• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    熱軋水/油基納米潤滑劑

    2018-02-27 00:37:14趙敬偉夏文真姜正義
    材料與冶金學(xué)報 2018年4期
    關(guān)鍵詞:杜塞爾多夫澳大利亞德國

    趙敬偉,夏文真,吳 輝,姜正義

    (1.澳大利亞伍倫貢大學(xué) 機(jī)械、材料、機(jī)電和生物醫(yī)學(xué)工程系,澳大利亞 伍倫貢 2522;2.德國杜塞爾多夫馬普鋼鐵研究所 材料結(jié)構(gòu)及納米/微機(jī)械部,德國 杜塞爾多夫 40237)

    Hot rolling is widely applied in the steel-making industry to manufacture steel products with required dimensions,excellent mechanical properties and essential surface finish[1-3].With the increasing concerns about energy crisis and environmental pollution in modern society,hot rolling of steels has drawn considerable attention due to its huge energy consumption and pollutant emission.The lubrication applied in hot rolling of steels has been a long-standing research topic because it can lower the friction between the work roll and workpiece,reduce rolling force,increase roll service life,improve surface quality of steel products and reduce energy consumption[4-6].Traditionally,oil-in-water (O/W) emulsions are most commonly used as lubricants in hot steel rolling due to their low cost,good cooling ability,non-flammable,good lubricating and low adverse environmental impact characteristics[7-9].The application of O/W emulsions,however,may cause significant environmental issues due to the production of smoke during hot rolling and the discharge of residual oil after rolling[10-11].

    Over the past few years,nanolubrication technology for hot steel rolling has attracted an increasing interest,and has been becoming a hot area of research[12-18].Nanolubricant is a combination of nanoparticles and liquid lubricants,and it has a potential to meet emission and environmental requirements while providing the desired friction and wear performance.The nanoparticles in the base fluid can enhance lubrication efficiency and have a good thermal stability at elevated temperatures.Nanoparticles in lubricants can exhibit excellent friction reduction and anti-wear properties through specified lubrication mechanisms[19-28].For nanolubricants containing spherical nanoparticles,four lubrication mechanisms,including rolling effects,protective film,mending effect and polishing effect,may be involved,as shown in Fig.1[29].The spherical nanoparticles tend to roll at the interfaces at low shear rates and pressures,affecting the friction behaviour from the pure sliding friction to the mixed sliding-rolling friction,as shown in Fig.1a.Nanoparticles can form a protective film as a result of tribochemical reactions or tribosintering,as shown in Fig.1b.These films can avoid the contact of mating surfaces and they have better tribological performance than the substrate.Mending effect (Fig.1c) is caused by the deposit of the nanoparticles into the defects to protect the friction surface.The nanoparticles with higher hardness can polish the lubricating surface,thereby reducing the surface roughness but sometimes increasing the weight loss,as shown in Fig.1d.

    Fig.1 Schematic of lubrication mechanisms of nanolubricants containing spherical nanoparticles[29] (a)—rolling effect; (b)—protective film; (c)—mending effect; (d)—polishing effect

    In recent years,O/W based nanolubricants for hot rolling of steels have been of increasing interests to scholars.Nanoparticles can improve the stability of O/W emulsions,reduce friction and wear,and thereby enhance the efficiency of lubrication in the hot rolling of steels.It has the potential to reduce the concentration of oil in O/W emulsions through replacing a certain amount of oil by nanoparticles but without deteriorating the lubrication performance,which can contribute to achieving the goal of “Green Rolling” in the steel-making industry.The purpose of this article is to present the latest progress in the research on O/W based nanolubricants,in the aspects of preparation,wettability,tribological properties,and lubrication effects in practical hot rolling,and the lubrication mechanisms will be discussed.This article will be of practical significance for promoting the development of lubrication technology for hot rolling of steels.

    1 Preparation methodology

    Nanolubricants are generally prepared by two methods: one-step method and two-step methods.One-step method yields nanofluids directly through physical vapour deposition technique or liquid chemical method to avoid the processes of drying,storage,transportation,and dispersion of nanoparticles and to minimise the agglomeration of nanoparticles.This method combines the synthesis of nanoparticles with a dispersion of the nanoparticles in the fluid[30-32].The limitations of one-step method are that synthesis of nanofluids cannot be scaled up for great industrial functions and the cost is high.In two-step method,nanoparticles,nanofibers,nanotubes,or other nanomaterials are first synthesised in the form of dry powder by means of inert gas condensation,chemical vapour deposition,mechanical alloying or other suitable techniques.Then,the nano-sized powders are dispersed into base fluids with the aid of stirring,sonication,homogenisation or other mixing techniques along with dispersants or surfactants,in order to minimise particle aggregations and improve dispersion behaviour[30,33].The main disadvantage of two-step method is that agglomeration of nanoparticles is caused due to the high surface area and surface activity of nanoparticles,which affects the lubrication performance of the prepared nanolubricants.

    For the preparation of nanolubricants to be used in hot rolling,the two-step method,compared to the one-step method,is a better choice considering the scale and the cost of hot rolling production in the steel-making industry.Metal oxides,such as TiO2,Al2O3,and Fe3O4,with size of around tens of nanometers are commonly used as the additives.A typical preparation procedure of O/W based nanolubricants containing TiO2nanoparticles is as follows[34]: (i) TiO2nanoparticles with a particle size of 30 nm are first dispersed in distilled water under high-speed stirring for 3 min; (ii) commercial lubricant oil is dropped into the fluids and stirred for 3 min; and (iii) the mixed nanolubricants are subjected to ultrasonic vibration for 10 min.The concentration of TiO2nanoparticles can vary depending on the actual needs of research.The amount of oil is determined based on the case of O/W emulsions practically used in hot rolling.As O/W emulsions with oil concentrations mass fraction varying from 1% to 5% are in general use in steel production lines,the amount of base lubricant oil added in the nanolubricants can be 1%~5%.There are a number brands of lubricant oils,such as Quaker,commercially available in the market for hot rolling of steels.The purpose of mechanical stirring and ultrasonic vibration is to ensure the oil and nanoparticles distribute dispersedly and homogeneously in the prepared O/W based nanolubricants.

    2 Wettability

    Wettability is one of the most important lubricant characteristics,which reflects the affinity and adhesion of a liquid to maintain contact with a solid surface.Generally,superb wettability intends to facilitate the formation of a lubrication film which is able to separate the friction pair contacting each other.Wettability is usually evaluated by contact angle,which can be expressed by[35]:

    whereθCis the equilibrium contact angle,γSGis the solid-gas interfacial energy,γSLis the solid-liquid interfacial energy,andγLGis the liquid-gas interfacial energy.The smaller the contact angle,the better the wettability.The contact angle formed when a liquid/gas interface meets a solid surface is schematically shown in Fig.2.

    Fig.2 Schematic illustration of contact angle θC

    Fig.3 shows the variations of contact angles when TiO2nanoparticles (particle size: 30 nm) are added into the O/W emulsion containing mass fraction 1% oil[36-37].For the contact angle tests,lubricants were dropped onto the surface of a high speed steel which was obtained directly from work rolls for hot rolling and had a surface roughness of 0.55 μm.It can be seen that the addition of TiO2nanoparticles into the O/W emulsion induces decreased contact angles.Also,the contact angle decreases gradually first,then to a minimum value at the TiO2concentration mass fraction of 4%,and finally increases slightly with the further increase of TiO2.The results indicate that the wettability between the lubricants and the work roll increases first,and then decreases with an increase of the concentration of TiO2nanoparticles.An addition of 4% TiO2mass fraction nanoparticles into O/W emulsion containing mass fraction 1% oil is the most effective for obtaining the best adhesion of nanolubricants with the work roll.An increase in the concentration of TiO2induces more TiO2nanoparticles accumulate near the solid surface,which decreases the interfacial tension between the droplet and the substrate,and thus promotes the wettability of the substrate to become more hydrophilic[38].However,the concentration of nanoparticles should be controlled within an appropriate range because nanoparticles will agglomerate with a larger particle size when the concentration of nanoparticles is high,which affect the tribological properties and lubrication performance in hot rolling.The contact angle of a nanolubricant is affected by its pH value.An increase in pH value will result in a greater contact angle which thus reduces the wettability of nanolubricants[39].

    Fig.3 Variations of contact angles when TiO2 nanoparticles are added into the O/W emulsion containing 1% oil [36-37]

    3 Tribological properties

    Reduction in friction and wear is one of the most important objectives of tribological research,and a key indicator of lubrication performance.Due to the special physical and chemical properties of nanomaterials,a number of studies have been conducted in recent years with the purpose of improving the tribological properties of O/W based nanolubricants.We recently conducted systematic investigations on the tribological properties of TiO2nano-additive O/W based nanolubricants using a ball-on-disk tribometer.In the research,the balls made of Cr steel were used to represent work rolls in rolling,and the disks made of high strength or stainless steels were the workpieces to be rolled.The configuration of the ball-on-disk tribometer is schematically shown in Fig.4.The normal force applied to the ball holder was measured by an Fz load cell installed above a spring.The frictional force was induced by the combination of the rotating motion and the normal load,and it was recorded by an Fx load cell attached to the right point of the arm.The disk holder and disk,which were controlled by a servo motor for rotating,were located in a liquid container.

    Fig.4 Schematic of the ball-on-disk tribometer used for tribological tests

    During hot rolling of steels,oxide scale forms inevitably on the workpiece surface and affects the tribological conditions between the work roll and the workpiece.It results in changes of the rolling forces,torques,and power consumption,as well as the wear and the surface quality of the work roll in hot rolling.For simulating the real surface of the workpiece in hot rolling,the disks for tribological tests need to be oxidised so that oxide scales are formed.Fig.5 shows the effect of TiO2nanoparticles on the coefficient of friction (COF) of O/W emulsion with the progressing of tribological testing time[40].In the figure,‘O/W’ means O/W emulsion containing mass fraction 1% oil,and ‘1,2TiO2’ means O/W nanolubricant containing mass fraction 1% oil and 2% TiO2nanoparticles.The high strength steel disks were first machined and then oxidised prior to tribological tests.It is clear that an addition of 2% TiO2mass fraction nanoparticles into O/W emulsion can lead to a significant reduction of the COF.

    Fig.5 Effect of TiO2 nanoparticles on the COF of O/W emulsion with the progressing of tribological testing time[40]

    Fig.6 shows the COFs measured for the O/W based nanolubricants with different oil mass fraction (0.05,0.125,0.25,0.5 and 1%) but with the same nano-TiO2addition of 2.0%.It can be seen that the reduction of oil concentration induces an increase of the COF.Serious fluctuation phenomenon of COF is found when the oil concentration mass fraction is 0.05%,but becomes better with the increase of oil,as shown in Fig.6a.Fig.6b shows the average COF values of the nanolubricants under different lubrication conditions.It is clear that an addition of 1% oil induces the lowest COF among all the lubrication conditions.When the oil concentration mass fraction is reduced to 0.5% and 0.25%,the COF values are similar,and both are slightly higher than that under O/W emulsion.When the oil concentration mass fraction is further reduced to 0.125% and 0.05%,however,significant increase in COF is caused,and the lower the oil concentration,the higher the COF.

    Fig.6 (a) Dependence of COF on tribological testing time,and (b) average COF values under different lubrication conditions[40]

    The TiO2nanoparticles in the O/W based nanolubricants are first distributed on the surface of the oil droplets and,when the surface of the oil droplet is saturated,TiO2nanoparticles are then distributed into the water.The TiO2nanoparticles coming from the oil droplets can remain within the oil pool,and finally reduce the COF.The extra TiO2nanoparticles in the water tend to adhere onto the surface of the ball,disk and oil pool in order to reduce free energy,and then become a nanoparticle aggregation area around the oil pool while not entering the contact area[34,40].The nanoparticles in this area can be held in the valleys to protect the surface of the oxidised disk,but rub against each other to increase the COF.For the case of ‘1,2TiO2’ lubricant,no nanoparticle aggregation area exits as all the nanoparticles can be effectively dissolved into the oil[36].With the decrease of oil,the amount of saturated nanoparticles increases,which will enter water and form a nanoparticle aggregation area.Especially when the oil concentration mass fraction is very low,such as 0.05%,significant aggregation of nanoparticles will be induced along the horizontal level.As a result,the number of nanoparticles becomes less in the oil pool but more around the oil pool.In addition,only few nanoparticles can enter the contact area due to the thinning of oil film with the reduction of oil percentage[41].Therefore,both the COF and the degree of fluctuation of the COF increase with testing time due to the reduction of oil concentration.

    The oxide scale formed on the steel surface in hot rolling is generally composed of three layers of iron oxide phases,with wustite (FeO) being the closest to the steel matrix,magnetite (Fe3O4) the intermediate layer,and hematite (Fe2O3) the outermost layer.O/W based nanolubricants may exhibit different tribological properties when working on the oxide scale with different compositions.Fig.7 shows the dependences of surface roughness and COF on oxidation time of the disks used for tribological tests[42].The disks were made of high strength steels and oxidised at 1 100 ℃ for different times.The O/W based nanolubricants used in the tribological tests contained mass fraction 1% oil and 2% TiO2nanoparticles.A change of oxidation time induces the variation of the surface morphologies of oxide scale,and therefore the surface roughness of the disks.It can be seen that the surface roughness decreases sharply when the oxidation is increased to 10 min,and then decreases slightly with the further increase of oxidation time.Differently,COF decreases first,then reaches the minimum value at the oxidation time of 20 min,and finally increases when the oxidation time is further increased.Such a change of COF with oxidation time is a result of the reaction between nanoparticles and oxide scale under the mechanisms of thin film lubrication and boundary lubrication.The reduction of surface roughness results in a decrease of the COF when the lubrication regime is boundary lubrication.When the surface roughness decreases further,the main lubrication regime becomes thin film lubrication.Once the surface roughness reduces too much and some of the TiO2nanoparticles cannot go through the contact area,the COF increases[42-43].

    Fig.7 Dependences of surface roughness and COF on oxidation time[42]

    4 Lubrication effects in hot rolling

    The developed O/W based nanolubricants are to be finally applied to practical hot rolling of steels.Hot rolling tests are therefore essential to be conducted to evaluate the lubrication effects of the lubricants.Fig.8 shows the effects of O/W based nanolubricants on rolling force during one-pass hot rolling[44].In the figure,‘Dry’ means no lubrication,‘O/W’ means O/W emulsion containing mass fraction 1% oil,and ‘0.5TiO2’,‘1TiO2’,‘1.5TiO2’,‘2TiO2’,‘4TiO2’ and ‘6TiO2’ mean nanolubricants containing mass fraction 0.5%,1%,1.5%,2%,4% and 6% TiO2nanoparticles,respectively,in addition to 1% oil.The specimens used were 304 stainless steels,and the hot rolling temperature was around 1050 °C.It can be seen from Fig.8 that nanolubricants can effectively reduce the rolling force comparing to the conventional O/W emulsion.In addition,the rolling force decreases first,and then reaches the minimum value at the TiO2mass fraction of 1.5%,and finally increase when the concentration of TiO2is further increased.

    Fig.8 Effects of lubrication conditions on rolling force during one-pass hot rolling[44]

    There is a positive relationship between the rolling force and COF during rolling process.The high temperature circumstance during hot rolling has a significant influence on the lubrication mechanism,but the contacting time between the lubricant oil and hot workpiece is not enough for lubricant oil to reach its burning point,and thus the oil/water mixture still keeps in liquid[45].The oil working in the form of liquid in hot rolling process can become a thin oil film in hot rolling process,which reduce the COF and therefore the rolling force.The lubrication mechanism of the O/W based nanolubircants in the hot rolling process is schematically shown in Fig.9[44].

    Fig.9 Schematic diagram of (a) side and (b) top cross-section views of lubrication mechanism of the nanolubricant during hot rolling[44]

    Fig.10 shows the effects of TiO2concentration mass fraction in O/W emulsion (1% oil) on rolling force under different hot rolling conditions[42].In order to produce two kinds of surface morphologies of oxide scale,one group of specimens was heated to 1100 °C for 1 h under protection of nitrogen(first condition) and the other group was heat treated without any protection (second condition).The start rolling temperature was about 1050 °C.It can be seen that the rolling force under the first condition decreases slightly when thew(TiO2) increases up to 4%,and then increases remarkably when the w(TiO2) is over 4%.In case of the second condition,the rolling force decreases continuously with the increase ofw(TiO2).Also,the rolling force under the second condition is lower than that under the first condition.

    Fig.10 Effects of TiO2 concentration mass fraction on rolling force under different hot rolling conditions[42]

    In case of the first rolling condition,the addition of TiO2nanoparticles in the O/W emulsion can reduce the COF when the mass fraction of TiO2nanoparticles is below 4%.This is because enormous craters on the surface of the workpiece within the contact area can hold a mass of nanoparticles,and therefore provide better lubrication.Once the nanoparticles enter the contact area,they can take effect to reduce COF.When the mass fraction of nanoparticles is over 4%,the interface between the oil droplet and water will be saturated by nanoparticles,and some of the nanoparticles will remain in the water and concentrate to around the contact area.This causes the nanoparticles to rub against each other and the surface of work roll,and increases the COF.For the second rolling condition,the addition of 6% concentration mass fraction of TiO2nanoparticles induces continuous reduction of COF,because cracks occur more easily on the surface during deformation of thick scale and can hold a large amount of nanoparticles including that exist in the water,so that more nanoparticles enter the contact area to further reduce the COF.As an increase in the thickness of oxide scale contributes to the decrease of COF,the rolling force under the second condition is lower than that under the first condition[46].The lubrication mechanisms of the O/W based nanolubricant containing 6% TiO2nanoparticles under different hot rolling conditions are schematically illustrated in Fig.11[42].Such mechanisms can also be used to explain the positive effect of TiO2nanoparticles on reducing the rolling force in the second pass of hot rolling[43].

    Fig.11 Lubrication mechanisms of the O/W based nanolubricant containing 6% TiO2 nanoparticles under different hot rolling conditions of (a,b) first condition and (c,d) second condition corresponding to Fig.10[42]. Note: (a,c) and (b,d) are respectively the side and top cross-section views

    5 Conclusions

    O/W emulsions widely used as lubricants in hot rolling of steels may cause significant environmental issues due to the production of smoke and the discharge of residual oil after rolling.The addition of nanoparticles in O/W emulsions can enhance the efficiency of lubrication,and has a potential to reduce the concentration of oil in O/W emulsions through replacing a certain amount of oil but without deteriorating the lubrication performance in hot rolling of steels.This paper examines the latest progress made in the research on O/W based nanolubricants for hot rolling of steels,focusing on the preparation methodology,wettability,tribological properties and lubrication effects in hot rolling.As a new research area with great practical significance,much more work on O/W based nanolubricants still deserve to be done until the developed lubricants can be finally applied in practical hot rolling process of steels in the steel-making industry.

    猜你喜歡
    杜塞爾多夫澳大利亞德國
    The Wolf and the Seven Little Goats
    德國豹2號
    軍事文摘(2023年3期)2023-02-21 13:09:26
    何佳作品
    澳大利亞RaeRae五口之家
    歐洲生活初體驗——杜塞爾多夫
    華人時刊(2020年23期)2020-04-13 06:04:08
    我們在德國怎么扔垃圾
    文苑(2019年20期)2019-11-16 08:52:30
    澳大利亞將嚴(yán)格限制2,4-滴的使用
    德國棄煤的煩惱
    能源(2017年12期)2018-01-31 01:43:11
    在澳大利亞騎行
    華人時刊(2016年1期)2016-04-05 05:56:17
    致恒(天津)實業(yè)有限公司參展2015德國杜塞爾多夫GIFA展會紀(jì)實
    国产日韩欧美在线精品| 午夜91福利影院| 成年人黄色毛片网站| 国产三级黄色录像| tube8黄色片| 国产精品久久久久成人av| 国产亚洲欧美精品永久| 精品国产一区二区久久| 国产免费福利视频在线观看| 亚洲第一av免费看| 999久久久国产精品视频| 一区二区三区乱码不卡18| 国产精品欧美亚洲77777| 一级a爱视频在线免费观看| 母亲3免费完整高清在线观看| 丝袜喷水一区| 国产一级毛片在线| 午夜福利视频精品| 亚洲精品国产一区二区精华液| 最近最新中文字幕大全免费视频| 丁香六月天网| 欧美日韩亚洲高清精品| 亚洲欧美日韩高清在线视频 | 亚洲,欧美精品.| 悠悠久久av| 欧美精品啪啪一区二区三区 | 黄片播放在线免费| 视频区图区小说| 永久免费av网站大全| 一二三四社区在线视频社区8| 天天躁夜夜躁狠狠躁躁| 老司机影院成人| 黄色a级毛片大全视频| 狂野欧美激情性xxxx| 国产精品成人在线| 黄色视频,在线免费观看| 日韩,欧美,国产一区二区三区| 国产成人欧美| 久久人人爽人人片av| 国产在视频线精品| 黄片播放在线免费| 亚洲国产欧美在线一区| 香蕉国产在线看| 91av网站免费观看| 国产日韩欧美在线精品| 婷婷成人精品国产| 老司机深夜福利视频在线观看 | 建设人人有责人人尽责人人享有的| 精品第一国产精品| 在线av久久热| 大香蕉久久成人网| 免费女性裸体啪啪无遮挡网站| 亚洲第一av免费看| 飞空精品影院首页| 一边摸一边抽搐一进一出视频| 久久ye,这里只有精品| 菩萨蛮人人尽说江南好唐韦庄| 69av精品久久久久久 | 91成人精品电影| 国产精品一二三区在线看| 亚洲精品国产av成人精品| 丰满人妻熟妇乱又伦精品不卡| 伊人亚洲综合成人网| 欧美日韩亚洲综合一区二区三区_| 国产精品二区激情视频| 亚洲全国av大片| 九色亚洲精品在线播放| 咕卡用的链子| 亚洲色图综合在线观看| 精品少妇久久久久久888优播| 一区二区av电影网| 青草久久国产| 国内毛片毛片毛片毛片毛片| 免费在线观看完整版高清| av在线app专区| 国产高清视频在线播放一区 | 国产精品久久久av美女十八| netflix在线观看网站| 99热国产这里只有精品6| 性色av乱码一区二区三区2| 女性生殖器流出的白浆| 欧美黄色片欧美黄色片| 国产淫语在线视频| 国产野战对白在线观看| 新久久久久国产一级毛片| 狠狠精品人妻久久久久久综合| 中文字幕最新亚洲高清| 成人国产av品久久久| 久久精品熟女亚洲av麻豆精品| 老汉色∧v一级毛片| 手机成人av网站| 91精品国产国语对白视频| 国产人伦9x9x在线观看| 成年女人毛片免费观看观看9 | 91精品国产国语对白视频| 亚洲综合色网址| 一区二区三区精品91| 久久精品国产亚洲av高清一级| 久久国产精品大桥未久av| 精品乱码久久久久久99久播| 日韩视频在线欧美| 久久精品国产a三级三级三级| 亚洲欧美激情在线| 久久久久久免费高清国产稀缺| 亚洲欧美清纯卡通| 国产在视频线精品| 91精品国产国语对白视频| 天堂8中文在线网| 青青草视频在线视频观看| 18在线观看网站| 亚洲精品中文字幕一二三四区 | 超碰97精品在线观看| 99精品久久久久人妻精品| 国产黄频视频在线观看| 国产精品 国内视频| 欧美xxⅹ黑人| 99国产综合亚洲精品| 一个人免费在线观看的高清视频 | 汤姆久久久久久久影院中文字幕| 国产在线免费精品| 国产精品麻豆人妻色哟哟久久| 涩涩av久久男人的天堂| 亚洲专区中文字幕在线| 少妇粗大呻吟视频| 黄色 视频免费看| 啦啦啦啦在线视频资源| 一区二区三区乱码不卡18| 99久久综合免费| 午夜福利视频精品| 久久 成人 亚洲| 人人澡人人妻人| 成人影院久久| 欧美精品av麻豆av| 久久久久精品国产欧美久久久 | 久久人人爽av亚洲精品天堂| 国产人伦9x9x在线观看| av一本久久久久| 久久久久国产一级毛片高清牌| 亚洲欧美成人综合另类久久久| 嫁个100分男人电影在线观看| 久久精品国产亚洲av高清一级| 国产成人精品在线电影| 91成年电影在线观看| 成人免费观看视频高清| 十八禁网站网址无遮挡| 欧美黄色片欧美黄色片| 国产在线免费精品| 日韩三级视频一区二区三区| kizo精华| 国产精品.久久久| 天堂中文最新版在线下载| 91麻豆精品激情在线观看国产 | 国产老妇伦熟女老妇高清| 99九九在线精品视频| 两人在一起打扑克的视频| 成人免费观看视频高清| 国产一区有黄有色的免费视频| 亚洲色图综合在线观看| 久久久精品国产亚洲av高清涩受| 1024香蕉在线观看| 国产精品国产三级国产专区5o| 亚洲精品国产一区二区精华液| 人人妻人人澡人人爽人人夜夜| 老司机亚洲免费影院| 高清av免费在线| 免费看十八禁软件| 久久狼人影院| 一区二区三区激情视频| 女警被强在线播放| 一二三四社区在线视频社区8| 亚洲三区欧美一区| 青春草亚洲视频在线观看| bbb黄色大片| 午夜老司机福利片| 日韩一卡2卡3卡4卡2021年| 国产日韩欧美在线精品| 搡老岳熟女国产| 男人添女人高潮全过程视频| 欧美97在线视频| 一区二区日韩欧美中文字幕| 欧美黑人精品巨大| 另类亚洲欧美激情| 国产欧美日韩一区二区三 | 亚洲成av片中文字幕在线观看| 国产精品国产av在线观看| 国产欧美日韩一区二区三 | 国产精品久久久久久人妻精品电影 | 成人国产av品久久久| 亚洲精品美女久久av网站| 中文字幕人妻丝袜一区二区| 日韩三级视频一区二区三区| 日韩三级视频一区二区三区| 肉色欧美久久久久久久蜜桃| 午夜福利在线观看吧| 超色免费av| 久久精品久久久久久噜噜老黄| 18禁黄网站禁片午夜丰满| 国产麻豆69| 18禁裸乳无遮挡动漫免费视频| 国产成人一区二区三区免费视频网站| 欧美日韩一级在线毛片| 日韩中文字幕视频在线看片| 青春草亚洲视频在线观看| 国产av国产精品国产| 中文精品一卡2卡3卡4更新| 啪啪无遮挡十八禁网站| kizo精华| 动漫黄色视频在线观看| 日日夜夜操网爽| 免费不卡黄色视频| 国产福利在线免费观看视频| 亚洲视频免费观看视频| 每晚都被弄得嗷嗷叫到高潮| 搡老熟女国产l中国老女人| 国产成人啪精品午夜网站| 久9热在线精品视频| 免费观看av网站的网址| 亚洲视频免费观看视频| 日韩欧美国产一区二区入口| 欧美日韩av久久| 亚洲欧美清纯卡通| 黑人巨大精品欧美一区二区mp4| 欧美成人午夜精品| 在线亚洲精品国产二区图片欧美| 在线亚洲精品国产二区图片欧美| 91成人精品电影| av在线老鸭窝| 午夜福利一区二区在线看| 中文字幕人妻丝袜一区二区| 最近中文字幕2019免费版| 国产成人精品久久二区二区91| 亚洲精品中文字幕一二三四区 | 日韩欧美一区视频在线观看| 热99久久久久精品小说推荐| www.999成人在线观看| 精品久久久久久久毛片微露脸 | 如日韩欧美国产精品一区二区三区| 大型av网站在线播放| 国产一区二区三区av在线| 夜夜夜夜夜久久久久| 免费在线观看日本一区| 国产av国产精品国产| 不卡av一区二区三区| 亚洲欧美日韩另类电影网站| 亚洲伊人色综图| 黄片小视频在线播放| 久久99一区二区三区| 免费高清在线观看视频在线观看| 在线观看人妻少妇| 亚洲欧美激情在线| 女人被躁到高潮嗷嗷叫费观| 国产又爽黄色视频| 黄色视频不卡| 一级片免费观看大全| 桃花免费在线播放| 中国国产av一级| 国产成+人综合+亚洲专区| 日韩中文字幕欧美一区二区| 国产精品久久久av美女十八| 国产在线视频一区二区| 一级,二级,三级黄色视频| 国产欧美日韩综合在线一区二区| 国产欧美日韩综合在线一区二区| 亚洲欧美激情在线| 麻豆乱淫一区二区| 精品亚洲乱码少妇综合久久| 国产免费av片在线观看野外av| 成年人免费黄色播放视频| av网站免费在线观看视频| 18禁黄网站禁片午夜丰满| svipshipincom国产片| 色婷婷久久久亚洲欧美| 丝瓜视频免费看黄片| 高清视频免费观看一区二区| 亚洲一区二区三区欧美精品| 婷婷丁香在线五月| 国产免费一区二区三区四区乱码| 妹子高潮喷水视频| 亚洲欧美色中文字幕在线| 一本一本久久a久久精品综合妖精| 午夜福利,免费看| 欧美日韩中文字幕国产精品一区二区三区 | 12—13女人毛片做爰片一| 国产精品国产av在线观看| 99国产综合亚洲精品| 大香蕉久久成人网| 亚洲第一欧美日韩一区二区三区 | 欧美日韩亚洲综合一区二区三区_| 亚洲人成电影观看| 多毛熟女@视频| 中文字幕高清在线视频| 亚洲成人免费电影在线观看| 在线观看一区二区三区激情| 亚洲av美国av| 男女免费视频国产| 国产极品粉嫩免费观看在线| 日韩制服骚丝袜av| 免费不卡黄色视频| 看免费av毛片| 久久久久国产精品人妻一区二区| 日韩欧美国产一区二区入口| 一本一本久久a久久精品综合妖精| 国产精品av久久久久免费| 国产一区二区三区av在线| 亚洲avbb在线观看| av电影中文网址| 妹子高潮喷水视频| av视频免费观看在线观看| 黄频高清免费视频| 女警被强在线播放| 91精品国产国语对白视频| 国产精品99久久99久久久不卡| 成人av一区二区三区在线看 | 99香蕉大伊视频| 青青草视频在线视频观看| 久久久久国产精品人妻一区二区| 三上悠亚av全集在线观看| 欧美老熟妇乱子伦牲交| 日韩人妻精品一区2区三区| 亚洲免费av在线视频| 窝窝影院91人妻| 国产亚洲一区二区精品| 日韩电影二区| 中文字幕人妻丝袜制服| 热99re8久久精品国产| 色视频在线一区二区三区| 亚洲精品一卡2卡三卡4卡5卡 | 国产av一区二区精品久久| 久久亚洲国产成人精品v| 亚洲av日韩在线播放| 三级毛片av免费| 亚洲 欧美一区二区三区| 国产日韩欧美视频二区| 日韩欧美一区视频在线观看| 久久人妻熟女aⅴ| 少妇人妻久久综合中文| 黄色怎么调成土黄色| 建设人人有责人人尽责人人享有的| 欧美精品高潮呻吟av久久| 日韩视频一区二区在线观看| 一进一出抽搐动态| 黑人欧美特级aaaaaa片| 国产视频一区二区在线看| 两个人免费观看高清视频| 欧美精品人与动牲交sv欧美| 一区二区av电影网| 啦啦啦视频在线资源免费观看| 久久久久久免费高清国产稀缺| 久久久精品免费免费高清| 男女边摸边吃奶| 久久热在线av| 丝袜脚勾引网站| 久热这里只有精品99| 亚洲一码二码三码区别大吗| 中文字幕色久视频| 欧美 亚洲 国产 日韩一| 亚洲成人免费av在线播放| 黄频高清免费视频| 国产男人的电影天堂91| 欧美激情久久久久久爽电影 | 久久精品国产亚洲av高清一级| 91国产中文字幕| 脱女人内裤的视频| 亚洲全国av大片| 午夜福利免费观看在线| 两性夫妻黄色片| 国产99久久九九免费精品| 性色av乱码一区二区三区2| 一进一出抽搐动态| 久久国产亚洲av麻豆专区| 好男人电影高清在线观看| 99精国产麻豆久久婷婷| 在线观看免费日韩欧美大片| 亚洲情色 制服丝袜| 天天躁夜夜躁狠狠躁躁| 色94色欧美一区二区| 极品人妻少妇av视频| 黑人欧美特级aaaaaa片| 久久国产精品影院| a级片在线免费高清观看视频| 免费观看人在逋| 精品欧美一区二区三区在线| 免费日韩欧美在线观看| 久久狼人影院| 一级,二级,三级黄色视频| 黑人猛操日本美女一级片| 亚洲欧美激情在线| kizo精华| 免费人妻精品一区二区三区视频| 各种免费的搞黄视频| av不卡在线播放| 男女无遮挡免费网站观看| 老鸭窝网址在线观看| 9色porny在线观看| 18禁观看日本| 狠狠婷婷综合久久久久久88av| 国产激情久久老熟女| 亚洲精品一卡2卡三卡4卡5卡 | 女性生殖器流出的白浆| 三级毛片av免费| 美国免费a级毛片| 欧美日韩亚洲高清精品| 午夜福利在线免费观看网站| 大码成人一级视频| 亚洲欧美精品综合一区二区三区| 国产又色又爽无遮挡免| 欧美精品一区二区免费开放| 日日爽夜夜爽网站| av在线老鸭窝| 啪啪无遮挡十八禁网站| 欧美久久黑人一区二区| 丝袜在线中文字幕| 俄罗斯特黄特色一大片| 首页视频小说图片口味搜索| 男人爽女人下面视频在线观看| 男女无遮挡免费网站观看| 嫁个100分男人电影在线观看| 精品一区二区三区av网在线观看 | av福利片在线| 人妻人人澡人人爽人人| 日韩视频在线欧美| 亚洲精品日韩在线中文字幕| 精品少妇久久久久久888优播| 亚洲精品国产区一区二| videosex国产| 首页视频小说图片口味搜索| 老司机亚洲免费影院| kizo精华| 国产成人影院久久av| xxxhd国产人妻xxx| 久久久久久久国产电影| 国产伦人伦偷精品视频| 精品一区在线观看国产| 亚洲精品在线美女| 亚洲国产日韩一区二区| 亚洲av男天堂| 欧美成人午夜精品| 视频区欧美日本亚洲| 亚洲国产av新网站| 亚洲成人手机| av欧美777| 亚洲色图 男人天堂 中文字幕| xxxhd国产人妻xxx| 91成人精品电影| 久久天躁狠狠躁夜夜2o2o| 看免费av毛片| 亚洲少妇的诱惑av| 美女大奶头黄色视频| xxxhd国产人妻xxx| 97在线人人人人妻| 免费看十八禁软件| 99九九在线精品视频| 十八禁网站网址无遮挡| 久久人妻熟女aⅴ| 国产亚洲午夜精品一区二区久久| 亚洲中文字幕日韩| 国产男女超爽视频在线观看| 精品久久蜜臀av无| 欧美日韩黄片免| 国产免费福利视频在线观看| 国产一区二区 视频在线| 涩涩av久久男人的天堂| 免费看十八禁软件| 欧美日韩国产mv在线观看视频| 午夜福利视频在线观看免费| 十八禁人妻一区二区| netflix在线观看网站| 国产欧美日韩一区二区三 | 夜夜夜夜夜久久久久| 韩国高清视频一区二区三区| 精品久久久久久久毛片微露脸 | 欧美日韩国产mv在线观看视频| 午夜影院在线不卡| 成人黄色视频免费在线看| 两性午夜刺激爽爽歪歪视频在线观看 | 99国产精品免费福利视频| 久久久久久亚洲精品国产蜜桃av| 老熟妇乱子伦视频在线观看 | 亚洲黑人精品在线| 一级毛片精品| 亚洲精品久久成人aⅴ小说| 别揉我奶头~嗯~啊~动态视频 | 国产三级黄色录像| 精品国产一区二区三区四区第35| 欧美xxⅹ黑人| 青春草亚洲视频在线观看| 成人国产一区最新在线观看| 久久免费观看电影| 欧美乱码精品一区二区三区| 黄片小视频在线播放| 色综合欧美亚洲国产小说| 伊人久久大香线蕉亚洲五| 桃红色精品国产亚洲av| 热99国产精品久久久久久7| 一区福利在线观看| 久久精品久久久久久噜噜老黄| 欧美日韩国产mv在线观看视频| 国产免费av片在线观看野外av| 欧美日韩一级在线毛片| 丝袜脚勾引网站| 亚洲精品国产精品久久久不卡| 亚洲国产欧美在线一区| 黄色 视频免费看| 欧美在线一区亚洲| 精品少妇内射三级| 黄片小视频在线播放| 国产97色在线日韩免费| 12—13女人毛片做爰片一| 电影成人av| 久久精品亚洲熟妇少妇任你| 亚洲av日韩精品久久久久久密| www.熟女人妻精品国产| 十八禁高潮呻吟视频| 18在线观看网站| 五月天丁香电影| 国产成人精品在线电影| 久久综合国产亚洲精品| 久久亚洲精品不卡| 国产成人免费观看mmmm| 国产精品久久久久久精品古装| 狠狠婷婷综合久久久久久88av| 一级毛片电影观看| 亚洲成人免费av在线播放| 美女主播在线视频| 一边摸一边做爽爽视频免费| 国产免费福利视频在线观看| 在线观看免费高清a一片| 18禁国产床啪视频网站| 国产亚洲欧美精品永久| 午夜免费成人在线视频| 久9热在线精品视频| 黑人巨大精品欧美一区二区mp4| 黄色视频,在线免费观看| 各种免费的搞黄视频| 午夜精品国产一区二区电影| 欧美亚洲 丝袜 人妻 在线| 成年人午夜在线观看视频| 最近中文字幕2019免费版| 亚洲精品av麻豆狂野| 亚洲国产精品999| 丰满人妻熟妇乱又伦精品不卡| 亚洲少妇的诱惑av| 99热国产这里只有精品6| 亚洲熟女毛片儿| 国产精品 国内视频| 亚洲va日本ⅴa欧美va伊人久久 | 欧美日韩亚洲综合一区二区三区_| 国产一区二区 视频在线| 精品一品国产午夜福利视频| 爱豆传媒免费全集在线观看| 成年av动漫网址| 国产熟女午夜一区二区三区| 黄网站色视频无遮挡免费观看| 日本a在线网址| 午夜91福利影院| www.av在线官网国产| 中国国产av一级| 久久亚洲精品不卡| 一本色道久久久久久精品综合| 超碰97精品在线观看| 又大又爽又粗| 精品福利观看| 欧美精品一区二区大全| 老司机影院成人| 天天添夜夜摸| 在线观看免费高清a一片| 十八禁网站免费在线| 久久久久久久久免费视频了| 国产成人av激情在线播放| 在线永久观看黄色视频| 国产激情久久老熟女| 男人添女人高潮全过程视频| 狂野欧美激情性xxxx| av在线老鸭窝| 成人国语在线视频| 亚洲精品国产精品久久久不卡| 欧美国产精品一级二级三级| 一区福利在线观看| 美女扒开内裤让男人捅视频| 亚洲国产看品久久| 在线av久久热| 久久久国产欧美日韩av| 两人在一起打扑克的视频| 国产在线一区二区三区精| 别揉我奶头~嗯~啊~动态视频 | 视频区欧美日本亚洲| 黄片播放在线免费| 深夜精品福利| 精品国产乱子伦一区二区三区 | 老司机午夜福利在线观看视频 | 国产99久久九九免费精品| 精品人妻熟女毛片av久久网站| 国产高清videossex| 热99久久久久精品小说推荐| 国产高清videossex| kizo精华| 黑人欧美特级aaaaaa片| 高清视频免费观看一区二区| 日本av手机在线免费观看| 亚洲国产日韩一区二区| 国精品久久久久久国模美| 女人久久www免费人成看片| 亚洲国产欧美网| 久久中文字幕一级| 两性午夜刺激爽爽歪歪视频在线观看 | 最新的欧美精品一区二区| 韩国高清视频一区二区三区| 国产精品成人在线| 天堂俺去俺来也www色官网| 国产色视频综合| 飞空精品影院首页| 欧美日韩一级在线毛片| 成人国产一区最新在线观看| 日韩一卡2卡3卡4卡2021年| 男女午夜视频在线观看|