周福洋 印大中
(湖南師范大學(xué)生命科學(xué)學(xué)院,湖南 長(zhǎng)沙 410081)
二甲雙胍作為治療2型糖尿病(T2DM)的一線藥物目前已被廣泛應(yīng)用于防治多種老年退行性疾病。本文通過(guò)對(duì)二甲雙胍在防治老年疾病與抗衰老的研究現(xiàn)狀進(jìn)行歸納分析,探討二甲雙胍在抵抗氧應(yīng)激和糖應(yīng)激過(guò)程中的生化反應(yīng)機(jī)制及其在抗老年病過(guò)程中的共性本質(zhì)。
二甲雙胍屬于一種雙胍類(lèi)藥物,易溶于水、稀酸和乙醇,微溶于氯仿,不溶于冷堿溶液和苯、乙醚、氯仿等有機(jī)溶劑。常溫下二甲雙胍的水溶液在煮沸和長(zhǎng)時(shí)間放置時(shí)會(huì)產(chǎn)生分解并放出氨氣。二甲雙胍在水溶液中有強(qiáng)堿性(pKb 2.8),臨床上通常應(yīng)用鹽酸二甲雙胍〔1〕。據(jù)報(bào)道二甲雙胍可以改善糖代謝、脂肪代謝、胰島素抵抗,同時(shí)具有抗衰老、具有控制體重、降血壓、抑制血小板凝聚、降低纖溶酶原活化抑制劑(PAI-1)活性和保護(hù)心血管系統(tǒng)等作用,對(duì)多囊卵巢綜合征、非酒精性脂肪肝、高脂血癥也起到一定的治療作用〔2,3〕。
二甲雙胍在生物體內(nèi)不經(jīng)過(guò)肝和腎代謝改變就會(huì)以原型排到體外,有50%~60%的口服劑量被吸收到體循環(huán)中去,剩下的大部分存在于胃腸道、肝、腎中,小部分在其他人體組織中,此外年齡、性別、營(yíng)養(yǎng)狀況、生活方式、遺傳區(qū)別也會(huì)影響到二甲雙胍的敏感性和精準(zhǔn)性〔4,5〕,例如膜轉(zhuǎn)運(yùn)蛋白的多態(tài)性就是二甲雙胍藥動(dòng)力學(xué)特征的一個(gè)關(guān)鍵因素〔5〕。
2.1糖尿病(DM) 二甲雙胍作為DM的主要用藥是治療T2DM的第一選擇,尤其是在超重和肥胖的病人中?,F(xiàn)已被認(rèn)可在10歲以上DM兒童中使用,美國(guó)的糖尿病學(xué)會(huì)(ADA)已允許其用于妊娠期高血糖患者,在孕期的安全性級(jí)別等同于胰島素。
二甲雙胍降糖作用的機(jī)制:(1)主要是通過(guò)抑制線粒體呼吸鏈復(fù)合物Ⅰ來(lái)減少三磷酸腺苷(ATP)同時(shí)積累磷酸腺苷(AMP),從而介導(dǎo)AMP依賴(lài)的蛋白激酶(AMPK)抑制肝臟糖異生來(lái)減少肝糖的產(chǎn)生:①二甲雙胍能激活LKB1-AMPK信號(hào)通路從而降低環(huán)單磷酸腺苷(c-AMP)反應(yīng)要素結(jié)合蛋白(CRTC)2,抑制肝臟糖異生有關(guān)的基因表達(dá),降低肝臟葡萄糖的輸出;②AMPK能增加肝臟去乙?;?SIRT1)的活性,下調(diào)CRTC2,從而抑制下游糖異生基因轉(zhuǎn)錄;③AMPK還能激活孤兒核受體(SHP)或抑制Kruppel樣轉(zhuǎn)錄因子(KLF)15,降低糖異生相關(guān)基因的表達(dá)水平。(2)通過(guò)增強(qiáng)胰島素受體的表達(dá)和胰島素信號(hào)通路上還原酶的能力從而增加骨骼肌的糖攝取〔6,7〕,此外二甲雙胍能增加胰高血糖素樣肽(GLP)-1的敏感性,GLP-1又能增加胰島素的分泌和減少胰高血糖素的分泌〔8〕,從而改變胰腺的內(nèi)分泌功能而發(fā)揮降糖作用〔9〕,在DM患者中,二甲雙胍是唯一不會(huì)引發(fā)心血管并發(fā)癥的藥物,可以減少低密度脂蛋白和三酰甘油水平。
2.2心血管疾病 心血管疾病是T2DM患者死亡的主要原因,研究證明〔10,11〕,二甲雙胍具有血管保護(hù)作用,能夠降低心血管事件的發(fā)病率和死亡率,能夠直接影響到T2DM血管系統(tǒng)來(lái)降低大血管并發(fā)癥、微血管并發(fā)癥和血栓性并發(fā)癥的發(fā)生,此外還能減少胰島素抵抗且有利于對(duì)糖脂代謝的調(diào)控。此外,二甲雙胍對(duì)心臟也有保護(hù)作用,可使心肌梗死面積降低,還能改善心肌能量代謝、抑制心肌細(xì)胞凋亡及心臟纖維化,同時(shí)對(duì)心肌缺血-再灌注損傷也具有保護(hù)效應(yīng),延緩心力衰竭的進(jìn)展,改善心功能〔12〕。
2.3抗腫瘤 2001年Schneider等〔13〕首次在倉(cāng)鼠動(dòng)物模型中發(fā)現(xiàn)二甲雙胍具有抗腫瘤活性,且能降低T2DM患者的癌癥發(fā)病率,此外流行病學(xué)表明二甲雙胍能在分子、細(xì)胞及整體水平上減少癌癥的發(fā)生和改善預(yù)后〔14,15〕,而二甲雙胍的抗腫瘤機(jī)制會(huì)根據(jù)不同的腫瘤類(lèi)型涉及到不同的機(jī)制,其中主要涉及兩個(gè)機(jī)制;①間接作用:通過(guò)改變體內(nèi)胰島素和血糖水平影響腫瘤細(xì)胞的存活〔16〕;②直接作用:主要通過(guò)激活A(yù)MPK來(lái)抑制細(xì)胞內(nèi)多種高度依賴(lài)充足ATP供應(yīng)的代謝過(guò)程(如膽固醇合成、蛋白質(zhì)和脂肪酸的合成、糖酵解、脂肪酸氧化、糖異生等)和抑制可以阻止腫瘤細(xì)胞蛋白質(zhì)合成與增殖的雷帕霉素靶蛋白(mTOR)通路〔17,18〕。此外可能還有其他機(jī)制如二甲雙胍能抑制腫瘤細(xì)胞上皮間質(zhì)轉(zhuǎn)化(EMT)〔19〕、激活免疫系統(tǒng)〔20〕、殺死腫瘤干細(xì)胞〔21〕、促進(jìn)腫瘤細(xì)胞的衰老〔22〕、抑制血管內(nèi)皮因子(VEGF)的表達(dá)和腫瘤新生血管的生成〔23,24〕、改變microRNAs的表達(dá)來(lái)調(diào)節(jié)癌細(xì)胞的凋亡和增殖〔25〕。有研究發(fā)現(xiàn)糖尿病治療藥物二甲雙胍抑制胰腺癌進(jìn)展的新機(jī)制,并表示,深入理解二甲雙胍抑制癌癥進(jìn)展的機(jī)制能夠幫助發(fā)現(xiàn)潛在生物學(xué)標(biāo)志物,幫助癌癥患者更好地選擇藥物〔26〕。目前,在美國(guó)臨床試驗(yàn)數(shù)據(jù)庫(kù)(Clinical Trials)上有大量有關(guān)二甲雙胍治療各類(lèi)腫瘤的研究正在進(jìn)行。
2.4阿爾茨海默病(AD) 流行病學(xué)研究顯示DM患者有更大的風(fēng)險(xiǎn)得AD〔27,28〕,可能是由于DM治療中的藥物增加了患AD的風(fēng)險(xiǎn)〔28〕。相關(guān)研究發(fā)現(xiàn)二甲雙胍能夠預(yù)防AD和保護(hù)認(rèn)知功能,新加坡的衰老縱向研究中,二甲雙胍長(zhǎng)期用藥的患者降低了認(rèn)知損傷風(fēng)險(xiǎn)〔29〕,還有一項(xiàng)研究發(fā)現(xiàn)給患有抑郁癥的DM患者用二甲雙胍會(huì)減輕抑郁的癥狀和改善認(rèn)知水平〔30〕,Cheng等〔31〕發(fā)現(xiàn)T2DM患者服用二甲雙胍患癡呆癥的概率小于其他DM用藥的概率,此外如Kickstein等〔32〕發(fā)現(xiàn)了二甲雙胍能夠介導(dǎo)AMPK和蛋白磷酸酶(PP)2A的活性來(lái)減少tau蛋白磷酸化,從而減少AD的發(fā)生,這一觀點(diǎn)在Matthes等〔33〕的研究中得以證實(shí),并進(jìn)一步發(fā)現(xiàn)二甲雙胍能夠降低轉(zhuǎn)基因小鼠腦內(nèi)的淀粉樣蛋白-β的水平,Luchsinger等〔34〕研究顯示,通過(guò)對(duì)80例有遺忘型輕度認(rèn)知損害的中老年非DM患者進(jìn)行試驗(yàn),發(fā)現(xiàn)在二甲雙胍治療12個(gè)月后有一部分認(rèn)知區(qū)域得到了有效改善。
1980年Dilman等〔35〕開(kāi)始研究雙胍類(lèi)藥物的延壽作用,并發(fā)現(xiàn)苯乙雙胍、丁雙胍能夠延長(zhǎng)鼠類(lèi)的壽命。隨后Anisimov等〔36,37〕研究發(fā)現(xiàn)二甲雙胍延長(zhǎng)了小鼠平均壽命和最大壽命,在生命早期使用二甲雙胍益處更多,Martin-Montalvo等〔38〕也發(fā)現(xiàn)二甲雙胍使老鼠平均壽命增加5.83%,Cabreiro等〔39〕發(fā)現(xiàn)二甲雙胍能使線蟲(chóng)延長(zhǎng)近36%的壽命,英國(guó)的卡迪夫大學(xué)有一個(gè)研究通過(guò)18萬(wàn)例的大樣本驚人的發(fā)現(xiàn)服用二甲雙胍的DM患者生存時(shí)間比非DM患者平均長(zhǎng)15%,盡管理論上DM應(yīng)該讓他們平均減壽 8 年〔40〕。
關(guān)于抗衰老的分子機(jī)制研究都涉及了胰島素/胰島素樣生長(zhǎng)因子(IGF)信號(hào)通路和能量代謝途徑上,如mTOR在蠕蟲(chóng)、酵母、昆蟲(chóng)、哺乳動(dòng)物中能延緩衰老和抵抗老年疾病〔41~43〕。而關(guān)于二甲雙胍延長(zhǎng)壽命的分子機(jī)制中比較清楚的是通過(guò)AMPK和mTOR間接調(diào)控細(xì)胞,從而起到抵抗疾病和衰老的作用:①二甲雙胍能通過(guò)抑制電子傳遞鏈復(fù)合物Ⅰ來(lái)激活A(yù)MPK,AMPK激活后可抑制細(xì)胞的合成代謝,促進(jìn)分解代謝,關(guān)閉消耗ATP的信號(hào)通路,恢復(fù)細(xì)胞能量平衡,AMPK除了與能量代謝有關(guān),與熱量限制也有聯(lián)系〔44〕,AMPK下游靶分子PGC-1α、pha-4/FOXA、核因子(NF)-E2相關(guān)轉(zhuǎn)錄因子Nrf1和Nrf2都能在熱量限制中發(fā)揮重要作用〔45〕。②二甲雙胍能夠抑制mTOR,mTOR可以與Wnt信號(hào)、生長(zhǎng)因子、能量代謝等多種胞外的信號(hào)發(fā)生相互作用〔46〕,同時(shí)mTOR又參與很多細(xì)胞活動(dòng),如脂質(zhì)、線粒體和核糖體的合成,蛋白質(zhì)的翻譯,抑制自我吞噬,調(diào)節(jié)細(xì)胞周期和分化〔47〕,激活mTOR還能引起衰老、T2DM〔48〕。除了這兩點(diǎn)以外,還包括二甲雙胍對(duì)胰島素/IGF的作用間接影響了壽命的延長(zhǎng)〔49〕,二甲雙胍能抑制線粒體電子傳遞鏈復(fù)合物Ⅰ減少內(nèi)源性活性氧(ROS)的產(chǎn)生〔50〕、減少DNA損害〔51〕,二甲雙胍還可能影響到內(nèi)分泌的過(guò)程、細(xì)胞炎癥〔52〕、細(xì)胞自噬〔53〕、細(xì)胞衰老〔54〕等。
另外,有研究發(fā)現(xiàn)用二甲雙胍給果蠅飼養(yǎng)雖然激活了AMPK和減少了脂質(zhì)儲(chǔ)蓄,但并沒(méi)有延長(zhǎng)壽命〔55〕,是由于二甲雙胍的高劑量濃度呈現(xiàn)出了毒性。高濃度的二甲雙胍會(huì)增加死亡率,這種情況也出現(xiàn)在哺乳類(lèi)動(dòng)物中,當(dāng)出現(xiàn)了增壽效果后,在食物中放大10倍二甲雙胍的量會(huì)增加小鼠的死亡率〔38〕。Smith等〔56〕同樣證明了通過(guò)高劑量二甲雙胍的處理也沒(méi)有發(fā)現(xiàn)提升小鼠壽命的現(xiàn)象。
氧化應(yīng)激中的自由基在體內(nèi)產(chǎn)生的負(fù)面作用是導(dǎo)致衰老和疾病的一個(gè)重要因素,而羰基應(yīng)激中的毒性羰基化合物就是來(lái)自于自由基氧化、過(guò)氧化反應(yīng)、氧化應(yīng)激、生物酶和糖脂氨基酸的氧化反應(yīng),此外還有一部分是外源性的如工業(yè)污染等〔57〕。毒性羰基化合物是活潑的生化產(chǎn)物,特別是那些能夠造成生物大分子和組織交聯(lián)的α,β-不飽和醛酮,其中兩種毒性醛酮就是丙二醛、4-羥基壬烯醛〔58,59〕。這類(lèi)醛酮在體內(nèi)生成后,能穿透膜結(jié)構(gòu),進(jìn)入組織細(xì)胞發(fā)生反應(yīng),產(chǎn)生細(xì)胞和基因的毒性,導(dǎo)致機(jī)體功能異常,見(jiàn)圖1。
圖1 毒性羰基化合物在體內(nèi)致病過(guò)程
雖然氧應(yīng)激與諸多老年退行性疾病和衰老關(guān)系比較密切,氧應(yīng)激并不直接影響動(dòng)物的最大壽命。Yin等〔60〕提出了廣義衰老學(xué)說(shuō),認(rèn)為氧自由基引起的脂質(zhì)過(guò)氧化和非酶糖基化反應(yīng)中生成的活性中間產(chǎn)物-不飽和醛酮及其與體內(nèi)生物大分子發(fā)生的“羰-氨交聯(lián)反應(yīng)”造成的生物垃圾堆積,才是緩慢衰老的本質(zhì)。體內(nèi)的不飽和醛酮與蛋白質(zhì)、核酸、脂類(lèi)形成難以降解、難以排除的熵增性聚合物,會(huì)導(dǎo)致生物組織膠原交聯(lián)、血管硬化,而且會(huì)使細(xì)胞膜通透性降低、細(xì)胞物質(zhì)交換受阻,然后發(fā)生破裂、死亡。
二甲雙胍具有抗氧應(yīng)激的能力,在細(xì)胞實(shí)驗(yàn)中,Chakraborty等〔61〕發(fā)現(xiàn)二甲雙胍治療24 w后能明顯降低血漿中終末氧化蛋白(AOPP)水平,減少細(xì)胞內(nèi)ROS的產(chǎn)生,Hou等〔62〕發(fā)現(xiàn)二甲雙胍通過(guò)AMPK-FOXO3途徑上調(diào)硫氧還蛋白來(lái)減少ROS的產(chǎn)生,Gallo等〔63〕研究發(fā)現(xiàn),二甲雙胍可通過(guò)增加抗氧化酶的產(chǎn)生抑制高糖誘導(dǎo)的臍靜脈內(nèi)皮細(xì)胞ROS生成。
研究顯示二甲雙胍能減少羰基活性化合物如四羥基壬烯醛、丙二醛、乙醇醛、乙二醛、甲基乙二醛、3-脫氧葡萄糖酮醛等,從而減少體內(nèi)自發(fā)的美拉德反應(yīng)〔64,65〕。Correia等〔66〕研究發(fā)現(xiàn)二甲雙胍能作為大腦神經(jīng)的保護(hù)劑減少來(lái)自MDA的傷害,Ruggiero-Lopez等〔67〕研究表明二甲雙胍能夠與丙酮醛和乙二醛生成含氮的環(huán)狀物質(zhì),二甲雙胍能與這些醛類(lèi)直接發(fā)生羰-氨反應(yīng),且能夠抑制白蛋白的終末糖基化產(chǎn)物的相關(guān)熒光性。Ahmad等〔68〕也發(fā)現(xiàn)二甲雙胍在1.0 mmol/L濃度時(shí)能夠減輕將近73.8% Amadori化合物的糖基化并能抑制二羥基丙酮和血清蛋白的反應(yīng)及AGEs的形成。此外,本研究室最近通過(guò)實(shí)驗(yàn)證實(shí)了二甲雙胍于37℃和pH7.4的條件下能夠和毒性醛類(lèi)物質(zhì)生成環(huán)狀化合物和一些不穩(wěn)定的脂褐素樣熒光化合物,但隨著時(shí)間的延長(zhǎng)此反應(yīng)產(chǎn)物中一些結(jié)構(gòu)不穩(wěn)定的會(huì)發(fā)生降解。不飽和醛酮物質(zhì)的積累會(huì)加速相關(guān)體系的羰-氨交聯(lián)反應(yīng),事實(shí)表明,二甲雙胍能夠和這些活潑的羰基物質(zhì)發(fā)生緩慢的親核反應(yīng),從而減少這些不飽和的醛酮物質(zhì)積累,緩解或改善羰基應(yīng)激對(duì)機(jī)體的傷害〔69〕。
二甲雙胍分子結(jié)構(gòu)中的氨基是發(fā)生生化反應(yīng)的關(guān)鍵藥效功能團(tuán)。二甲雙胍的結(jié)構(gòu)類(lèi)似氨基胍、牛磺酸等氨基類(lèi)抗衰抗病藥物,而此類(lèi)藥物作為AGE的抑制劑很早就開(kāi)始被研究且其抑制效果明顯〔70〕,該氨基功能團(tuán)與毒性羰基化合物或者氧自由基的羰氨反應(yīng)是唯一可能的藥理過(guò)程〔60〕。二甲雙胍抵抗衰老和老年疾病的藥效作用也應(yīng)該與這個(gè)分子機(jī)制相關(guān)??傊纂p胍對(duì)于抗衰老及預(yù)防衰老相關(guān)疾病的發(fā)生已顯示出了重要的應(yīng)用價(jià)值。
1Bailey C,Day C.Metformin:its botanical background〔J〕.Pract Diabetes Int,2004;21(3):115-7.
2Adeyemo MA,Mcduffie JR,Kozlosky M,etal.Effects of metformin on energy intake and satiety in obese children〔J〕.Diabetes Obes Metab,2015;17(4):363-70.
3Goldberg RB,Temprosa MG,Mather KJ,etal.Lifestyle and metformin interventions have a durable effect to lower CRP and tPA levels in the diabetes prevention program except in those who develop diabetes〔J〕.Diabetes Care,2014;37(8):2253-60.
4Li G,Goswami S,Giacomini KM,etal.Metformin pathways:pharmacokinetics and pharmacodynamics〔J〕.Pharmacogenet Genomics,2012;22(11):820-7.
5Pawlyk AC,Giacomini KM,Mckeon C,etal.Metformin pharmacogenomics:current status and future directions〔J〕.Diabetes,2014;63(8):2590-9.
6Fantus IG,Brosseau R.Mechanism of action of metformin:insulin receptor and postreceptor effects in vitro and in vivo〔J〕.J Clin Endocrinol Metab,1986;63(4):898-905.
7Gunton JE,Delhanty PJ,Takahashi S,etal.Metformin rapidly increases insulin receptor activation in human liver and signals preferentially through insulin-receptor substrate-2〔J〕.J Clin Endocrinol Metab,2003;88(3):1323-32.
8Cho YM,Kieffer TJ.New aspects of an old drug:metformin as a glucagon-like peptide 1(GLP-1) enhancer and sensitiser〔J〕.Diabetologia,2011;54(2):219-22.
9Shaw RJ,Lamia KA,Vasquez D,etal.The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin〔J〕.Science,2005;310(5754):1642-6.
10Lamanna C,Monami M,Marchionni N,etal.Effect of metformin on cardiovascular events and mortality:a meta-analysis of randomized clinical trials〔J〕.Diabetes Obes Metab,2011;13(3):221-8.
11Kooy A,De JJ,Lehert P,etal.Long-term effects of metformin on metabolism and microvascular and macrovascular disease in patients with type 2 diabetes mellitus〔J〕.Arch Int Med,2009;169(6):616-25.
12El MS,Rongen GA,De Boer RA,etal.The cardioprotective effects of metformin〔J〕.Curr Opin Lipidol,2011;22(6):445-53.
13Schneider MB,Matsuzaki H,Haorah J,etal.Prevention of pancreatic cancer induction in hamsters by metformin〔J〕.Gastroenterology,2001;120(5):1263-70.
14Snima KS,Pillai P,Cherian AM,etal.Anti-diabetic drug metformin:challenges and perspectives for cancer therapy〔J〕.Curr Cancer Drug Targ,2014;14(8):727-36.
15Decensi A,Puntoni M,Goodwin P,etal.Metformin and cancer risk in diabetic patients:a systematic review and meta-analysis〔J〕.Cancer Prev Res,2010;3(11):1451-61.
16Pollak M.The insulin and insulin-like growth factor receptor family in neoplasia:an update〔J〕.Nat Rev Cancer,2012;12(3):159-69.
17Ben SI,Regazzetti C,Robert G,etal.Metformin,independent of AMPK,induces mTOR inhibition and cell-cycle arrest through REDD1〔J〕.Cancer Res,2011;71(71):4366-72.
18Jin HL,Kim TI,Jeon SM,etal.The effects of metformin on the survival of colorectal cancer patients with diabetes mellitus〔J〕.Int J Cancer,2012;131(3):752-9.
19陸虹昊,馬俐君.上皮-間質(zhì)細(xì)胞轉(zhuǎn)化的分子機(jī)制及其在腫瘤轉(zhuǎn)移中的作用〔J〕.中國(guó)腫瘤生物治療雜志,2009;16(5):541-5.
20Pearce EL,Walsh MC,Cejas PJ,etal.Enhancing CD8 T Cell Memory by Modulating Fatty Acid Metabolism〔J〕.Nature,2009;460(7251):103-7.
21Hirsch HA,Iliopoulos D,Tsichlis PN,etal.Metformin selectively targets cancer stem cells,and acts together with chemotherapy to block tumor growth and prolong remission〔J〕.Cancer Res,2009;69(19):7507-11.
22Menendez JA,Cuf S,Oliveras-Ferraros C,etal.Metformin and the ATM DNA damage response(DDR):accelerating the onset of stress-induced senescence to boost protection against cancer〔J〕.Aging,2011;3(11):1063-77.
23Bost F,Bensahra I,Tanti JF.Prevention of mutagenesis:new potential mechanisms of metformin action in neoplastic cells〔J〕.Cancer Prev Res,2012;5(4):503-6.
24Würth R,Pattarozzi A,Gatti M,etal.Metformin selectively affects human glioblastoma tumor-initiating cell viability:a role for metformin-induced inhibition of Akt〔J〕.Cell Cycle,2013;12(1):145-56.
25Pulito C,Donzelli S,Muti P,etal.microRNAs and cancer metabolism reprogramming:the paradigm of metformin〔J〕.Ann Transl Med,2014;2(6):58-70.
26Joao I,Priya S,Chin SM,etal.Metformin reduces desmoplasia in pancreatic cancer by reprogramming stellate cells and tumor-associated macrophages〔J〕.PLoS One,2015;10(12):e0141392.
27Arvanitakis Z,Wilson RS,Bienias JL,etal.Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function〔J〕.Arch Neurol,2004;61(5):661-6.
28Ott A,Stolk RP,Van HF,etal.Diabetes mellitus and the risk of dementia:The Rotterdam Study〔J〕.Neurology,1999;53(9):1937-42.
29Ng TP,Feng L,Yap KB,etal.Long-term metformin usage and cognitive function among older adults with diabetes〔J〕.J Alzh Dis,2014;41(1):61-8.
30Guo M,Mi J,Jiang QM,etal.Metformin may produce antidepressant effects through improvement of cognitive function among depressed patients with diabetes mellitus〔J〕.Clin Exp Pharmacol Physiol,2014;41(9):650-6.
31Cheng C,Lin CH,Tsai YW,etal.Type 2 Diabetes and antidiabetic medications in relation to dementia diagnosis〔J〕.J Gerontol,2014;69(10):1299-305.
32Kickstein E,Krauss S,Thornhill P,etal.Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A(PP2A) signaling〔J〕.Proc Natl Acad Sci U S A,2010;107(50):21830-5.
33Matthes F,Hettich MM,Ryan DP,etal.The anti-diabetic drug metformin improves cognitive impairment and reduces amyloid-beta in a mouse model of Alzheimer′s disease〔J〕.Alzh Dementia J Alzh Assoc,2015;11(7):P845.
34Luchsinger JA,Perez T,Chang H,etal.Metformin in amnestic mild cognitive impairment:results of a pilot randomized placebo controlled clinical trial〔J〕.J Alzheimer Dis,2016;51(2):501-14.
35Dilman VM,Anisimov VN.Effect of treatment with phenformin,diphenylhydantoin or L-Dòpa on life span and tumour incidence in C3H/Sn mice〔J〕.Gerontology,1980;26(5):241-6.
36Anisimov VN,Berstein LM,Egormin PA,etal.Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice〔J〕.Exp Gerontol,2005;40(8-9):685-93.
37Anisimov VN,Berstein LM,Popovich IG,etal.If started early in life,metformin treatment increases life span and postpones tumors in female SHR mice〔J〕.Aging,2011;3(2):148-57.
38Martin-Montalvo A,Mercken EM,Mitchell SJ,etal.Metformin improves healthspan and lifespan in mice〔J〕.Nat Commun,2013;4(7):375-81.
39Cabreiro F,Au C,Leung KY,etal.Metformin retards aging in C.elegans by altering microbial folate and methionine metabolism〔J〕.Cell,2013;153(1):228-39.
40Bannister CA,Holden SE,Jenkins-Jones S,etal.Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched,non-diabetic controls〔J〕.Diabetes Obes Metab,2014;16(11):1165-73.
41Johnson SC,Rabinovitch PS,Kaeberlein M.mTOR is a key modulator of ageing and age-related disease〔J〕.Nature,2013;493(7432):338-45.
42Anisimov VN,Bartke A.The key role of growth hormone-insulin-IGF-1 signaling in aging and cancer〔J〕.Crit Rev Oncol Hematol,2013;87(3):201-23.
43L Pezot NC,Blasco MA,Partridge L,etal.The hallmarks of aging〔J〕.Cell,2013;153(6):1194-217.
44Pryor R,Cabreiro F.Repurposing metformin:an old drug with new tricks in its binding pockets〔J〕.Biochem J,2015;471(3):307-22.
45Mair W,Dillin A.Aging and survival:the genetics of life span extension by dietary restriction〔J〕.Biochemistry,2008;77(1):727-54.
46Liao XH,Huang MX.Growth control via TOR kinase signaling,an intracellular sensor of amino acid and energy availability,with crosstalk potential to proline metabolism〔J〕.Amino Acids,2008;35(4):761-70.
47Mccormick MA,Tsai SY,Kennedy BK.TOR and ageing:a complex pathway for a complex process〔J〕.Philos Trans R Soc B Biol Sci,2011;366(1561):17-27.
48Draznin B.Molecular mechanisms of insulin resistance:serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha:the two sides of a coin〔J〕.Diabetes,2006;55(8):2392-7.
49Liu B,Fan Z,Edgerton SM,etal.Potent anti-proliferative effects of metformin on trastuzumab-resistant breast cancer cells via inhibition of erbB2/IGF-1 receptor interactions〔J〕.Cell Cycle,2011;10(17):2959-66.
50Bridges HR,Jones AJ,Pollak MN,etal.Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria〔J〕.Biochem J,2014;462(3):475-87.
51Algire C,Moiseeva O,Desch Nessimard X,etal.Metformin reduces endogenous reactive oxygen species and associated DNA damage〔J〕.Cancer Prev Res,2012;5(4):536-43.
52Saisho Y.Metformin and inflammation:its potential beyond glucose-lowering effect〔J〕.Endocr Metab Immune Disord Drug Targets,2015;15(3):196-205.
53Xie Z,Lau K,Eby B,etal.Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice〔J〕.Diabetes,2011;60(6):1770-8.
54Moiseeva O,Desch Nessimard X,Stgermain E,etal.Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation〔J〕.Aging Cell,2013;12(3):489-98.
55Slack C,Foley A,Partridge L.Activation of AMPK by the putative dietary restriction mimetic metformin is insufficient to extend lifespan in Drosophila〔J〕.PLoS One,2012;7(10):e47699.
56Smith DL Jr,Elam CF Jr,Mattison JA,etal.Metformin supplementation and life span in Fischer-344 rats〔J〕.J Gerontol,2010;65(5):468-74.
57Yin D.The essential mechanisms of aging:what have we learnt in ten years〔J〕?Curr Topics Med Chem,2016;16(5):503-10.
58Esterbauer H,Schaur RJ,Zollner H.Chemistry and biochemistry of 4-hydroxynonenal,malonaldehyde and related aldehydes〔J〕.Free Rad Biol Med,1991;11(1):81-128.
59Del Rio D,Stewart AJ,Pellegrini N.A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress〔J〕.Nutr Metab Cardiovasc Dis,2005;15(4):316-28.
60Yin D,Chen K.The essential mechanisms of aging:irreparable damage accumulation of biochemical side-reactions〔J〕.Exp Gerontol,2005;40(6):455-65.
61Chakraborty A,Chowdhury S,Bhattacharyya M.Effect of metformin on oxidative stress,nitrosative stress and inflammatory biomarkers in type 2 diabetes patients〔J〕.Diabetes Res Clin Pract,2011;93(1):56-62.
62Hou X,Song J,Li XN,etal.Metformin reduces intracellular reactive oxygen species levels by upregulating expression of the antioxidant thioredoxin via the AMPK-FOXO3 pathway〔J〕.Biochem Biophys Res Commun,2010;396(2):199-205.
63Gallo A,Ceolotto G,Pinton P,etal.Metformin prevents glucose-induced protein kinase C-beta2 activation in human umbilical vein endothelial cells through an antioxidant mechanism〔J〕.Diabetes,2005;54(4):1123-31.
64Rahbar S,Figarola JL.Novel inhibitors of advanced glycation endproducts〔J〕.Arch Biochem Biophys,2003;419(1):63-79.
65Engelen L,Lund SS,Ferreira I,etal.Improved glycemic control induced by both metformin and repaglinide is associated with a reduction in blood levels of 3-deoxyglucosone in nonobese patients with type 2 diabetes〔J〕.Eur J Endocrinol,2011;164(3):371-9.
66Correia S,Carvalho C,Santos MS,etal.Metformin protects the brain against the oxidative imbalance promoted by type 2 diabetes〔J〕.Med Chem,2008;4(4):358-64.
67Ruggiero-Lopez D,Lecomte M,Moinet G,etal.Reaction of metformin with dicarbonyl compounds.possible implication in the inhibition of advanced glycation end product formation〔J〕.Biochem Pharmacol,1999;58(11):1765-73.
68Ahmad S,Shahab U,Baig MH,etal.Inhibitory effect of metformin and pyridoxamine in the formation of early,intermediate and advanced glycation end-products〔J〕.PLoS One,2013;8(9):e72128.
69Aleisa AM,Al-Rejaie SS,Bakheet SA,etal.Effect of metformin on clastogenic and biochemical changes induced by adriamycin in Swiss albino mice〔J〕.Mutat Res,2008;634(1-2):93-100.
70Brownlee M,Vlassara H,Kooney A,etal.Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking〔J〕.Science,1986;232(4758):1629-32.