(yè)科學(xué),2008,41(10):3410-3414.
Zhang Yurong, Zhou Xianqing, Zhang Yong. Research on membrane lipid peroxidation and physiological parameters of storage maize[J]. Scientia Agricultura Sinica, 2008, 41(10): 3410-3414. (in Chinese with English abstract)
[32] Gong B, Wen D, Vanden L K, et al. Comparative effects of NaCl and NaHCO3stress on photosynthetic parameters, nutrient metabolism, and the antioxidant system in tomato leaves[J]. Scientia Horticulturae, 2013, 157(3): 1-12.
[33] 關(guān)海鷗,李偉凱,杜松懷,等. 基于Hilbert-Huang 變換的生物觸電電流檢測模型[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(14):202-209.
Guan Haiou, Li Weikai, Du Songhuai, et al. Detection model of biological electric shock current based on Hilbert-Huang transform[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 202-209. (in Chinese with English abstract)
[34] Sorkheh K, Shiran B, Rouhi V, et al. Salt stress induction of some key antioxidant enzymes and metabolites in eight Iranian wild almond species[J]. Acta Physiologiae Plantarum, 2012, 34(1): 203-213.
[35] 習(xí)崗,賀瑞瑞,劉鍇,等. 應(yīng)用超弱光子輻射評價菠菜葉片衰老方法可行性[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(17):268-275.
Xi Gang, He Ruirui, Liu Kai, et al. Feasibility of evaluation method for spinach leaf senescence based on biological ultraweak photon emission[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(17): 268-275. (in Chinese with English abstract)
[36] 劉濱碩,康春莉,王鑫,等. 羊草對鹽堿脅迫的生理生化響應(yīng)特征[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(23):166-173.
Liu Binshuo, Kang Chunli, Wang Xin, et al. Physiological and biochemical response characteristics of Leymus chinensis to saline-alkali stress[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(23): 166-173. (in Chinese with English abstract)
[37] Tavakkoli E, Fatehi F, Coventry S, et al. Additive effects of Na+and Cl-ions on barley growth under salinity stress[J]. Journal of Experimental Botany, 2011, 62(6): 2189-2203.
[38] 閆永慶,劉興亮,王崑,等. 白刺對不同濃度混合鹽堿脅迫的生理響應(yīng)[J]. 植物生態(tài)學(xué)報,2010,34(10):1213-1219.
Yan Yongqing, Liu Xingliang, Wang Kun, et al. Effect of complex saline-alkali stress on physiological parameters of Nitratia tangutorum[J]. Chinese Journal of Plant Ecology, 2010, 34(10): 1213-1219. (in Chinese with English abstract)
[39] Hazman M, Hause B, Eiche E, et al. Increased tolerance to salt stress in Opda-deficient rice Allene Oxide Cyclase mutants is linked to an increased Ros-scavenging activity[J]. Journal of Experimental Botany, 2015, 66(11): 3339-3352.
[40] Zimmermann M R, Maischak H, Mithofer A, et al. System potentials,a novel electrical long-distance apoplastic signal in plants,induced by wounding[J]. Plant Physiology, 2009, 149(3): 1593-1600.
[41] Munns R. Comparative physiology of salt and water stress[J]. Plant, Cell & Environment, 2002, 25(2): 239-250.
[42] Ruiz K B, Biondi S, Martinez E A, et al. Quinoa-a model crop for understanding salt-tolerance mechanisms in halophytes[J]. Plant Biosystems, 2016, 150(2): 357-371.
[43] Chen Z, Newman I, Zhou M, et al. Screening plants for salt tolerance by measuring K+flux: A case study for barley[J]. Plant, Cell & Environment, 2005, 28(10): 1230-1246.
[44] Chen Z, Pottosin I I, Cuin T A, et al. Root plasma membrane transporters controlling K+/Na+homeostasis in salt-stressed barky[J]. Plant Physiology, 2007, 145(4): 1714-1725.
[45] Felle H H, Zimmermann M R. Systemic signaling in barley through action potentials[J]. Planta, 2007, 226(1): 203-214.
[46] Favre P, Greppin H, Agosli H D. Accession-dependent action potentials in Arabidopsis [J]. Journal of Plant Physiology, 2011, 168(7): 653-660.
[47] Maffei M E, Mithofer A, Boland W. Before gene express ion:Early events in Plant-insect interaction[J]. Trends in Plant Science, 2007, 12(7): 310-316.
[48] Gro?kinsky K D, Svensgaard J, Christensen S, et al. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap[J]. Journal of Experimental Botany, 2015, 66(18): 5429-5440.
[49] Hedrich R, Salvador-Recatal V, Dreyer I. Electrical wiring and long-distance plant communication[J]. Trends in Plant Science, 2016, 21(5): 376-387.
[50] Fiorani F, Schurr U. Future scenarios for plant phenotyping[J]. Annual Review of Plant Biology, 2013, 64(1): 267-291.
[51] Dinneny J R. Traversing organizational scales in plant salt-stress responses[J]. Current Opinion in Plant Biology, 2015, 23: 70-75.
Nondestructive evaluation method for saline-alkaline tolerance of maize based on marginal spectral entropy of electric signal in leaf
Liu Kai1, Zhao Yanyan2, Xi Gang1※, Yang Yunjing3, Du Guangyuan3
(1.,’710054,; 2.,,451100,; 3.,712100,)
Saline-alkaline stress (SAS) is one of the major abiotic stresses affecting the growth of plants. It has been a severe problem that restricts plant production and even the development of the ecological environment. The improvement of plant saline-alkaline tolerance and selection of saline-alkaline tolerance plant varieties are becoming hot spots for research. To develop and select saline-alkaline tolerance plants, an evaluation method that can accurately judge the plant saline-alkaline tolerance must be first established. In the present study, the evaluation of saline-alkaline tolerance of plants is generally based on morphological indicators and physiological and biochemical indicators. These evaluation methods require a large number of samples and long cycle, and cannot be early diagnosed. Moreover, many of the indicators must be obtained through the destructive measurement of test-tube experiments, which are not nondestructive testing. Therefore, the traditional evaluation method has many disadvantages. In order to explore the methods of early, sensitive, in situ and nondestructive testing saline-alkaline tolerance of plants, a complex solution consisting of NaCl, Na2SO4, NaHCO3and Na2CO3with pH value of 9.09 was used to stress 2 kinds of maize variety seedlings of Zhengdan 958 with poor saline-alkaline tolerance and Mingyu 20 with strong saline-alkaline tolerance. Time-domain waveforms of leaf electrical signals of Zhengdan 958 and Mingyu 20 seedlings during saline-alkaline stress were collected. The marginal spectra of 2 kinds of maize leaf electrical signals were obtained by Hilbert-Huang transformation (HHT). The changes of marginal spectrum entropy (MSE) of maize leaf electrical signals and the biological significance were analyzed. The results showed that the MSE of leaf electrical signals from maize variety Zhengdan 958 continued to decline in the process of saline-alkaline stress, while the MSE of leaf electrical signals from maize variety Mingyu 20 changed in volatility. It was indicated that the ion transport of leaf cells in Zhengdan 958 was inhibited under saline-alkaline stress, and there was complex metabolic regulation in leaf cells of Mingyu 20 to maintain the dynamic balance of ion transport and normal functional status of leaf cell. The study also found that the malondialdehyde (MDA) content in leaf of Zhengdan 958 was increasing in the process of saline-alkaline stress, and the MDA content in leaves of Mingyu 20 began to increase significantly after 4 days of stress. This phenomenon suggested that there was membrane lipid peroxidation in leaves of Zhengdan 958 in the early stages of saline-alkaline stress, and it was more and more serious with the process of the stress, however, there was significant membrane lipid peroxidation in leaves of Mingyu 20 after 4 days of stress. The membrane lipid peroxidation of leaf cells caused by saline-alkaline stress could be the reason to the decrease of MSE about maize leaf electrical signals. Due to that the variation of the MSE from 2 maize varieties with different saline-alkaline tolerance under saline-alkaline stress was different, the response index (RI) of electrical signal based on the MSE was defined in this paper. The results showed that the RI values of maize varieties Zhengdan 958 and Mingyu 20 were obviously different in the processes of saline-alkaline stress. The influence of saline-alkaline stress on the ion transport and cell membrane injury of maize leaf cell could be sensitive and early quantitatively diagnosed according to the size of RI, and then to achieve in situ measurement and nondestructive evaluating saline-alkaline tolerance of maize seedlings. Since the RI based on plant electrical signals has not relationship with the species, the method proposed in this paper to evaluate the saline-alkaline tolerance of maize seedlings may also have a wide range of applicability. It is expected that the evaluation method about saline-alkaline tolerance of plant proposed in this paper can be verified through a large number of experiments.
stresses; crops; nondestructive testing; maize; saline-alkaline stress; electrical signal; marginal spectrum entropy; evaluation
10.11975/j.issn.1002-6819.2018.02.027
Q64
A
1002-6819(2018)-02-0197-08
2017-09-08
2018-01-08
國家自然科學(xué)基金資助項目(31471412,51277151);陜西省教育廳科學(xué)研究計劃項目(15JK1515)
劉鍇,講師,博士,主要從事生物光電信息的分析與應(yīng)用研究。Email:leaukai@gmail.com
習(xí) 崗,陜西楊凌人,教授,研究方向為生物光電信息的分析與應(yīng)用。Email:xig@xaut.edu.cn
劉 鍇,趙燕燕,習(xí) 崗,楊運經(jīng),杜光源. 基于葉片電信號邊際譜熵的玉米耐鹽堿性無損評價方法[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(2):197-204. doi:10.11975/j.issn.1002-6819.2018.02.027 http://www.tcsae.org
Liu Kai, Zhao Yanyan, Xi Gang, Yang Yunjing, Du Guangyuan. Nondestructive evaluation method for saline-alkaline tolerance of maize based on marginal spectral entropy of electric signal in leaf[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 197-204. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.02.027 http://www.tcsae.org