嚴(yán)家平,陳孝楊,程方奎,黃 河,范廷玉
?
礦區(qū)土壤裂隙優(yōu)先流對(duì)土壤銨態(tài)氮遷移及土壤結(jié)構(gòu)的影響
嚴(yán)家平1,陳孝楊2,程方奎1,黃 河2,范廷玉2
(1. 安徽理工大學(xué)測(cè)繪學(xué)院,淮南 232001; 2. 安徽理工大學(xué)地球與環(huán)境學(xué)院,淮南 232001)
針對(duì)煤礦地下開(kāi)采對(duì)礦區(qū)土壤土壤質(zhì)量的影響問(wèn)題,采用構(gòu)建原狀土壤二維模型的物理模擬試驗(yàn)研究方法,模擬研究煤礦開(kāi)采過(guò)程中,由降水引起土壤銨態(tài)氮遷移及土壤結(jié)構(gòu)的變化特征。結(jié)果表明,煤礦地下開(kāi)采過(guò)程不僅引起地表沉陷,改變地面坡度,加劇了地表徑流對(duì)土壤銨態(tài)氮養(yǎng)分的水平方向和剖面方向的運(yùn)移強(qiáng)度,同時(shí)因沉陷作用伴生的土壤裂隙而加劇了銨態(tài)氮由表層向深部的遷移流失。在試驗(yàn)區(qū)地面沉陷長(zhǎng)度為1.2 m的范圍、坡度為2.1°,模擬降水強(qiáng)度60 mm/h,總降水122 mm的試驗(yàn)條件下,坡地表層土壤銨態(tài)氮含量平均降低了14%;在剖面上,表層銨態(tài)氮質(zhì)量分?jǐn)?shù)8.8 mg/kg的峰值遷移至30 cm深度,含量峰值深度下移;沉陷區(qū)不同部位的土壤顆粒結(jié)構(gòu)組分發(fā)生變化。其中坡頂?shù)募?xì)顆粒組分黏粒(≤2m)含量減少,粗顆粒砂粒組分增加。位于沉陷坡地坡頂?shù)耐寥鲤ち=M分由原來(lái)的2.5%下降到2.1%,在沉陷坡地1.2 m的距離范圍內(nèi),土壤黏粒含量平均流失率為16%。而粗顆粒組分(≥50m)的砂粒組分由原來(lái)的3.2%變?yōu)?.8%,砂粒組分含量增加率為3.6%。與此同時(shí),位于坡底土壤黏粒由原來(lái)2.5%增加到2.8%,黏粒含量累計(jì)增加率為12%。土壤裂隙優(yōu)先流成為煤礦開(kāi)采沉陷區(qū)水土流失重要的驅(qū)動(dòng)因素。該研究可為提高礦區(qū)耕地質(zhì)量和利用效率提供參考。
煤礦;土壤;氮;銨態(tài)氮遷移;土壤結(jié)構(gòu);土壤裂隙;優(yōu)先流
影響土壤質(zhì)量的因素不僅僅是自然環(huán)境的變化,當(dāng)今高強(qiáng)度的人類活動(dòng)同樣是導(dǎo)致水土流失與土壤質(zhì)量下降的重要因素[1-3]。采礦活動(dòng)是人類經(jīng)濟(jì)活動(dòng)的重要方式之一。露天開(kāi)采的地面挖損直接破壞地表環(huán)境,礦區(qū)外圍地下水位下降與邊坡變形同樣加劇土壤質(zhì)量下降[4-5]。在平原地區(qū),地下開(kāi)采引起地表下沉而形成塌陷盆地。它改變了地面坡度,加劇了因降雨或灌溉造成對(duì)土壤的侵蝕作用[6-7]。尤其是在采礦過(guò)程中地表形成的拉張裂隙加劇了表層土壤的水土流失作用[8-10]。吳艷茹等[11-12]研究了地下開(kāi)采形成的沉陷盆地及其周邊的土壤土壤水分及質(zhì)量下降現(xiàn)象極為普遍,且水土流失程度遠(yuǎn)大于其他正常地區(qū)。
目前,完全自然環(huán)境下土壤溶質(zhì)遷移或水鹽運(yùn)移方面的問(wèn)題研究較多,且這些方面的研究主要為較大范圍或尺度的土壤時(shí)空異質(zhì)性研究[13-14]。關(guān)于采礦活動(dòng)造成的土壤質(zhì)量的變化已廣泛被大家所接受,如楊德軍等[15-16]研究了采煤塌陷對(duì)不同土壤環(huán)境物理性質(zhì)的影響及變化特點(diǎn)。謝元貴等[17]研究了不同采礦年限土壤質(zhì)量的變化規(guī)律。但對(duì)于開(kāi)采沉陷作用造成的土壤質(zhì)量變化的機(jī)理尚不夠深入。本文采用二維物理模擬試驗(yàn)研究方法,研究表層土壤在開(kāi)采沉陷過(guò)程中銨態(tài)氮元素遷移及土壤粒度結(jié)構(gòu)變化特征與規(guī)律。
試驗(yàn)場(chǎng)地選擇在淮南礦區(qū)內(nèi)的耕地內(nèi),物理模型建立在野外,模型制作保持原狀土體結(jié)構(gòu)(圖1)。場(chǎng)地土體為河流沖積土,地下潛水水位埋深約2 m。土體剖面結(jié)構(gòu)清晰,并可明顯的分為上下2層。上層以細(xì)粒粉土為主,夾1~2 cm厚的黏土層,厚0.6 m。下層為粗粉土,厚0.8 m。土體宏觀特征呈棕黃色,結(jié)構(gòu)較為松散。不同土層的主要物理性質(zhì)見(jiàn)表1。
表1 上、下層土壤主要物理性質(zhì)
試驗(yàn)方法包括地下開(kāi)采引起的地表沉陷過(guò)程的物理模擬,以及在這一過(guò)程中模擬降雨環(huán)境下土壤銨態(tài)氮遷移與土粒結(jié)構(gòu)變化過(guò)程的模擬試驗(yàn)。
1.2.1 物理模型構(gòu)建
試驗(yàn)?zāi)P驮O(shè)計(jì)為長(zhǎng)5 m、高1.4 m、寬0.5 m的二維模型。通過(guò)在原狀土體上開(kāi)挖出2個(gè)槽溝,在2個(gè)槽溝中間形成墻體狀態(tài)的自然土體模型(圖1)。在模型兩側(cè)使用木板支護(hù),提高后期試驗(yàn)?zāi)M開(kāi)采過(guò)程中模型的穩(wěn)定性。
為了掌握開(kāi)采沉降量及土體變形特征,對(duì)模型兩側(cè)用黑色顏料畫(huà)上間隔為10 cm的垂直和水平線,從而使模型兩側(cè)形成10×10 cm的方格網(wǎng)。采用精確度為毫米級(jí)全站儀觀測(cè)技術(shù),同時(shí)輔以攝影測(cè)量,觀察裂隙發(fā)育的位置、對(duì)比不同裂隙形成與演化的過(guò)程。
圖1 物理模型
1.2.2 開(kāi)采沉陷作用過(guò)程模擬
根據(jù)地下層狀分布的煤層及開(kāi)采方式,模擬開(kāi)采的深度在模型的1.2 m處進(jìn)行,開(kāi)采層的厚度設(shè)計(jì)為0.05 m。由于地下的開(kāi)采作用,開(kāi)采層的頂部土層逐漸冒落。隨著開(kāi)采長(zhǎng)度和冒落長(zhǎng)度的增加,上部的土層亦隨之彎曲下沉。這時(shí),在地表下沉彎曲帶的頂部出現(xiàn)小型拉張裂隙。由于開(kāi)采作用的持續(xù)進(jìn)行,地面沉陷區(qū)域不斷增大,已經(jīng)形成的裂隙規(guī)模也逐漸增大。地面下沉區(qū)的擴(kuò)展不斷使得新的裂隙產(chǎn)生和早期的裂隙閉合狀態(tài)(見(jiàn)圖2)。
圖2 沉陷裂隙形成示意圖
模擬開(kāi)采過(guò)程分為5個(gè)時(shí)間段進(jìn)行,每個(gè)階段為連續(xù)開(kāi)采。最終塌陷范圍2.4 m。觀測(cè)并統(tǒng)計(jì)每個(gè)階段開(kāi)采長(zhǎng)度與累計(jì)開(kāi)采長(zhǎng)度,以及采后的地表下沉量和地表裂隙發(fā)育情況。塌陷坡地最終坡度為2.1°并伴隨顯著的土壤裂隙優(yōu)先流路徑產(chǎn)生,最大裂隙深度0.55 m。
試驗(yàn)結(jié)果表明,地下開(kāi)采引起的地表變形不僅僅是土體簡(jiǎn)單的塑性彎曲,同時(shí)伴隨有脆性裂隙的產(chǎn)生。因此,在礦區(qū)煤層開(kāi)采的過(guò)程中,地表沉陷盆地的形成過(guò)程既是地表土體的塑性變形,也是裂隙變形過(guò)程,是沉陷區(qū)內(nèi)不同部位裂隙的形成與閉合的動(dòng)態(tài)變化過(guò)程。
表2 不同開(kāi)采時(shí)間段開(kāi)采長(zhǎng)度與相關(guān)變形量
1.2.3 銨態(tài)氮遷移與土粒結(jié)構(gòu)變化過(guò)程的模擬
降水環(huán)境下地表徑流對(duì)土壤溶質(zhì)遷移的物理模擬是一種有效的水土流失或土壤質(zhì)量變化的研究手段,田坤等[18-19]通過(guò)室內(nèi)模擬試驗(yàn)較好地反映了降水環(huán)境下地表徑流對(duì)土壤溶質(zhì)遷移過(guò)程的影響。在干旱和半干旱地區(qū)的地面斜坡地帶同樣具有不同的水土流失效應(yīng)[20-21]。雷少剛等[22]采用相似模擬實(shí)驗(yàn)研究了開(kāi)采沉陷對(duì)土壤物理性質(zhì)影響,并將開(kāi)采沉陷與土體滲透變形相聯(lián)系。本文在模擬地表沉陷的過(guò)程中同時(shí)模擬降水過(guò)程,在模型上方1.5 m的高度進(jìn)行人工噴水,觀察沉陷區(qū)降水過(guò)程地表徑流與入滲過(guò)程中的土壤中銨態(tài)氮流失與土粒結(jié)構(gòu)變化特征。模擬降水試驗(yàn)之前,配制氯化銨溶液(5.0 g/L)5 000 mL,分2次澆灌在試驗(yàn)區(qū)及外圍對(duì)比區(qū)。觀測(cè)溶液的平均滲透深度為15 cm,此時(shí)檢測(cè)土壤的平均銨態(tài)氮質(zhì)量分?jǐn)?shù)為9.5 mg/kg。
模擬降水階段按照早、中、晚3個(gè)階段進(jìn)行,分別對(duì)應(yīng)的地表變形初始沉陷階段、拉張裂隙出現(xiàn)的規(guī)模最大階段和早期的裂隙進(jìn)入坡地的閉合階段。降水采用當(dāng)?shù)爻靥恋乃⑴淙脒m當(dāng)比例的銨態(tài)氮溶液,降水量分別為18、77和122 mm。每個(gè)階段的模擬降水過(guò)程結(jié)束后,在沉陷區(qū)內(nèi)、外分別采集土樣。采樣點(diǎn)分別布置在模型的平面和垂直剖面上(詳見(jiàn)圖3)。剖面方向的土壤采樣是在采樣垂線上,使用5 cm直徑的環(huán)刀,并按照每5 cm深度采集土樣。依次采集12個(gè)土樣,共計(jì)50 cm深。在沉陷區(qū)兩側(cè)的裂隙發(fā)育區(qū)LI和LII采樣垂線上取橫跨裂隙的土樣,并在正常的無(wú)裂隙的2個(gè)區(qū)域布置ZI、ZII采樣垂線,按照豎直向下不同深度逐次取樣。采樣時(shí)間分別劃分淋溶試驗(yàn)過(guò)程的早期、中期、后期3個(gè)時(shí)間段進(jìn)行。
注:LI、LII 分別為塌陷盆地兩側(cè)的土壤裂隙發(fā)育區(qū);ZI、ZII分別為塌陷盆地兩側(cè)外圍的非塌陷地土壤區(qū)。
為探究開(kāi)采沉陷區(qū)坡地在坡度增大以及較強(qiáng)水流作用條件下沉陷坡地的土壤顆粒的搬運(yùn)特征,需要在塌陷坡地的頂部、斜坡面和坡底采集土樣并分析土壤的粒度組分特征。分別在試驗(yàn)?zāi)P偷膬蓚?cè)坡地布置編號(hào)為L(zhǎng)I、LII的2條采樣線(圖3)。在試驗(yàn)的最后階段,用環(huán)刀圈定范圍采集兩側(cè)坡地的坡頂、坡面、坡底表層2 mm的土壤,對(duì)比分析其土壤粒度組分的分布特征。
根據(jù)不同階段模擬降雨作用的土樣采集及分析結(jié)果可知,土壤中銨態(tài)氮的含量在不同階段和區(qū)域出現(xiàn)了明顯的差異(圖4)。在早期或初次降水過(guò)程中,地面下沉不明顯。降水入滲速率較快,地表也尚未形成片流,土壤中尚未形成拉張裂隙,故土表層0~10 cm出現(xiàn)土壤銨態(tài)氮質(zhì)量分?jǐn)?shù)峰值,且均在9.0 mg/kg左右,明顯高于深部土壤銨態(tài)氮含量(圖4a)。
每當(dāng)這個(gè)時(shí)候,小波爾就默默站在一旁傾聽(tīng),時(shí)間久了,他逐漸聽(tīng)懂了他們所談的內(nèi)容,有時(shí)還插上幾句話,大膽發(fā)表自己的意見(jiàn),這使克里斯坦森十分吃驚,他發(fā)現(xiàn),小波爾對(duì)物理學(xué)有濃厚的興趣,而且,有豐富的想象力和理解力。于是,物理學(xué)家克理斯坦森每次做客都給小波爾講授一些科學(xué)知識(shí),講牛頓、伽利略等科學(xué)家的故事,從此,波爾對(duì)物理學(xué)的興趣更濃了。
圖4 不同降水時(shí)間段土壤銨態(tài)氮含量分布
在第二階段模擬降水之后,地面沉降區(qū)范圍為1.5 m,模擬降水量累計(jì)達(dá)到77 mm。這時(shí)的土壤表層入滲作用明顯減緩,地表面形成席流。與此同時(shí),地表沉陷開(kāi)始顯現(xiàn),并出現(xiàn)小型裂隙。觀察到裂隙區(qū)域有明顯的水流進(jìn)入,顯現(xiàn)裂隙優(yōu)先流滲透作用。此時(shí),沉陷區(qū)兩側(cè)L1、LII的淺部0~10 cm土壤銨態(tài)氮質(zhì)量分?jǐn)?shù)由早期的8.7、9.4 mg/kg降低到7.7、8.7 mg/kg,平均降低了9.3%。而深部50 cm土壤銨態(tài)氮質(zhì)量分?jǐn)?shù)由早期的7.2、7.7 mg/kg增加到8.4、9.4mg/kg,平均增加了19%。土壤銨態(tài)氮含量的峰值出現(xiàn)深度由原來(lái)的0~10 cm遷移到50 cm(圖4b)。
模擬降雨試驗(yàn)的第三階段—后期,地面塌陷總長(zhǎng)度發(fā)展到2.4m。這一階段的累計(jì)模擬降水量達(dá)到122 mm,降水入滲減緩,地表的席流較為顯著,出現(xiàn)表層土壤銨態(tài)氮較早期和中期進(jìn)一步降低。這時(shí),位于塌陷盆地兩側(cè)坡地的銨態(tài)氮質(zhì)量分?jǐn)?shù)累計(jì)峰值由8.8、9.4 mg/kg降低到7.7、7.9 mg/kg。說(shuō)明了在沉陷坡地1.2m的距離范圍內(nèi),土壤銨態(tài)氮含量平均降低了14%。但在30 cm深度出現(xiàn)8.7、8.9 mg/kg峰值區(qū)域,峰值區(qū)域深度較中期出現(xiàn)了下移(圖4c)。在這一深度以下區(qū)域銨態(tài)氮含量較中期變化不大,不再有明顯的峰值。
對(duì)比沉陷開(kāi)采沉陷L區(qū)和正常區(qū)Z區(qū)兩者的土壤銨態(tài)氮含量的變化(圖5),在沉陷裂隙區(qū)土壤銨態(tài)氮遷移量明顯增大,遷移進(jìn)程加快(5a)。早期、中期、后期LI上0~10 cm表層土壤銨態(tài)氮質(zhì)量分?jǐn)?shù)均值分別為8.1、7.7、6.9 mg/kg,其均值在3個(gè)階段的降雨作用以后持續(xù)下降。后期較早期降低了1.2 mg/kg,降低率為14%。而正常無(wú)沉降變形區(qū)早期、中期、晚期土壤中銨態(tài)氮含量降低輕微(5b),分別為8.2、8.2、7.8 mg/kg,后期較早期、中期僅僅降低了0.4 mg/kg,降低率為4.9%。
不同試驗(yàn)階段各深度土壤銨態(tài)氮含量的監(jiān)測(cè)結(jié)果知開(kāi)采沉降L區(qū)在持續(xù)降水過(guò)程中銨態(tài)氮的流失明顯。正常無(wú)裂隙Z區(qū)僅出現(xiàn)了較為輕微的降低現(xiàn)象。
土壤中的孔隙可分為大孔和小孔兩類,而大孔又包括裂隙[23-24]。土壤孔徑的大小直接影響到土壤水分的運(yùn)移,Beven等[25]指出大孔隙具有非毛管性質(zhì),連續(xù)的大孔隙中的水分運(yùn)動(dòng)主要受重力勢(shì)支配。由此,土壤中地下水的運(yùn)動(dòng)劃分為以小孔為主的基質(zhì)流和大孔隙流。其中大孔隙流常成為地下水運(yùn)移的優(yōu)先流路徑[26]。在采煤沉陷區(qū),正是由于沉陷過(guò)程中產(chǎn)生大量裂隙,從而成為地下水及銨態(tài)氮溶液在土壤剖面上優(yōu)先遷移。
圖5 不同區(qū)域各階段銨態(tài)氮含量
采用激光粒度分析儀(RISE-2006型)分析了塌陷盆坡地的坡頂、坡面、坡底不同部位的表層土壤樣品的粒度組分,獲得土壤顆粒粒徑分布累計(jì)百分比(見(jiàn)圖6)。
注:1LI-5、3LI-5分別表示裂隙LI區(qū)第1階段與第3階段深度5 cm的土壤樣品;1ZI-5、3ZI-5分別表示非塌陷地ZI區(qū)第1階段與第3階段,深度5的土壤樣品。其他以此類推。
前已述及,試驗(yàn)點(diǎn)的土壤表層為粉土,各土樣粒徑主要分布范圍為0~100m,粒度結(jié)構(gòu)組成分別為黏粒(≤2m)2.5%、粉粒(2~50m)94.3%、砂粒(≥50m)3.2%。經(jīng)過(guò)早、中、晚3個(gè)階段的模擬降水作用后,位于開(kāi)采沉陷坡地坡頂、坡面、坡底不同位置的表層土壤粒度結(jié)構(gòu)發(fā)生明顯變化。其變化的特征是坡頂?shù)募?xì)顆粒組分的黏粒含量減少,粗顆粒砂粒組分增加。而坡底土壤黏粒含量相對(duì)增加較多。對(duì)比模擬降雨試驗(yàn)前后的土壤粒度分析結(jié)果可知,位于沉陷坡地坡頂?shù)耐寥鲤ち=M分由原來(lái)的2.5%下降到2.1%。說(shuō)明了在沉陷坡地1.2 m的距離范圍內(nèi),土壤黏粒含量平均流失率為16%。而粗顆粒組分的砂粒組分由原來(lái)的3.2%變?yōu)?.8%,砂粒組分含量增加率為19%。與此同時(shí),位于坡底土壤黏粒由原來(lái)2.5%增加到2.8%,黏粒含量累計(jì)增加率為12%。
在沉陷區(qū)土壤剖面上,位于土壤深度20 cm的土壤細(xì)顆粒組分由原來(lái)的2.5%增加到2.65%,黏粒含量累計(jì)增加率為6%。而在正常非沉陷區(qū)則未發(fā)生粒度結(jié)構(gòu)的變化。通過(guò)采動(dòng)區(qū)和正常區(qū)的對(duì)比,開(kāi)采沉陷區(qū)的土壤黏粒具有往深部搬運(yùn)的現(xiàn)象。
土壤大孔隙不僅是地下水與溶液的優(yōu)先運(yùn)移路徑,在強(qiáng)降雨條件下,表層土壤的顆粒運(yùn)動(dòng)導(dǎo)致土壤粒度組分變化[27-28]。
根據(jù)黃曉娜等[29]研究在地下采動(dòng)和地表復(fù)墾環(huán)境下,采煤沉陷區(qū)土壤顆粒不僅具有多重結(jié)構(gòu),同時(shí)具有一定的分形特征。降水的沖刷、淋溶作用是坡度土壤粒度組分出現(xiàn)差異分化的主要驅(qū)動(dòng)因素[30]。對(duì)比L區(qū)和Z區(qū)土壤粒度分布特征可以說(shuō)明(圖7),采煤塌陷區(qū)坡地地表土壤在降水沖刷和淋溶作用下,由于地面坡度的增大變化和土壤裂隙的發(fā)生,地表土壤粒度結(jié)構(gòu)的改變同時(shí)具有水平方向的遷移變化和剖面方向的改變。
圖7 塌陷區(qū)和正常非塌陷區(qū)土壤粒度分布特征
煤礦開(kāi)采除了因煤矸石和礦井廢水排放造成對(duì)礦區(qū)土壤環(huán)境污染影響外[31],開(kāi)采沉陷區(qū)的地表變形加劇了地表徑流作用,進(jìn)而導(dǎo)致礦區(qū)土壤的水土流失或土壤質(zhì)量下降[32]。相關(guān)的研究成果主要表現(xiàn)在因地表坡度的改變而增強(qiáng)了地表徑流作用[33],缺少對(duì)開(kāi)采沉陷區(qū)土壤垂向剖面質(zhì)量的變化規(guī)律的研究。實(shí)際上,在地下開(kāi)采引起的地表下沉過(guò)程中,除了因地表徑流造成的水平方向的土壤侵蝕作用外,土壤裂隙的產(chǎn)生加劇了營(yíng)養(yǎng)元素向深部的遷移,從而形成了土壤在水平和垂向剖面2個(gè)方向的侵蝕局面。由于土壤裂隙優(yōu)先路徑的存在,使土壤的銨態(tài)氮元素和細(xì)顆粒組分在徑流過(guò)程中得以短路,減少了因地表徑流過(guò)程中水平方向的遷移量。
在煤礦區(qū),因煤矸石堆存和礦井水排放的范圍相對(duì)集中,對(duì)礦區(qū)土壤質(zhì)量影響范圍相對(duì)較小[34],而礦井的生產(chǎn)或開(kāi)采區(qū)范圍往往較大,因此所造成的礦區(qū)土壤質(zhì)量下降是普遍且較大范圍普遍的[35-36]。由此,開(kāi)展采煤沉陷區(qū)土壤質(zhì)量控制技術(shù)研究,提高礦區(qū)耕地的利用效率將具有重要意義。
1)在地下開(kāi)采引起的地表下沉過(guò)程中,除了因地表徑流造成的水平方向的土壤侵蝕作用外,土壤裂隙的產(chǎn)生加劇了銨態(tài)氮元素向深部的遷移,從而形成了土壤在水平和垂向剖面2個(gè)方向的侵蝕面;
2)開(kāi)采沉陷區(qū)與非沉陷區(qū)兩者表層土壤的銨態(tài)氮遷移量差別巨大。在模擬試驗(yàn)條件下,坡地表層土壤銨態(tài)氮含量平均降低了14%;在剖面上,表層銨態(tài)氮質(zhì)量分?jǐn)?shù)8.8 mg/kg的峰值遷移至30 cm深度,含量峰值深度下移;而正常的地表無(wú)沉陷變形區(qū)模擬降雨前后的表層土壤銨態(tài)氮質(zhì)量分?jǐn)?shù)僅降低了0.4 mg/kg,降低率為4.9%;
3)開(kāi)采沉陷作用導(dǎo)致土壤粒度結(jié)構(gòu)的變化。位于沉陷坡地土壤黏粒含量平均流失率為16%。而粗顆粒組分的砂粒組分由原來(lái)的3.2%變?yōu)?.8%,砂粒組分含量增加率為3.6%。與此同時(shí),位于坡底土壤黏粒由原來(lái)2.5%增加到2.8%,黏粒含量累計(jì)增加率為12%;
采煤沉陷作用造成的土壤質(zhì)量下降的機(jī)理和規(guī)律區(qū)別于一般水蝕型水土流失類型,其重要特征是土壤在剖面或垂直方向質(zhì)量下降幅度大于非塌陷地,造成水土流失深層化。沉陷裂隙產(chǎn)生成為煤礦開(kāi)采沉陷區(qū)地表土壤質(zhì)量下降的重要驅(qū)動(dòng)因素。
[1] 何建林,何丙輝,陳曉燕,等. 流域土地利用變化對(duì)土壤養(yǎng)分的影響[J]. 水土保持研究,2009(6):220-223,228.
He Jianlin, He Binghui, Chen Xiaoyan, et al. Impact of land use type changes on soil nutrient in small watershed[J]. Research of Soil and Water Conservation, 2009(6): 220-223, 228. (in Chinese with English abstract)
[2] 孫維銀. 煤礦開(kāi)采中的水土保持[J]. 地下水,2010(1):157-158.
Sun Weiyin. Soil and water conservation in coal mining[J]. Groundwater, 2010(1): 157-158. (in Chinese with English abstract)
[3] 楊曙輝,宋天慶,陳懷軍,等. 中國(guó)耕地生態(tài)安全危機(jī)的影響及思考[J]. 農(nóng)業(yè)科技管理,2012(3):5-9.
Yang Shuhui, Song Tianqing, Chen Huaijun, et al. Influence and thinking of ecological security crisis of cultivated land in China[J]. Agricultural Science and Technology Management, 2012(3): 5-9. (in Chinese with English abstract)
[4] 朱麗,秦富倉(cāng). 露天煤礦開(kāi)采項(xiàng)目水土流失量預(yù)測(cè):以內(nèi)蒙古錫林郭勒盟勝利礦區(qū)一號(hào)露天煤礦為例[J]. 水土保持通報(bào),2008,28(4):111-115.
Zhuli, Qin Fucang. Forecast of soil and water loss in opencast coal mine-based on No.1 coal mine in Shengli Diggings of Inner Mongolia[J]. Bulletin of Soil and Water Conservation, 2008, 28(4): 111-115. (in Chinese with English abstract)
[5] Zhao Z Q, Isam S, Bai Z K, et al. Soils development in open-cast coal mine spoilsr eclaimed for 1-13 years in the West-Northern Loess Plateau of China[J]. European Journal of Soil Biology, 2013, 55: 40-46.
[6] 李海東,沈渭?jí)?,司萬(wàn)童. 中國(guó)礦區(qū)土地退化因素調(diào)查:概念、類型與方法[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),2015(4):445-451.
Li Haidong, Shen Weishou, Si Wantong. Investigation of driving factors of land degradation in mine areas in China: Concept, types and approaches[J].Journal of Ecology and Rural Environment, 2015(4): 445-451. (in Chinese with English abstract)
[7] 陳孝楊,王芳,王長(zhǎng)壘,等. 砂姜黑土區(qū)采煤塌陷坡耕地水蝕輸沙過(guò)程研究[J]. 水土保持學(xué)報(bào),2015,29(1):32-35. Chen Xiaoyang, Wang Fang, Wang Changlei, et al. Soil erosion and sediment transport process of subsidence slop farmland for coal mining from shajiang black soil areas[J]. Journal of Soil and Water Conservation, 2015, 29(1): 32-35. (in Chinese with English abstract)
[8] 劉輝,何春桂,鄧喀中,等.開(kāi)采引起地表塌陷型裂縫的形成機(jī)理分析[J]. 采礦與安全工程學(xué)報(bào),2013(3):380-384.
Liu Hui, He Chungui, Deng Kazhong, et al. Analysis of forming mechanism of collapsing ground fissure caused by mining [J] Journal of Mining and Safety Engineering, 2013(3): 380-384. (in Chinese with English abstract)
[9] 吳侃,胡振琪,常江,等. 開(kāi)采引起的地表裂縫分布規(guī)律[J]. 中國(guó)礦業(yè)大學(xué)學(xué)報(bào),1997(2):56-59.
Wu Kan, Hu Zhenqi, Chang Jiang, et al. Distribution law of ground crack induced by coal mining[J]. Journal of China University of Mining & Technology, 1997(2): 56-59. (in Chinese with English abstract)
[10] 程方奎. 煤礦開(kāi)采塌陷區(qū)土壤裂隙優(yōu)先流對(duì)地表水土流失控制作用模擬研究[D]. 淮南:安徽理工大學(xué),2016.
Cheng Fangkui. Simulation study on control effect of soil fracture priority flow on surface soil erosion in coal mining subsidence area[D]. Huainan:Anhui University of Science and Technology, 2016. (in Chinese with English abstract)
[11] 吳艷茹. 半干旱地區(qū)采煤塌陷對(duì)土壤性質(zhì)影響進(jìn)展研究[J]. 內(nèi)蒙古師范大學(xué)學(xué)報(bào):哲學(xué)社會(huì)科學(xué)版,2011,40(5):109-112.
Wu Yanru. Effect of coal-mining subsidence in semi -arid areas on soil properties[J].Journal of Inner Mongolia Normal University: Philosophy & Social Science, 2011, 40(5): 109-112. (in Chinese with English abstract)
[12] 李超,劉文兆,宋曉強(qiáng). 神府礦區(qū)采煤塌陷裂隙對(duì)坡面土壤水分及植被生長(zhǎng)狀況的影響[J]. 水土保持通報(bào),2016,36(6):122-126.
Li Cao, Liu Wenzhao, Song Xiaoqiang. Effect of mining- induced slop collapse fractures on soil moisture and vegetation in Shenfu coal mining area[J]. Bulletin of Soil and Water Conservation, 2016, 36(6):122-126. (in Chinese with English abstract)
[13] 孫龍,張洪江,程金花,等. 柑橘地土壤溶質(zhì)優(yōu)先運(yùn)移研究[J]. 水土保持學(xué)報(bào),2012,26(6):63-67.
Sun Long, Zhang Hongjiang, Cheng Jinhua, et al. Preferential transport of non-absorptive solute under citrus land[J]. Journal of Soil and Water Conservation, 2012, 26(6): 63-67. (in Chinese with English abstract)
[14] Soares A, Moldrup P, Vendelboe AL, et al. Effects of soil compaction and organic carbon content on preferential flow in loamy field soils[J]. Soil Science, 2015, 180(1): 10-20.
[15] 楊德軍,雷少剛,卞正富,等. 土壤物理質(zhì)量指標(biāo)研究進(jìn)展及在礦區(qū)環(huán)境中的應(yīng)用展望[J]. 長(zhǎng)江流域資源與環(huán)境,2015,24(11):1961-1968.
Yang Dejun, Lei Shaogang, Bian Zhengfu, et al. Review of the progress in the research on soil physical quality indicator and its application in the mining area environment[J]. Resources and Environment in the Yangtze Basin, 2015, 24(11): 1961-1968. (in Chinese with English abstract)
[16] 韓振英,郭巧玲,蘇寧. 采煤塌陷對(duì)砂土區(qū)土壤物理性質(zhì)的影響[J]. 人民珠江,2016,37(12):16-21.
Han Zhenying, Guo Qiaoling, Su Ning. Influence of mining subsidence on physical properties of soil in sand area[J]. Pearl River, 2016, 37(12): 16-21. (in Chinese with English abstract)
[17] 謝元貴,車(chē)家驤,孫文博,等. 煤礦礦區(qū)不同采煤塌陷年限土壤物理性質(zhì)對(duì)比研究[J]. 水土保持研究,2012,19(4):26-29.
Xie Yuangui, Che Jiaxiang, Sun Wenbo, et al. Comparison study of mining subsidence years on soil physical properties in mining area[J]. Research of Soil and Water Conservation, 2012, 19(4): 26-29. (in Chinese with English abstract)
[18] 田坤,Huang Chihua,張廣軍. 土壤溶質(zhì)遷移至地表徑流過(guò)程的室內(nèi)模擬試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(11):97-102.
Tian Kun, Huang Chihua, Zhang Guangjun. Laboratory simulation experiment on chemical transport from soil to surface runoff[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(11): 97-102. (in Chinese with English abstract)
[19] 商書(shū)波. 降雨對(duì)土壤膠體釋放與遷移的影響研究[J]. 水土保持學(xué)報(bào),2009(6):199-202.
Shang Shubo. Effects of rainfall on soil colloid release and migration[J]. Journal of Soil and Water Conservation, 2009(6): 199-202. (in Chinese with English abstract)
[20] 高光耀,傅伯杰,呂一河,等.干旱半干旱區(qū)坡面覆被格局的水土流失效應(yīng)研究進(jìn)展[J]. 生態(tài)學(xué)報(bào),2013,33(1):12-22.
Gao Guangyao, Fu Bojie, Lv Yihe, et al. The effect of land cover pattern on hillslope soil and water loss in the arid and semi-arid region: A review[J]. Acta Ecologica Sinica, 2013, 33(1): 12-22. (in Chinese with English abstract)
[21] 許文強(qiáng),羅格平,陳曦,等. 干旱區(qū)綠洲不同土地利用方式和強(qiáng)度對(duì)土壤粒度分布的影響[J]. 干旱區(qū)地理,2005(6):800-804.
Xu Wenqiang, Luo Geping, Chen Xi, et al. Effects of different land use patterns and intensities on soil particle size distribution in arid oasis[J]. Arid Area Geography, 2005(6): 800-804. (in Chinese with English abstract)
[22] 雷少剛,肖浩宇,郄晨龍,等. 開(kāi)采沉陷對(duì)關(guān)鍵土壤物理性質(zhì)影響的相似模擬實(shí)驗(yàn)研究[J]. 煤炭學(xué)報(bào),2017,42(2):300-307.
Lei Shaogang, Xiao Haoyu, Qie Chenlong, et al. Similar simulation experiment on the influence of mining subsidence on the key physical properties of soil[J]. Journal of China Coal Society, 2017, 42(2): 300-307. (in Chinese with English abstract)
[23] Germann P, Beven K. Water flow in soil macropores.Ⅰ. An Experimental Approach[J]. Journal of Soil Science, 1981(32): 1-13
[24] Fitzpattrick E A. Micromorphology of soil[M]. London: Chapman and Hall, 1984: 138-139.
[25] Beven K, Germann P. Macropore sand waterflows in soils. Water Resources Research[J]. 1982, 18(5): 1311-1325.
[26] 倪余文,區(qū)自清,應(yīng)佩峰. 土壤優(yōu)先水流及溶質(zhì)優(yōu)先遷移的研究[J]. 應(yīng)用生態(tài)學(xué)報(bào),2001,12(1):103-107.
Ni Yuwen, Ou ZiQqing, Ying Peifeng. Preferential flow and its effect on solute migration in soil[J]. Chinese Journal of Applied Ecology, 2001, 12(1): 103-107. (in Chinese with English abstract)
[27] 齊登紅,靳孟貴,劉延鋒. 降水入滲補(bǔ)給過(guò)程中優(yōu)先流的確定[J]. 地球科學(xué):中國(guó)地質(zhì)大學(xué)學(xué)報(bào),2007(3):420-424.
Qi Denghong, Jin Menggui, Liu Yanfeng. Determination of priority flow in the process of precipitation infiltration[J]. Earth Science: Journal of China University of Geosciences, 2007(3): 420-424. (in Chinese with English abstract)
[28] 吳慶華,朱國(guó)勝,崔皓東,等. 降雨強(qiáng)度對(duì)優(yōu)先流特征的影響及其數(shù)值模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(20):118-127.
Wu Qinghua, Zhu Guosheng, Cui Haodong, et al. Effect of precipitation intensities on preferential flow and its numerical modeling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(20): 118-127. (in Chinese with English abstract)
[29] 黃曉娜,李新舉,劉寧,等. 煤礦塌陷區(qū)不同復(fù)墾年限土壤顆粒組成分形特征[J]. 煤炭學(xué)報(bào),2014,39(6):1140-1146.
Huang Xiaona, Li Xinju, Liu Ning, et al. Characteristics of soil particles fractal dimension under different reclamation years in coal mining subsidence[J]. Journal of China Coal Society, 2014, 39(6): 1140-1146. (in Chinese with English abstract)
[30] 馬傳功,陳建軍,郭先華,等. 坡耕地不同種植模式對(duì)農(nóng)田水土保持效應(yīng)及土壤養(yǎng)分流失的影響[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),2016,33(1):72-79.
Ma Chuangong, Chen Jianjun, Guo Xianhua, et al. Effects of different cropping patterns on soil and water conservation benefits and soil nutrients loss on sloping land[J]. Journal of Agricultural Resources and Environment, 2016, 33(1): 72-79. (in Chinese with English abstract)
[31] 梅明,李俊峰,周旋,等. 煤炭開(kāi)采對(duì)周邊土壤環(huán)境的影響[J].武漢工程大學(xué)學(xué)報(bào),2011,33(9):71-76.
Mei Ming, Li Junfeng, Zhou Xuan, et al. Surrounding soil environment impact analysis of coal mining[J]. Journal of Wuhan Institute of Technology, 2011, 33(9): 71-76. (in Chinese with English abstract)
[32] 程靜霞,聶小軍,劉昌華. 煤炭開(kāi)采沉陷區(qū)土壤有機(jī)碳空間變化[J]. 煤炭學(xué)報(bào),2014,39(12):2495-2500.
Cheng Jingxia, Nie Xiaojun, Liu Changhua. Spatial variation of soil organic carbon in coal-mining subsidence areas[J]. Journal of China Coal Society, 2014, 39(12): 2495-2500. (in Chinese with English abstract)
[33] 陳士超,左合君,胡春元,等. 神東礦區(qū)活雞兔采煤塌陷區(qū)土壤肥力特征研究[J]. 內(nèi)蒙古農(nóng)業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2009,30(2):115-120.
Chen Shichao, Zuo Hejun, Hu Chunyuan, et al. Study on soil fertility characteristics of Huojitu excavated coal pits of Shendong diggings[J]. Journal of Inner Mongolia Agricultural University: Natural Science Edition, 2009, 30(2): 115-120. (in Chinese with English abstract)
[34] 徐良驥,黃璨,章如芹,等. 充填與非充填開(kāi)采條件下煤礦沉陷區(qū)耕地土壤質(zhì)量空間分布規(guī)律研究[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2014,22(6):635-641.
Xu Liangji, Huang Can, Zhang Ruqin, et al. Spatial distribution regularities of farmland soil quality in subsidenceareas of coal filling mining and non-filling mining[J]. Chinese Journal of Eco-Agriculture, 2014, 22(6): 635-641. (in Chinese with English abstract)
[35] Bian Zhengfu, Inyang Hilar Y I, Daniels John L. Environmental issues from coal mining and their solutions[J]. Mining Science and Technology, 2010(20): 0215-0223.
[36] Reynolds W D, Drury C F, Yang X M, et al. Land management effects on the near -surface physical quality of a clay loam soil[J]. Soil and Tillage Reseach, 2007, 96(1/2): 316-330.
Effect of soil fracture priority flow on soil ammonium nitrogen transfer and soil structure in mining area
Yan Jiaping1, Chen Xiaoyang2, Cheng Fangkui1, Huang He2, Fan Tingyu2
(1.,232001,; 2.,232001,)
North China Plain is the main coal production area with sedimentary deposit coal seam overlaid by the thicker soil layer above. The decrease of land surface elevation typically occurs at the rate in centimeters per year. Subsidence causes permanent inundation, especially topography gradient increase on the boarder of subsidence, surface runoff change, soil and water loss, and soil quality decline. It is critical to study the relationship among subsidence, surface runoff and soil quality change, and find the key factors that control the water and soil loss. In this paper, a two-dimensional undisturbed soil field experiment is performed, simulating subsidence process during coal mining. The data monitored in the experiment include surface subsidence, soil structure development, ammonia concentration and particle size change of soil during the rainfall-runoff process. Results show that underground mining not only changes surface topographic gradient and soil structure significantly but also aggravates the transport intensity of nutrient and particle in soil with runoff in the horizontal direction. Moreover, the soil crack produced by surface subsidence forms a series of groundwater preferential flow paths and promotes nutrient transport towards deeper layer. Firstly, in the horizontal direction, the ammonia content decreases by 14% on average in the subsidence with a length of 1.2 m and a slope of 2.1o after simulated rainfall of 122 mm. Secondly, in the vertical profile, the original ammonia peak value in the surface layer is 8.8 mg/kg, migrating a depth of 30 cm downwards. Thirdly, soil texture changes ununiformly in different subsidence parts. On the sloping bottom over the distance of 1.2 m, the fine-grained soil clay (≤ 2m) content decreases from 2.5% to 2.1%, and the average rate of soil clay loss is 16%; coarse-grained sand (≥50m) increases from 3.2% to 3.8%, and the average increase rate is 3.6%. Reversely, the amount of clay at the bottom increases from 2.5% to 2.8% and the cumulative increase rate of clay content is 12%. This study shows that during the development of the subsidence basin, the soil crack experiences an evolution process of soil force changing from tension to compression. Preferential flow of soil crack has become an important driving factor for soil erosion in coal mining subsidence areas. In the tension stage of the crack development, the surface runoff would move deeper directly where the preferential flow paths are dominant. Part of the ammonia and soil particles in the soil would transport through these shortcuts with the runoff and infiltration. Furthermore, this process of crack preferential flow decreases the amount of lateral migration of soil nutrients and particles in the runoff and infiltration process and enhances profile transport. This process causes a rapid decline of soil fertility than usual. Fine particles move to the deeper layer and coarse particle proportion increases. The water and soil loss are strengthened. Therefore, the decrease of the quality of the soil caused by mining subsidence is completely different from the horizontal erosion type runoff erosion in the area where natural slope is predominant. Soil degradation caused by mining subsidence is more serious, and the soil crack preferential flow is the important driving factor to reduce the soil quality in coal mining subsidence area. It does matter to carry out control technology research for soil quality and improve the soil quality and land utilization efficiency in mining area.
coal mines; soils; nitrogen; ammonia nitrogen migration; soil structure; soil crack; priority flow
10.11975/j.issn.1002-6819.2018.02.016
X37
A
1002-6819(2018)-02-0120-07
2017-08-13
2018-01-08
國(guó)家自然科學(xué)基金資助項(xiàng)目(41372369)
嚴(yán)家平,教授,博士生導(dǎo)師,主要從事地質(zhì)工程、礦山地質(zhì)環(huán)境治理研究。Email:jpyan@aust.edu.cn
嚴(yán)家平,陳孝楊,程方奎,黃 河,范廷玉. 礦區(qū)土壤裂隙優(yōu)先流對(duì)土壤銨態(tài)氮遷移及土壤結(jié)構(gòu)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(2):120-126. doi:10.11975/j.issn.1002-6819.2018.02.016 http://www.tcsae.org
Yan Jiaping, Chen Xiaoyang, Cheng Fangkui, Huang He, Fan Tingyu. Effect of soil fracture priority flow on soil ammonium nitrogen transfer and soil structure in mining area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 120-126. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.02.016 http://www.tcsae.org