紀 翔,馬 欣,韓耀杰,于夢瀛,孟純純
?
箱體模擬地質封存CO2泄漏速度差異對植物的影響
紀 翔1,2,馬 欣1※,韓耀杰1,于夢瀛1,孟純純1
(1. 中國農(nóng)業(yè)科學院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,北京 100081;2. 喀什大學生命與地理科學學院,喀什 844000)
為了解地質封存CO2注入井破裂等快速泄漏或者通過地質甬道緩慢彌散對植物的影響,該文試驗通過箱體模擬地質封存CO2快速和慢速的不同泄漏方式,研究其對植物的影響。結果表明:快速泄漏CO2時,泄漏量在2 000 g/(m·d)時光合值下降明顯(從(22.86±0.89)mol/(m·s)下降到(0.1±0.08)mol/(m·s)),植株高度從(206±10.20)cm下降到(93.67±4.78)cm,葉片數(shù)也明顯減少,而CO2慢速泄漏時,在濃度控制下植物沒有明顯的響應,只有長期暴露在CO2泄漏源附近的土壤pH值下降。碳捕集與封存技術(carbon capture and storage,CCS)決策者可以根據(jù)地質封存CO2泄漏速度差異對周圍生態(tài)造成的不同影響制定相應的應對措施。
CO2;植物;碳捕集與封存技術;泄漏方式;植物響應
2017年6月國際能源署(International Energy Agency,IEA)和中國能源部舉行的第八屆清潔能源部長級會議的前期會議確認在全球努力實現(xiàn)CO2大幅減少、防止未來幾十年全球氣溫上升所做的努力中,碳捕集與封存技術(carbon capture and storage,CCS)至關重要。IEA一再強調,CCS是清潔能源技術的關鍵部分,為減少溫室氣體的排放,確保能源安全提供了一條可持續(xù)的道路,是以燃煤為主要能源消耗的碳排放大國可采取的迅速有效的減排手段[1]。CCS項目是將從排放源捕捉到的CO2注入到盆地的石油與天然氣儲層、深層咸水層和不可開采的煤層[2]等穩(wěn)定的地質構造中,在地下巖石構造中以物理、礦化捕集等捕集機理,達到捕碳減排的效果。但是儲存在地下的CO2存在著通過人為逃逸通道、地質構造逃逸通道以及跨越蓋層等快速爆發(fā)式泄漏和水力圈閉逃逸通道逃逸出地層等慢速彌散式泄漏的危險[3-4],可能對當?shù)氐纳鷳B(tài)系統(tǒng)造成嚴重的影響[5-6],造成生態(tài)系統(tǒng)的嚴重退化甚至消亡[7]。因而各國要求盡快開展CCS環(huán)境風險的研究[8-9]。
IPCC特別報告給出了地質封存CO2可能發(fā)生逃逸的2種情形[10-11],一種情形主要為快速持續(xù)釋放,例如注入井破裂或廢棄井泄漏等,另一種情形則是慢速持續(xù)釋放,主要是通過未被發(fā)現(xiàn)的斷層、斷裂或未查明的漏泄點發(fā)生緩慢泄漏[2]。兩種泄漏情形對周圍生態(tài)系統(tǒng)的影響需要給出定量化的研究,但是,工業(yè)CCS項目空間規(guī)??蛇_上百平方千米,投資數(shù)額上10億元,不可能對實際運行的CCS項目進行大規(guī)模的泄漏影響試驗,而箱體控制釋放試驗通過種植測試植物,進行模擬泄漏影響試驗的研究[12-13],是現(xiàn)階段較天然泄漏源與大田泄漏試驗更為可控、精準的試驗平臺。
前人做過的箱體控制泄漏試驗主要集中于CO2通量控制,通過控制CO2釋放速率進行對照試驗[13],但是,CO2緩慢泄漏的試驗進行的較少,氣體在土壤內的擴散通路以及在土壤中濃度的變化情況較為缺乏,知識了解不多,植物對不同CO2泄漏濃度變化速率響應的研究較少,本次試驗設置了濃度控制泄漏試驗對比之前通量控制泄漏試驗[12-15],對2種不同泄漏方式的結果進行對比,定量化研究2種泄漏方式對植物造成的影響,可以為中國CCS項目制定應對技術和對策提供參考。
以2種不同的氣體通入控制方式來模擬不同的泄漏方式:一種為通量控制試驗[12-15],通過人工控制快速通入CO2氣體進行快速泄漏的模擬研究,栽培箱高100 cm寬50 cm,由箱體底部通入CO2氣體(圖1a),在通入CO2的氣管上裝有氣體流量計,通過氣體控制閥控制CO2氣體的通入量。另一種為濃度控制試驗,通過固定土壤中CO2的比例值,人工控制氣體的補給,維持土壤中CO2的濃度,在低于濃度設定值時進行及時的少量濃度補給,以達到定量控制土壤中的濃度值的目的,慢速泄漏模擬栽培箱與快速泄漏模擬栽培箱統(tǒng)一(圖1b),栽培箱土壤中的氣體由集氣罩收集,由PU管經(jīng)干燥罐到土壤氣體濃度分數(shù)控制室,由氣體控制室內置的氣體分析儀進行CO2濃度分析,分析結果進入氣體主控室,由主控室統(tǒng)一分配補給CO2。
試驗點以中國農(nóng)業(yè)科學院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所北京順義農(nóng)業(yè)環(huán)境綜合試驗示范基地(40°13′N,116°14′E),為溫帶半濕潤季風型大陸性季風氣候,平均氣溫11~12 ℃,平均降水量約640 mm,年均日照時數(shù)是2 000~2 800 h,年均無霜期是190~195 d,年均風速1.8~3 m/s[16],箱體中取得的土壤為周圍大田表層土,植物種植時選擇中國北方重要作物玉米L.),為反映農(nóng)田生態(tài)系統(tǒng)生產(chǎn)力的代表性作物。每個箱體統(tǒng)一施底肥10 g,灌水15 L,植株高度15~25 cm間苗,試驗期間保持每周每箱灌水5 L。
試驗由箱體底部集中供氣,其中通量控制模擬快速CO2泄漏,濃度控制模擬慢速CO2泄漏。大量的研究表明天然CO2泄漏速度在1 000~3 000 g/(m·d)[6,17]。因此在泄漏模擬試驗時,設置對照組CK(0)和G2000(2 000 g/(m·d),176 mL/min)。
對持續(xù)慢速CO2泄漏的模擬為濃度式控制,有研究表明當暴露在天然泄漏源附近的土壤中CO2的含量在20%到40%之間時植物葉片光合作用降低,提前衰老[18],甚至枯死[19],將試驗濃度設置為60%探尋持續(xù)慢速CO2泄漏方式對玉米植株的影響,并設置對照組。為區(qū)分兩組模擬方式中的不同對照組,快速CO2持續(xù)泄漏模擬中的對照組為QCK(Quick CK),持續(xù)慢速CO2泄漏模擬中的對照組為SCK(Slow CK)。
采用卷尺測量玉米植株的高度。采用LI-COR公司生產(chǎn)的LI-6400對植物的光合速率進行監(jiān)測,監(jiān)測時在設定為人工紅藍光源的情景下,當LI-6400顯示值顯示葉室值與參比室值相差小于1時,選取第2片全展葉片夾入葉室,當Photo值穩(wěn)定時,進行數(shù)據(jù)記錄,每株玉米記錄5個值,后期處理時,對5個Photo值進行變異系數(shù)計算,如果變異系數(shù)低于15%時直接對均值進行比較,當變異系數(shù)高于15%時,剔除變異值,使變異系數(shù)低于15%求均值,作為植物葉片光合作用值。
測量土壤pH值時,采用的是pH meter 3 000土壤pH值測量儀,測量時插入植物根部土壤中,穩(wěn)定時間選擇為5 min,5 min后讀取測量儀的度數(shù)做記錄,每株測量完后,用酸度為4.00的溶液跟7.00的溶液進行儀器的校正,保證測量的精度。
監(jiān)測結果用SPSS22進行均值獨立樣本檢驗,不同的通氣量與不同的通氣方式,快速泄漏模擬設置(QCK,G2000),每種設置3組重復;慢速泄漏模擬設置(LCK,60%),每種設置3組重復。獨立樣本檢驗值低于0.05時為樣本具有顯著差異。
兩種泄漏方式對玉米株高的影響如圖2。在快速泄漏模擬的情形下泄漏量越大,玉米的長勢越差,玉米的長勢受到了明顯的抑制:按收獲時株高計算,對照組(QCK)株高在(206±10.20)cm,而G2000通量的玉米株高為(93.67±4.78)cm,CO2快速泄漏明顯抑制了玉米的生長(<0.05)。慢速CO2泄漏模擬控制下的玉米株高并未見顯著差異:對照組(SCK)玉米植株高度在(153.25±13.27)cm,60%濃度的株高在(154.00±8.09)cm,慢速泄漏并未明顯抑制植株的生長(=0.74)。
不同的泄漏方式對玉米生長動態(tài)方面的影響如圖2。在快速泄漏模擬情形下泄漏量增加,玉米的長勢趨于緩慢,在玉米生長的幾個重要時期,快速泄漏影響下的植株變化與對照比具有顯著差異:CO2泄漏量大的箱體玉米植株生長減緩,圖3能看到明顯的區(qū)別,少量泄漏時,玉米長勢良好,株高增加迅速;而在CO2大量泄漏時,玉米長勢趨于緩慢,在玉米的株高接近1 m時,玉米長勢趨于停止,株高變化不明顯(相較QCK減少量為54%)。而在CO2慢速泄漏下的玉米株高動態(tài)變化與對照差異不明顯,相較SCK減少量為?0.05%。
注:G2000為快速泄露處理,QCK為其對照;60%濃度為慢速泄露處理,SCK為其對照。下同。
2種泄漏方式對玉米葉片影響變化如圖3??焖傩孤┠M中,未進行CO2泄漏試驗的對照組(QCK)葉片數(shù)量明顯多于另外施加CO2泄漏影響的組。QCK組玉米全展葉片數(shù)為16個,而進行CO2泄漏試驗的全展葉片數(shù)減少,葉片約9~11片,枯葉數(shù)明顯增多。
慢速CO2對玉米植株的全展葉片數(shù)影響較小,葉片枯黃的較早,試驗的空白對照組(SCK)玉米全展葉片數(shù)在13片左右,但是隨著試驗時長的增加,葉片有枯黃的現(xiàn)象,而濃度在60%控制下的玉米比空白對照組葉片枯萎的日期要提前約10 d。
圖3 不同泄漏方式對玉米葉片的影響
不同泄漏方式對玉米植株的根長也有不同的影響(圖4),快速泄漏模擬試驗下的QCK玉米根長(109±16.83)cm,而在G2000泄漏量影響下的根長僅為(20.73±3.73)cm,減少量為75.11%,受快速大通量CO2的抑制作用,根部生長差異明顯。慢速泄漏模擬試驗下的SCK玉米根長為(41.25±2.90)cm,控制60%濃度泄漏模擬下的根長為(41±4.73)cm。泄漏模擬控制下的根長與玉米的地上部分呈正比。
快速CO2泄漏對玉米植株凈光合速率(net photosynthetic rate,P)的影響是十分明顯的(圖5),通入量越大植物的光合作用越弱,隨著泄漏時間的增加植株光合作用降低、葉片萎蔫,在G2000通量通氣的第7天時玉米的光合速率出現(xiàn)明顯的變化:其中G2000組玉米第二片全展葉片的光合速率低于QCK組(22.86±0.89)mol/(m·s)(<0.05)。在氣體通入的第41天時,G2000組光合速率P為(0.1±0.08)mol/(m·s)。這證明G2000控制下的玉米植株已經(jīng)死亡(凈光合速率減少量99.54%)。
圖4 不同泄漏方式對玉米根長的影響
圖5 不同泄漏方式對玉米凈光合速率的影響
慢速CO2泄漏模擬中玉米植株的凈光合速率并沒有明顯的變化,玉米在不同生育期的模擬泄漏組跟對照組數(shù)據(jù)差距較小,凈光合速率較為穩(wěn)定(=0.56)(表1)。
表1 玉米株高和光合作用的t檢驗結果
不同地質封存CO2泄漏模擬方式對土壤酸堿度(pH值)的影響如圖6。其中對照組的pH值略高于通入CO2的組別,顯示為偏堿性,pH值為周圍農(nóng)田的土壤酸堿度,而模擬CO2泄漏的土壤pH值偏酸性,且通入量越大,pH值略低。
快速CO2泄漏模擬試驗中,土壤pH值對照組(7.10±0.10)與G2000組(7.10±0.10)的差別不大,這可能與CO2跟土壤中的水分結合形成HCO3-根使土壤呈現(xiàn)弱酸性有關。慢速CO2泄漏模擬試驗中60%濃度的CO2土壤pH值(6.98±0.39)略低于對照組pH值(7.32±0.10),但是,通氣與未通氣的組別對土壤pH值的影響較小,pH值的變化范圍在玉米生長的正常范圍(pH值范圍4.5~8.5)[20-22]內,未對玉米的生長造成影響[14]。
圖6 不同泄漏方式模擬對土壤pH值的影響
快速泄漏模擬迅速達到植物生長的耐受閾值,植物響應明顯,與劉義玲等[23-25]研究得到的植物根部CO2達到一定濃度后會抑制作物生長[26-27]結論一致,說明地質封存CO2快速泄漏對地表植被危害較大,需要優(yōu)先應對,避免對周圍生態(tài)系統(tǒng)造成更大的破壞。慢速泄漏未引起植物的顯著變化,應對的優(yōu)先順序不高,但是慢速泄漏可能引起土壤酸化,對土壤和植被的長期影響值得注意。Zhou等[28]以及Dethlefsen等[29]對CO2泄漏模擬對地球化學過程的影響中發(fā)現(xiàn),CO2泄漏會引起土壤中的電導率EC升高,對土壤的溫濕度造成影響。
2次試驗過程中由于只對慢速泄漏的土壤溫濕度進行了監(jiān)測,無法與快速泄漏模擬試驗中的土壤溫濕度進行對比研究,對慢速模擬泄漏土壤溫濕度監(jiān)測時利用的是插入土中的溫濕度監(jiān)測探頭,試驗時間內每隔一小時收集1次土壤溫濕度數(shù)據(jù)。在對慢速模擬泄漏中的土壤溫濕度進行比較時發(fā)現(xiàn),如圖7,慢速泄漏控制下的土壤溫濕度與SCK沒有明顯變化??焖傩孤┠M時對土壤溫濕度的具體影響需要進一步研究。
CCS泄漏影響植物生長時可能是由于CO2泄漏時土壤中的O2含量減少[30],影響植物的生長。
此外,在對植物根部進行提取的試驗是在人工控制箱實現(xiàn),跟實際大田生態(tài)環(huán)境有一定差異[6],可能對試驗結果造成影響[13]。因此未來需要由箱體試驗升級到大田試驗,在大田環(huán)境下研究不同的CO2泄漏方式對植物的影響。
通過模擬試驗可知,在快速泄漏的條件下,隨著泄漏量的增多與泄漏時間的延長,植株的響應十分顯著,植物葉片出現(xiàn)萎蔫、植株矮小甚至死亡,根部與地上部分生物量具有正相關性,在快速模擬泄漏影響下的植株高度、地下植株根長與對照組有明顯的差別,植株高度具有顯著差異(<0.05),根長的減少量達到75.11%。同時,快速泄漏模擬影響下的植株生長趨勢也有十分明顯的影響。當?shù)刭|封存CO2慢速泄漏時對植物的影響較小,僅出現(xiàn)了土壤pH值的略微差異,但是泄漏模擬的土壤pH值仍在玉米生長的合理范圍內,因而并未對玉米生長造成顯著影響。因此,碳捕集與封存技術(carbon capture and storage,CCS)項目快速泄漏與慢速泄漏對植物的影響有顯著差異,在CCS相關政策與決策中需要重點關注快速泄漏對生態(tài)系統(tǒng)造成的影響。
[1] IEA國際能源署新聞[EB/OL] [2017-07-15] http://www.iea.org/newsroom/news/2017/june/iea-and-china-host-high-level-gathering-of-energy-ministers-and-industry- leaders.html
[2] 許志剛,陳代釗,曾榮樹,等. CO2地下地質埋存原理和條件[J]. 西南石油大學學報:自然科學版,2009,31(1):91-97.
Xu Zhigang, Chen Daizhao, Zeng Rongshu, et al. The theory and conditions of geological storage of CO2[J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2009, 31(1): 91-97. (in Chinese with English abstract)
[3] 劉永忠,王樂,張甲六. 封存CO2的泄漏過程預測與泄漏速率的影響因素特性[J]. 化工學報,2012,63(4):1226-1233.
Liu Zhongyong, Wang Le, Zhang Jialiu, et al. Prediction on leakage and rate characteristics of CO2storage[J]. Journal of Chemical Industry and Engineering, 2012, 63(4): 1226-1233. (in Chinese with English abstract)
[4] 張森琦,刁玉杰,程旭學,等.CO2地質儲存逃逸通道及環(huán)境監(jiān)測研究[J]. 冰川凍土,2010,32(6):1251-1261.
Zhang Senqi, Diao Yujie, Cheng Xuxue, et al. CO2geologic storage leakage routes and environment monitoring[J]. Journal of Glaciology and Geocryology, 2010, 32(6): 1251-1261. (in Chinese with English abstract)
[5] Heinrich J J, Herzog H J, Reiner D M. Environmental assessment of geologic storage of CO2[J]. MIT LFEE Report 2004, 15(11): 68-78.
[6] West J M, Pearce J M. Environmental Issues and the Geological Storage of CO2a European Perspective[M]. International Conference on Greenhouse Gas control, 2006.
[7] 吳江莉,馬俊杰. 淺議CO2地質封存的潛在風險[J]. 環(huán)境科學導刊,2012,31(6):89-93.
Wu Jiangli, Ma Junjie. A discussion about potential risks of geological storage of CO2[J]. Environmental Science Survey, 2012, 31(6): 89-93. (in Chinese with English abstract)
[8] Torp T A, Gale J. Demonstrating storage of CO2, in geological reservoirs: The Sleipner and SACS projects[J]. Energy, 2014, 29(9): 1361-1369.
[9] EU. Directive 2009/31/EC of the European Parliament and the Council of 23 April 2009 on the geological storage of carbon dioxide and amending Council Directive 85/337/EEC, European Parliament and Council Directives 2000/60/EC, 2001/80/EC, 2004/35/EC, 2006/12/EC, 2008/1/EC and Regulation (EC) No 1013/2006[M]. Official Journal of the European Union, 2009, 6: 114-135.
[10] IPCC. Special Report on Carbon Dioxide Capture and Storage[M]. Cambridge, UK and New York, USA, Cambridge University Press, 2005.
[11] IPCC. Climate Change 2007: Synthesis Report. Contribution of Working GroupsⅠ, Ⅱand Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, UK and New York, USA, Cambridge University Press.
[12] Zhang Xueyan, Ma Xin, Wu Yang, et al. Enhancement of farmland greenhouse gas emissions from leakage of stored CO2: Simulation of leaked CO2from CCS[J]. Science of Total Environment, 2015, 518/519: 78-85.
[13] Wu Y, Ma X, Li Y E, et al. The impacts of introduced CO2flux on maize/alfalfa and soil[J]. International Journal of Greenhouse Gas Control, 2014, 23(2): 86-97.
[14] Zhang X, Ma X, Zhao Z,et al. CO2leakage-induced vegetation decline is primarily driven by decreased soil O2[J]. Journal of Environmental Management, 2016, 171: 225.
[15] 田地,馬欣,查良松,等.地質封存CO2泄漏對近地表陸地生態(tài)系統(tǒng)的影響綜述[J]. 生態(tài)與農(nóng)村環(huán)境學報,2013,29(2):137-145.
Tian Di, Ma Xin, Zha Liangsong, et al. Review of impact of CO2leakage from geologic storage on near-surface terrestrial ecological system[J]. Journal of Ecology and Rural Environment, 2013, 29(2): 137-145. (in Chinese with English abstract)
[16] 伍洋,馬欣,李玉娥,等.地質封存CO2泄漏對農(nóng)田生態(tài)系統(tǒng)的影響評估及耐受閾值[J]. 農(nóng)業(yè)工程學報,2012,28(2):196-205.
Wu Yang, Ma Xin, Li Yue, et al. Impact assessment and tolerable threshold value of CO2leakage from geological storage on agro-ecosystem[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(2): 196-205. (in Chinese with English abstract)
[17] Beaubien S E, Ciotoli G, Coombs P, et al. The impact of a naturally occurring CO2gas vent on the shallow ecosystem and soil chemistry of a Mediterranean pasture (Latera, Italy)[J]. International Journal of Greenhouse Gas Control, 2008, 2(3): 373-387.
[18] Cook A C, Tissue D T, Roberts S W, et al. Effects of long-term elevated CO2from natural CO2springs on Nardus stricta: Photosynthesis, biochemistry, growth and phenology[J]. Plant Cell and Environment, 1998, 21: 417-425.
[19] Rogie J D, Kerrick D M, Sorey M L, et al. Dynamics of carbon dioxide emission at Mammoth Mountain, California[J]. Earth and Planetary Science Letters, 2001, 188(3/4): 535-541.
[20] Sheng H, Luo S, Zhou P,et al. Dynamic observation, simulation and application of soil CO2concentration: A review[J]. The Journal of Applied Ecology, 2012, 23(10): 2916.
[21] Guo Z X, Wang J, Chai M, et al. Spatiotemporal variation of soil pH in Guangdong Province of China in past 30 years[J]. Chinese Journal of Applied Ecology, 2011, 22(2): 425.
[22] 王志剛,趙永存,廖起林,等.近20年來江蘇省土壤pH值時空變化及其驅動力[J].生態(tài)學報,2008,28(2):720-727.
Wang Zhigang, Zhao Yongcun, Liao Qilin. Spatio-temporal variation and associated affecting factors of soil pH in the past 20 years of Jiangsu Province, China[J]. Acta Ecological Sincia, 2008, 28(2): 720-727. (in Chinese with English abstract)
[23] 劉義玲,李天來,孫周平,等.根際CO2濃度對網(wǎng)紋甜瓜生長和根系氮代謝的影響[J]. 中國農(nóng)業(yè)科學,2010,43(11):2315-2324.
Liu Yiling, Li Tianlai, Sun Zhouping, et al. Effect of rhizosphere CO2concentration on plant growth and root nitrogen metabolism of muskmelon[J]. Scientia Agriculture Sincia, 2010, 43(11): 2315-2324. (in Chinese with English abstract)
[24] 孫周平,李天來,范文麗. 根際CO2濃度對馬鈴薯植株生長的影響[J]. 應用生態(tài)學報,2005,16(11):2097-2102.
Sun Zhouping, Li Tianlai, Fan Wenli. Effect of rhizosphere CO2concentration on potato growth[J]. Chinese Journal of Applied Ecology, 2005, 16(11): 2097-2102. (in Chinese with English abstract)
[25] 李天來,陳亞東,劉義玲,等. 根際CO2濃度對網(wǎng)紋甜瓜根系生長和活力的影響[J]. 農(nóng)業(yè)工程學報,2009,25(4):210-215.
Li Tianlai, Chen Yadong, Liu Yiling, et al. Effects of rhizosphere CO2concentration on root growth and activity of netted muskmelon[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(4): 210-215.(in Chinese with English abstract)
[26] He J, Austin P T, Nichols M A,et al. Effect of root-zone CO2on productivity and photosysthesis in aeroponically grown lettuce plants[J]. Acta Horticulturae, 2004(648): 39-45.
[27] Viktor A, Cramer M D. Variation in root-zone CO2concentration modifies isotopic fractionation of carbon and nitrogen in tomato seedlings[J]. New Phytologist, 2003(157): 45-54.
[28] Zhou Xiaobing, Venkata R Lakkaraju, Martha Apple, et al. Experimental observation of signature changes in bulk soil electrical conductivity in response to engineered surface CO2leakage[J]. International Journal of Greenhouse Gas Control, 2012(7): 20-29.
[29] Dethlefsen F, K?ber R, Sch?fer D,et al. Monitoring approaches for detecting and evaluating CO2and formation water leakages into near-surface aquifers[J]. Energy Procedia, 2013(37): 4886-4893.
[30] Zhou Xiaobin, Apple M E, Dobeck L M, et al. Observed response of soil O2Concentration to leaked CO2from an engineered CO2leakage experiment[J]. International Journal of Greenhouse Gas Control, 2013, 57(16): 116-128.
Effect of different leakage speeds on plants in carbon capture and storage by simulation in chamber
Ji Xiang1,2, Ma Xin1※,Han Yaojie1, Yu Mengying1, Meng Chunchun1
(1.,100081,; 2.,,844000,)
Carbon capture and storage (CCS) is an effective means to reduce greenhouse gas emissions, which sequesters anthropogenic CO2in deep geological formations and avoids emissions into the atmosphere while supporting coal use. Thus, the technology is an attractive way of controlling greenhouse gases in economies heavily dependent on coal energy, such as China, whose goal is to reach an emissions cap by 2030. Currently, more than 12 CCS demonstration projects are in development in China. Preliminary estimates show that reservoirs, such as saline aquifers, depleted oil and gas reservoirs, and un-mineable coal seams, have a CO2storage capacity with hundreds of billions of tons. However, there are risk of CCS-stored CO2leaking out of the storage reservoirs, and the quick leakage such as failure of injection wells and slow leakage from geological aisle, which shows different environmental impacts. The most visible impact of CCS leakage is the degradation of plant cover. To know the impact of elevated soil CO2flux in near-surface ecosystems and the plants’ responses to different CO2leaking rates, and to assess and address the risks of elevated soil CO2flux, we simulated quick and slow CO2leakage, at a rate of 2000 g/(m·d) and 60% of the soil CO2concentration, and compared the differences of maize plant height, root length, leaf number, leaf photosynthetic rate and soil pH value. The experimental device was the self-made combination with gas chambers and soil chambers on top. CO2was injected into the bottom of the cultivation container at different flux rates by manually control. The results indicated that, under the quick CO2leaking at a rate of 2000 g/(m·d), the maize photosynthetic rate was decreased from (22.86±0.89)mol/(m·s) of CK treatment to (0.1±0.08)mol/(m·s) , while the height of maize was dropped from (206±10.20) cm to (93.67±4.78) cm and maize root length was decreased by 75%, from (109±16.83) cm to (20.73±3.73) cm. And the number of plant leaves was decreased significantly, which was 16 in the control group, but only 9 to 11 in the rapid leakage control, and the withered leaf number were significantly increased in the rapid leakage test. Slow leakage under 60% of the soil CO2concentration did not inhibit the growth of maize. The height of maize plants in the control group (SCK) was (153.25±13.27) cm, and the plant height at slow leakage treatment was (154 ± 8.09) cm. The root length, the number of leaves and net photosynthetic rate of maize also were not significant difference, separately. Only the soil pH value in the vicinity of leaking source was decreased slightly, however, soil pH value remained within a reasonable range of maize growth and therefore did not have a significant impact on maize growth. The different response of plant to quick and slow stored CO2leakage will provide useful information for decision maker to formulate countermeasures.
carbon dioxide; plants; carbon capture and storage; leakage ways; plant response
10.11975/j.issn.1002-6819.2018.02.033
P618.13; S184
A
1002-6819(2018)-02-0242-06
2017-08-31
2017-12-13
國家自然科學基金(31400376和31600351)和國家重點技術研究與發(fā)展項目(2011BAC08B03)
紀 翔,女,主要研究方向為氣候變化對農(nóng)作物的影響,退牧還草對土壤碳匯的影響。Email:jixiang17306@163.com
馬 欣,副研究員,主要從事氣候變化對農(nóng)作物影響評估、農(nóng)林業(yè)碳交易、CO2環(huán)境效應評估研究。Email:maxin02@caas.cn
紀 翔,馬 欣,韓耀杰,于夢瀛,孟純純. 箱體模擬地質封存CO2泄漏速度差異對植物的影響[J]. 農(nóng)業(yè)工程學報,2018,34(2):242-247. doi:10.11975/j.issn.1002-6819.2018.02.033 http://www.tcsae.org
Ji Xiang, Ma Xin, Han Yaojie, Yu Mengying, Meng Chunchun. Effect of different leakage speeds on plants in carbon capture and storage by simulation in chamber[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 242-247. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.02.033 http://www.tcsae.org