• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transient flow model and pressure dynamic features of tree-shaped fractal reservoirs*

    2014-04-05 21:44:04TANXiaohua譚曉華LIXiaoping李曉平

    TAN Xiao-hua (譚曉華), LI Xiao-ping (李曉平)

    State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University,

    Chengdu 610500, China, E-mail:xiaohua-tan@163.com

    Transient flow model and pressure dynamic features of tree-shaped fractal reservoirs*

    TAN Xiao-hua (譚曉華), LI Xiao-ping (李曉平)

    State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University,

    Chengdu 610500, China, E-mail:xiaohua-tan@163.com

    (Received February 13, 2013, Revised September 2, 2013)

    A transient flow model of tree-shaped fractal reservoirs is built by embedding a fracture network simulated by a tree-shaped fractal network into a matrix system. The model can be solved using the Laplace conversion method. The dimensionless bottom hole pressure can be obtained using the Stehfest numerical inversion method. The bi-logarithmic type curves for the tree-shaped fractal reservoirs are thus obtained. The pressure transient responses under different fractal factors are discussed. The factors with a primary effect on the inter-porosity flow regime include the initial branch numberN , the length ratioα, and the branch angleθ. The diameter ratioβhas a significant effect on the fracture radial flow, the inter-porosity and the total system radial flow regimes. The total branch levelMof the network mainly influences the total system radial flow regime. The model presented in this paper provides a new methodology for analyzing and predicting the pressure dynamic characteristics of naturally fractured reservoirs.

    tree-shaped fractal, transient flow, pressure dynamic characteristic, naturally fractured reservoir, type curve

    Introduction

    The flow behavior of fluid in fractured reservoirs was widely studied by using a fractal network to simulate the non-uniform distribution of fractures in such reservoirs. Using the fractal reservoir model introduced by Kristanto et al.[1]identified a new type curves for handling multiple well test problems, particularly for analyzing interference tests. They calculated reservoir characteristics such as the permeability, the thickness, the fluid capacitance coefficient, and the fractal dimension.

    By assuming that the network of fractures is fractal, Flamenco-Lopez and Camacho-Velazquez[2,3]derived an approximate analytical solution for dual-porosity systems in the Laplace space. They also investigated the transient pressure behavior of naturally fractured reservoirs in the context of fractal characteristics. Li and Horne[4]observed that the predictions of a general model developed from the fractal modeling of a porous medium agree satisfactorily with the capillary pressure curve values of geysers rocks. With theoretical and experimental analyses, they demonstrated that the heterogeneity of geysers rocks could be quantitatively described by using fractal dimension values. Velazquez et al.[5]investigated the production decline behavior in a naturally fractured reservoir exhibiting single and double porosities using a fractal geometry model. They presented a combined analysis methodology using a transient well test and the boundary-dominated decline production data to characterize naturally fractured reservoir with scale-related fractures. The feasibility of the method was shown through field data.

    Zhang and Tong[6]built a fractal reservoir model with consideration of a stress-sensitive coefficient and obtained solutions using methods of self-similarity and regular perturbation. In addition, the results could be used to analyze the pressure transient response of the fractal medium in stress-sensitive reservoirs. Jafari and Babadagli[7,8]indicated that the three-dimensionalpermeability distribution could be obtained by using the well log data, the outcrop, and the well test data. They provided a foundation for applying a fractal network in the reservoir numerical simulation. Using the finite element method, Zhang et al.[9]obtained the numerical solution of a nonlinear flow model in a deformable dual media fractal reservoir.

    In those studies, the fractal structures embedded into a matrix network include both straight and intersecting lines, which could not adequately simulate the radial flow tending to the well bottom. However, the radial flow regime tending to the well bottom is of great significance in the underground seepage and oil exploitation field. Wechsatol et al.[10]demonstrated a tree-shaped fractal structure connecting the center origin and the points in different circles according to the bifurcation structure of the plant lamina, as shown in Fig.1. They also formulated a construction method and an optimization rule for tree-shaped fractal structures[11,12]. Such a fractal network can be used to simulate the fluid flow from the formation to the well bottom.

    Xu and Yu[13]proposed a tree-shaped fractal model suitable for the fluid flow by considering the dynamic behavior of branching tubes in a tree-shaped fractal network. They analyzed the model’s transport properties and mass transfer capabilities[14,15]. According to the fractal characteristics of the pores and the capillary pressure effect, Yun et al.[16]presented a fractal model to describe the Bingham fluid flow in porous media with consideration of the starting pressure gradient influence. Based on Yun et al.’s research, Wang et al.[17,18]demonstrated a tree-shaped fractal model to consider the influence of the starting pressure gradient on the Bingham fluid seepage in a porous medium.

    This paper simulates fractures using a tree-shaped fractal network, selected for its capability to simulate radial flow tending to the well bottom accurately. A transient flow model of the tree-shaped fractal reservoirs is then proposed by embedding the fracture network simulated by the tree-shaped fractal network into a matrix system. The factors influencing the dynamic characteristics of transient pressure response in treeshaped fractal reservoirs are then analyzed. The results provide a new method for the reservoir dynamic description and the well test analysis.

    1. Physical model

    The tree-shaped fractal network is composed of sets of branch structures. As shown in Fig.2, due to the network symmetry, only one unit of the network needs to be analyzed. The generation of the network must ensure that the ends of each level’s branches are on the same circle. Circles of different levels are concentric with the origin Oas the center. The tree-shaped fractal network is established usingNtubes starting at the point of the originO, where the initial length of the tube is l0, and the initial diameter is d0. This network contains double branches(n =2), with a branch angle of θ(θ<π/2), and with a total network branch level ofM. Two scale factors are used for this fractal network: the length ratio αand the diameter ratio β. The branch tube is assumed to be smooth, whereas the wall thickness is neglected.

    As shown in Fig.3, the reservoir thickness ish,whereas the well is located in the circle center Owith radiusrw. The mathematical model is based on the following assumptions: (1) The reservoir is divided into Mannular sections in a tree-shaped fractal network. The properties of different fracture sections are different, but those of the matrix system as well as those of the fluid are identical. (2) The fracture permeability is far greater than that of the matrixes, and the fluid only flows to the wellbore through the fracture system. (3) The formation fluid is a single-phase, slightly compressible fluid, and the seepage is regarded as an isothermal flow. (4) The capillary pressure and the gravity effects are neglected, and the permeability and the porosity do not vary with the pressure. (5) The fluid flow in the matrix and the fracture system of each section satisfies the linear flow rule.

    2. Mathematical model

    The parameters of the fracture system are directly generated by using the tree-shaped fractal network, as follows:

    The permeability and the porosity of a fracture system,kfand φf, do not vary with the radial distance,r, in the transient flow models of the traditional double porosity (fracture and matrix system) reservoir. In order to compare the tree-shaped fractal reservoir transient flow models with the double porosity reservoir transient flow models, we have to clarify how to keep kfand φfindependent of rin the treeshaped fractal reservoir transient flow models. Underthe condition of double branches (n=2), the permeability,kfk, and the porosity,φfk, of every section in a fracture system are identical, i.e.,

    Whenβis less than 0.707, a larger radius will cause a lower fracture system permeability of each section of the tree-shaped fractal reservoir. Whenβis larger than 0.707, a larger radius will cause a higher fracture system permeability of each section of the tree-shaped fractal reservoir.

    According to the above analysis, the flow mathematical model of the tree-shaped fractal reservoir is expressed as follows:

    3. Mathematical model solution

    To simplify the mathematical model and its solution, we define the following dimensionless variables:

    The dimensionless fracture system pressure of the kt hsection is

    In Eq.(26), the dimensionless effective interface radius rDek, the permeability ratio kf(k+1)/kfk, and the functionSk(z)can be directly expressed by the parameters of the tree-shaped fractal network.

    By substituting Eq.(3) into Eq.(16), we obtain the expression of the dimensionless effective interface radius.

    The permeability ratio can be obtained by using Eq.(6)

    The fluid capacitance coefficient ωkcan be obtained by substituting Eqs.(10) and (11) into Eq.(20).

    4. Analysis of type curve characteristics

    The dimensionless bottom hole pressure pwfDin the Laplace space is obtained by solving thelinear equations of Eq.(26), and the Stehfest numerical inversion method is used to convert pwfDto pwfD. The bilogarithmic type curves of the tree-shaped fractal reservoirs can be obtained.

    Figure 4 shows the dimensionless pressure responses for a double-branched tree-shaped fractal network in a tree-shaped fractal reservoir. The fracture permeability and the fracture volume of each section are identical, thus satisfying the conditions of Eq.(13). The parameter values of the fracture system are as follows:α=1,β=0.707,θ=1,N =4,M =10, l0=10 m and d0=0.05 m. Other parameters are unrelated to the fracture system, which are rw=0.1 m,S =–1,CDe=0.0001,km=5×10–3μm2,h =10 m, φmp=0.1,Cmt=2.2×10–5MPa–1and Cft=10–4MPa.

    Five flow regimes can be identified in Fig.4. Regime 1 is a pure wellbore storage regime, where both curves of the pressure and its derivative are an upward straight line with the slope of unity. Regime 2 is the transition regime influenced by the wellbore storage coefficient and the skin factor. The shape of the derivative curve is similar to a “hump,” where a greaterCDecauses a higher position of the “hump.” Given that the skin factor Sis in the index position, its value significantly affects the “hump” maximum value. Regime 3 is the early radial flow regime, which is also called the fracture system radial flow regime. If in this flow regime, there is a radial flow, the derivative curve is parallel to the horizontal ordinate, and its value is 0.5. However, this regime is hardly observed because it is often covered by the wellbore storage effect. Regime 4 is the inter-porosity flow regime, where the pressure derivative curve is V-shaped. The shape and the location of the V-shaped curves are mainly governed by the initial branch numberN, the length ratioα, and the branch angleθ. Regime 5 is the total system radial flow regime, which is observed when the transfer between the matrix and the fracture reaches a dynamic balance state. The slope of the pressure derivative curve is zero, and the curve converges to the “0.5 line.”

    Figure 5 shows the effect of the initial branch number Non the type curves of the tree-shaped fractal reservoirs. The initial branch numberNmainly influences the inter-porosity flow regime. With all other parameters constant, the initial branch number Ndetermines the location, the width, and the depth of the V-shape. Three important effects of a decreasingNare illustrated in Fig.5. First, the V-shape in the derivative curve becomes wider and deeper and shifts left when the initial branch numberN decreases. The second consequence of a decrease inN is that the inter-porosity flow regime occurs earlier. Third, the fracture system radial flow regime becomes shorter and may even be dominated by the wellbore storage effect.

    Figure 6 shows the effect of the length ratioα on the type curves of the tree-shaped fractal reservoirs. The length ratioαaffects the V-shape width and depth of the derivative curve. With all other parameters constant, a largerαleads to a wider and deeper V-shape. The inter-porosity flow regime lasts longer with an increase inα. On the other hand, the fracture system radial flow regime lasts shorter, and may even be covered by the pure wellbore storage regime. These results indicate that length ratioαhas a primary effect on the inter-porosity flow regime.

    Figure 7 shows the effect of the branch angle θ on the type curves of the tree-shaped fractal reservoirs. The branch angleθhas a significant effect on the fracture system radial and inter-porosity flow regimes. When the branch angleθincreases, the inter-porosity flow regime lasts longer, whereas the fracture system radial flow regime becomes shorter, and may even be covered by the pure wellbore storage effect. The position of the V-shape in the pressure derivative curve moves downward with an increase inθ. In addition, the V-shape becomes wider with a larger branch angle.

    Figure 8 shows the effect of the diameter ratio βon the type curves of the tree-shaped fractal reservoirs. The diameter ratioβdetermines the position of the pressure derivative curve. A smaller value ofβ causes an upward movement of the derivative curve. This phenomenon also shows the characteristics of the pressure transient responses like a closed boundary condition. When βincreases, the slope of the derivative curve decreases until it reaches zero. The critical value ofβis 0.707 when the facture system permeability and the fracture volume of each section is the same as those of the double-branched structure in the tree-shaped fractal reservoirs(n =2). Whenβis greater than 0.707, the pressure derivative curve representing the total system radial flow regime assumes a horizontal line with a value smaller than 0.5. The value of the horizontal line decreases asβincreases. Inversely, the total system radial flow regime’s pressure derivative curve assumes a horizontal line with a value larger than 0.5, even not as a horizontal line. These results indicate that the diameter ratio has a significant effect on the fracture system radial flow, the inter-porosity flow, and the total system radial flow regimes.

    Figures 9 and 10, respectively, show the effects of the total branch level Mof the network on the type curves of the tree-shaped fractal reservoirs when the diameter ratio βis 0.65 and 0.75. The total branch level of the network mainly controls the total system radial flow regime. As shown in Fig.9, when the diameter ratio is smaller than 0.707, the horizontal line section representing the total system radial flow regime in the derivative curve moves upward asM decreases. The derivative curve may respond like a closed boundary condition. As shown in Fig.10, when the diameter ratio is greater than 0.707, the type curve section representing the total system radial flow regime assumes a horizontal line. This curve section also moves downward as the total branch levelM of the network increases.

    5. Fluid capacitance coefficient and inter-porosity flow coefficient in different sections

    Figure 11 shows the fluid capacitance coefficient λkin different sections when the diameter ratioβis 0.65, 0.707 and 0.75. When the diameter ratio βis smaller than 0.707, the fluid capacitance coefficient λkincreases with an increase of the section number k. And whenβis greater than 0.707,λkdecreases with the increase ofk. Additionally,λkdoes not vary withk, whenβis 0.707.

    Figure 12 shows the inter-porosity flow coefficient ωkin different sections when the diameter ratio βis 0.65, 0.707 and 0.75. From Fig.12 we can see that when the section numberk is less than 6, the inter-porosity flow coefficient ωkdecreases dramatically with the increase of k. However, when it is greater than 6, the changing trends of ωkversuskdepend on the diameter ratioβ. When the diameter ratioβ is smaller than 0.707, the inter-porosity flow coefficient ωkincreases with the increase of the section number k(k>6). And whenβis greater than 0.707,ωkdecreases with the increase of k(k>6). Additionally, ωkdoes not vary withk , whenβis 0.707(k>6).

    6. Conclusions

    In this paper, a transient flow model for the treeshaped fractal reservoirs is proposed. The pressure transient responses under different fractal factors are discussed. The model presented in this paper provides a new methodology for analyzing and predicting the pressure dynamic characteristics of naturally fractured reservoirs.

    (1) A transient flow model of the tree-shaped fractal reservoirs is built by embedding a fracture network simulated by a tree-shaped fractal network into a matrix system. The model is solved using the Laplace conversion method. The dimensionless bottom hole pressure is obtained using the Stehfest numerical inversion method. Therefore, the bi-logarithmic type curves of tree-shaped fractal reservoirs are obtained.

    (2) The factors that have a primary effect on the inter-porosity flow regime are the initial branch numberN , the length ratioα, and the branch angleθ. WhenNis smaller, the inter-porosity flow regime occurs earlier, whereas the fracture radial flow regime becomes shorter and may be covered by the well storage effect. Whenαincreases andθdecreases, the inter-porosity flow regime lasts longer, whereas the fracture radial flow regime becomes shorter, and may be covered by the well storage effect.

    (3) The diameter ratioβhas a significant effect on the fracture radial flow, the inter-porosity and the total system radial flow regimes. When the fracture system permeability of each section and the fracture volume of the tree-shaped fractal reservoirs exhibit a double-branched condition (n=2), the critical value of the diameter ratioβis 0.707. The pressure derivative curve moves upward with the decrease ofβand even responds like a closed boundary condition. When βis greater than 0.707, the total system radial flow regime curve assumes a horizontal line with a value less than 0.5. Inversely, the total system radial flow regime curve assumes a horizontal line with a value greater than 0.5, even not as a horizontal line.

    (4) The total branch levelM of the network mainly influences the total system radial flow regime. Whenβis greater than 0.707, the pressure derivative curves in the total system radial flow regime moves upward asM decreases, and the curve may respond like a closed boundary condition. Whenβis less than 0.707, a largerM leads to a lower position of the pressure derivative curves in the total system radial flow regime.

    Acknowledgement

    This work was supported by the 2014 Australia China National Gas Technology Partnership Fund Top Up Scholoarship.

    [1] KRISTANTO D., YOGYAKARTA U. V. and ABDASSAH D. et al. Practical application of fractal model to analysis interference test in the naturally fracture reservoir, amoseas Indonesia Inc.[C]. SPE Asia Pacific Conference on Integrated Modelling for Asset Ma- nagement. Yokohama, Japan, 2000.

    [2] FLAMENCO-LOPEZ F., CAMACHO-VELAZQUEZ R. Fractal transient pressure behavior of naturally fractured reservoirs[C]. SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana, USA, 2001.

    [3] FLAMENCO-LOPEZ F., CAMACHO-VELAZQUEZ R. Determination of fractal parameters of fracture networks using pressure-transient data[C]. SPE Reservoir Evaluation and Engineering, 2003, 6(1): 39-47.

    [4] LI K., HORNE R. N. Fractal modeling of capillary pressure curves for the Geysers rocks[J]. Geothermics, 2006, 35(2): 198-207.

    [5] VELAZQUEZ R. C., FUENTES-CRUZ G. and VASQUEZ-CRUZ M. A. Decline-curve analysis of fractured reservoirs with fractal geometry[J]. SPE Reservoir Evaluation and Engineering, 2008, 11(3): 606-619.

    [6] ZHANG Yi-gen, TONG Deng-ke. The pressure transient analysis of deformation of fractal medium[J]. Journal of Hydrodynamics, 2008, 20(3): 306-313.

    [7] JAFARI A., BABADAGLI T. Calculating equivalent fracture network permeability of multi-layer-complex naturally fractured reservoirs[J]. SPE Western Regio- nal Meeting. Anaheim, California, USA, 2010.

    [8] JAFARI A., BABADAGLI T. Generating 3D permeability map of fracture networks using well, outcrop, and pressure-transient data[J]. SPE Reservoir Evaluation and Engineering, 2011, 14(2): 215-224.

    [9] ZHANG L., ZHANG J. and ZHAO Y. Analysis of a finite element numerical solution for a nonlinear seepage flow model in a deformable dual media fractal reservoir[J]. Journal of Petroleum Science and Engineering, 2011, 76(3-4): 77-84.

    [10] WECHSATOL W., LORENTE S. and BEJAN A. Tree-shaped insulated designs for the uniform distribution of hot water over an area[J]. International Journal of Heat and Mass Transfer, 2001, 44(16): 3111-3123.

    [11] LORENTE S., WECHSATOL W. and BEJAN A. Treeshaped flow structures designed by minimizing path lengths[J]. International Journal of Heat and Mass Transfer, 2002, 45(16): 3299-3312.

    [12] WECHSATOL W., LORENTE S. and BEJAN A. Optimal tree-shaped networks for fluid flow in a disc-shaped body[J]. International Journal of Heat and Mass Transfer, 2002. 45(25): 4911-4924.

    [13] XU P., YU B. The scaling laws of transport properties for fractal-like tree networks[J]. Journal of Applied Physics, 2006, 100(10): 104-106.

    [14] XU P., YU B. and YUN M. et al. Heat conduction in fractal tree-like branched networks[J]. International Journal of Heat and Mass Transfer, 2006, 49(19-20): 746-751.

    [15] XU P., YU B. and FENG Y. et al. Analysis of permeability for the fractal-like tree network by parallel and series models[J]. Physica A: Statistical Mechanics and its Applications, 2006, 369(2): 884-894.

    [16] YUN M., YU B. and CAI J. A fractal model for the starting pressure gradient for Bingham fluids in porous media[J]. International Journal of Heat and Mass Transfer, 2008, 51(5-6): 1402-1408.

    [17] WANG S., YU B. A fractal model for the starting pressure gradient for Bingham fluids in porous media embedded with fractal-like tree networks[J]. International Journal of Heat and Mass Transfer, 2011, 54(21-22): 4491-4494.

    [18] WANG S., YU B. and ZHENG Q. et al. A fractal model for the starting pressure gradient for Bingham fluids in porous media embedded with randomly distributed fractal-like tree networks[J]. Advances in Water Resour- ces, 2011, 34(12): 1574-1580.

    [19] TAN X., LI X. and LIU J. et al. Pressure transient analysis of dual fractal reservoir[J]. Journal of Applied Mathematics, 2013, 137518.

    10.1016/S1001-6058(14)60072-X

    * Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 51125019).

    Biography: TAN Xiao-hua (1986-), Male, Ph. D. Candidate

    LI Xiao-ping,

    E-mail: lixiaoping@swpu.edu.cn

    国产真人三级小视频在线观看| 欧美激情高清一区二区三区| 欧美亚洲 丝袜 人妻 在线| 最新的欧美精品一区二区| 操出白浆在线播放| 国产免费视频播放在线视频| 另类精品久久| 少妇被粗大的猛进出69影院| 国产福利在线免费观看视频| 日本撒尿小便嘘嘘汇集6| 淫妇啪啪啪对白视频| 五月天丁香电影| 亚洲成人免费av在线播放| 成人免费观看视频高清| 午夜老司机福利片| 午夜福利视频精品| 在线亚洲精品国产二区图片欧美| 午夜福利,免费看| 亚洲一区二区三区欧美精品| 成人18禁在线播放| 亚洲一区中文字幕在线| 无遮挡黄片免费观看| 女性生殖器流出的白浆| 男人操女人黄网站| 91精品国产国语对白视频| 999精品在线视频| 精品乱码久久久久久99久播| 欧美精品一区二区免费开放| 脱女人内裤的视频| 国产一区二区三区视频了| 亚洲精品一二三| 中亚洲国语对白在线视频| 欧美日韩亚洲国产一区二区在线观看 | 精品久久久久久久毛片微露脸| 免费观看a级毛片全部| 亚洲欧洲精品一区二区精品久久久| 美女国产高潮福利片在线看| 国产免费av片在线观看野外av| av网站免费在线观看视频| 国产激情久久老熟女| 女性被躁到高潮视频| 日韩成人在线观看一区二区三区| 香蕉丝袜av| 夜夜夜夜夜久久久久| 黑人操中国人逼视频| 成人国产一区最新在线观看| 国产有黄有色有爽视频| 国产精品亚洲av一区麻豆| 天天躁日日躁夜夜躁夜夜| 精品人妻1区二区| 国产一区二区三区在线臀色熟女 | 汤姆久久久久久久影院中文字幕| 日本av手机在线免费观看| 在线观看www视频免费| 国产一卡二卡三卡精品| 99精品久久久久人妻精品| 高潮久久久久久久久久久不卡| 成人特级黄色片久久久久久久 | 亚洲综合色网址| av不卡在线播放| 国产精品久久久av美女十八| 亚洲一区二区三区欧美精品| 怎么达到女性高潮| av天堂在线播放| 黄色视频,在线免费观看| 欧美日韩视频精品一区| 久久99热这里只频精品6学生| 国产无遮挡羞羞视频在线观看| 人妻一区二区av| 成年人黄色毛片网站| 一级毛片女人18水好多| 国产在线一区二区三区精| 国产成人精品在线电影| 在线观看免费午夜福利视频| 色综合婷婷激情| 亚洲精品在线观看二区| 最近最新中文字幕大全免费视频| 国产成人啪精品午夜网站| 亚洲专区国产一区二区| 91精品三级在线观看| 国产色视频综合| 亚洲情色 制服丝袜| 亚洲精品在线美女| 亚洲精品美女久久久久99蜜臀| 后天国语完整版免费观看| 黄色怎么调成土黄色| 亚洲国产欧美日韩在线播放| 90打野战视频偷拍视频| 自拍欧美九色日韩亚洲蝌蚪91| 免费在线观看视频国产中文字幕亚洲| 久久精品国产亚洲av香蕉五月 | www.精华液| 9热在线视频观看99| 国产xxxxx性猛交| 69av精品久久久久久 | 国产精品九九99| 午夜精品久久久久久毛片777| 亚洲精品乱久久久久久| 午夜成年电影在线免费观看| 亚洲色图综合在线观看| 一本综合久久免费| 精品少妇一区二区三区视频日本电影| 日韩免费av在线播放| 久久国产精品男人的天堂亚洲| 一本一本久久a久久精品综合妖精| 天堂中文最新版在线下载| 嫁个100分男人电影在线观看| 国产精品美女特级片免费视频播放器 | 十八禁网站网址无遮挡| 国产精品 国内视频| 国产单亲对白刺激| 妹子高潮喷水视频| 十八禁网站网址无遮挡| 一本色道久久久久久精品综合| 在线十欧美十亚洲十日本专区| 国产xxxxx性猛交| 人成视频在线观看免费观看| 黄片播放在线免费| 久久久国产欧美日韩av| 麻豆av在线久日| 国产精品一区二区免费欧美| 女人高潮潮喷娇喘18禁视频| 天天操日日干夜夜撸| 一级毛片电影观看| 婷婷成人精品国产| 免费观看av网站的网址| 大香蕉久久成人网| 亚洲天堂av无毛| 久久这里只有精品19| 日本一区二区免费在线视频| 精品熟女少妇八av免费久了| 桃花免费在线播放| 免费久久久久久久精品成人欧美视频| 国产精品一区二区免费欧美| 亚洲va日本ⅴa欧美va伊人久久| 日韩免费av在线播放| kizo精华| 中文字幕另类日韩欧美亚洲嫩草| 久久久久国内视频| 性少妇av在线| 两个人看的免费小视频| 夜夜骑夜夜射夜夜干| 免费在线观看影片大全网站| 国产淫语在线视频| 国产黄频视频在线观看| 黄色毛片三级朝国网站| 国产在线观看jvid| 男人操女人黄网站| 欧美人与性动交α欧美软件| 宅男免费午夜| 国产精品亚洲av一区麻豆| 欧美国产精品va在线观看不卡| 久久亚洲精品不卡| 三级毛片av免费| 日韩免费高清中文字幕av| 精品国产一区二区三区四区第35| 欧美日韩视频精品一区| 精品久久久精品久久久| 午夜福利,免费看| 99久久国产精品久久久| 免费在线观看视频国产中文字幕亚洲| 深夜精品福利| 99久久精品国产亚洲精品| 亚洲午夜精品一区,二区,三区| 在线永久观看黄色视频| 久久香蕉激情| 无限看片的www在线观看| avwww免费| 国产黄频视频在线观看| 精品久久久精品久久久| 国产精品二区激情视频| 69精品国产乱码久久久| 岛国在线观看网站| 一个人免费在线观看的高清视频| www.熟女人妻精品国产| 一区二区三区激情视频| 亚洲国产精品一区二区三区在线| 亚洲精品国产色婷婷电影| 女人被躁到高潮嗷嗷叫费观| 久久精品91无色码中文字幕| 91精品国产国语对白视频| 亚洲第一av免费看| 精品熟女少妇八av免费久了| 亚洲五月色婷婷综合| 老汉色av国产亚洲站长工具| 精品欧美一区二区三区在线| 亚洲国产欧美日韩在线播放| 夜夜爽天天搞| 黄色毛片三级朝国网站| 热99久久久久精品小说推荐| 两人在一起打扑克的视频| 一级a爱视频在线免费观看| 狠狠精品人妻久久久久久综合| 国产三级黄色录像| 三级毛片av免费| 91精品国产国语对白视频| 国产真人三级小视频在线观看| 国产色视频综合| 久久精品亚洲精品国产色婷小说| 另类亚洲欧美激情| 亚洲免费av在线视频| 欧美精品亚洲一区二区| 老司机影院毛片| 欧美另类亚洲清纯唯美| 国产在线一区二区三区精| 麻豆av在线久日| 一区二区三区国产精品乱码| 宅男免费午夜| 熟女少妇亚洲综合色aaa.| 一区二区三区激情视频| 国产成人精品无人区| 高潮久久久久久久久久久不卡| 亚洲美女黄片视频| 亚洲天堂av无毛| 成年人午夜在线观看视频| 中文字幕人妻丝袜一区二区| 色综合欧美亚洲国产小说| 欧美日韩黄片免| 日韩欧美免费精品| 久久热在线av| 国产精品香港三级国产av潘金莲| 免费不卡黄色视频| 不卡一级毛片| 国产免费福利视频在线观看| 精品少妇内射三级| 国产伦理片在线播放av一区| 一本色道久久久久久精品综合| 久久久精品区二区三区| 天天操日日干夜夜撸| 少妇猛男粗大的猛烈进出视频| 国产又色又爽无遮挡免费看| 性少妇av在线| 999久久久国产精品视频| 亚洲黑人精品在线| 热re99久久国产66热| 久久天堂一区二区三区四区| 精品久久蜜臀av无| 亚洲精品国产区一区二| 男女边摸边吃奶| 亚洲中文日韩欧美视频| 欧美黄色片欧美黄色片| www.精华液| 丝瓜视频免费看黄片| 久久精品成人免费网站| 国产老妇伦熟女老妇高清| 欧美日本中文国产一区发布| 黄色丝袜av网址大全| 亚洲少妇的诱惑av| 国产熟女午夜一区二区三区| 国产视频一区二区在线看| 香蕉丝袜av| 人人妻人人添人人爽欧美一区卜| 精品一品国产午夜福利视频| 国产精品亚洲av一区麻豆| 精品国产亚洲在线| 一级,二级,三级黄色视频| 中文字幕av电影在线播放| 一区二区日韩欧美中文字幕| 国产97色在线日韩免费| 老熟女久久久| 青草久久国产| 国产精品1区2区在线观看. | 国产精品 国内视频| 99久久99久久久精品蜜桃| 久久av网站| 成年女人毛片免费观看观看9 | 日韩视频在线欧美| 亚洲成a人片在线一区二区| 动漫黄色视频在线观看| 这个男人来自地球电影免费观看| 又黄又粗又硬又大视频| 视频区欧美日本亚洲| 搡老乐熟女国产| 在线观看人妻少妇| 国产精品秋霞免费鲁丝片| 亚洲熟女毛片儿| 精品免费久久久久久久清纯 | 999久久久国产精品视频| 1024视频免费在线观看| 99国产精品一区二区三区| 岛国毛片在线播放| 久久热在线av| 一进一出好大好爽视频| 免费久久久久久久精品成人欧美视频| 免费少妇av软件| 无人区码免费观看不卡 | 国产麻豆69| 不卡一级毛片| 欧美成狂野欧美在线观看| a级毛片黄视频| 午夜福利在线免费观看网站| 黄色毛片三级朝国网站| 亚洲男人天堂网一区| 亚洲avbb在线观看| 啦啦啦免费观看视频1| 久久这里只有精品19| 国产一区二区三区视频了| 视频在线观看一区二区三区| 国产精品久久久久久精品电影小说| 亚洲精品国产精品久久久不卡| 色尼玛亚洲综合影院| 亚洲国产毛片av蜜桃av| 亚洲国产av新网站| 韩国精品一区二区三区| 女警被强在线播放| 每晚都被弄得嗷嗷叫到高潮| tocl精华| 亚洲熟女毛片儿| 日韩人妻精品一区2区三区| 一区二区三区乱码不卡18| 日韩三级视频一区二区三区| 日本av手机在线免费观看| 另类亚洲欧美激情| 一级毛片电影观看| 一进一出好大好爽视频| 在线播放国产精品三级| 亚洲精品久久成人aⅴ小说| 在线av久久热| 精品人妻1区二区| 女警被强在线播放| 18禁观看日本| 女警被强在线播放| 嫩草影视91久久| 久9热在线精品视频| 麻豆乱淫一区二区| 18在线观看网站| 精品福利观看| 电影成人av| 亚洲午夜精品一区,二区,三区| 国产有黄有色有爽视频| 老司机深夜福利视频在线观看| 亚洲人成77777在线视频| 50天的宝宝边吃奶边哭怎么回事| 欧美黑人欧美精品刺激| 久久国产精品人妻蜜桃| 亚洲精品一二三| 国产高清videossex| 国产淫语在线视频| 黑人猛操日本美女一级片| 国产成人系列免费观看| 久久精品国产99精品国产亚洲性色 | 90打野战视频偷拍视频| 成人精品一区二区免费| 午夜福利免费观看在线| 丰满少妇做爰视频| 国产男女超爽视频在线观看| 黑人操中国人逼视频| 日韩熟女老妇一区二区性免费视频| 高潮久久久久久久久久久不卡| 欧美黄色片欧美黄色片| 淫妇啪啪啪对白视频| 久久中文看片网| 黄色丝袜av网址大全| h视频一区二区三区| 一本色道久久久久久精品综合| 国产野战对白在线观看| 夜夜夜夜夜久久久久| 亚洲av成人不卡在线观看播放网| av欧美777| 热99re8久久精品国产| 久久婷婷成人综合色麻豆| 国产伦人伦偷精品视频| 成人精品一区二区免费| 91成年电影在线观看| 久久久精品94久久精品| 97在线人人人人妻| 夜夜夜夜夜久久久久| 国产野战对白在线观看| 久久久久视频综合| 美女午夜性视频免费| 精品久久蜜臀av无| 久久狼人影院| 亚洲avbb在线观看| 91麻豆精品激情在线观看国产 | 一级片'在线观看视频| 丝袜喷水一区| 久久久国产一区二区| 亚洲第一av免费看| svipshipincom国产片| 国产不卡一卡二| 中文字幕色久视频| 国产xxxxx性猛交| 老司机福利观看| 一区福利在线观看| 亚洲欧洲精品一区二区精品久久久| 考比视频在线观看| 精品一区二区三区av网在线观看 | 国产激情久久老熟女| 男女无遮挡免费网站观看| 午夜激情久久久久久久| 一区二区日韩欧美中文字幕| 中文字幕最新亚洲高清| 欧美精品高潮呻吟av久久| tocl精华| 欧美 亚洲 国产 日韩一| 黑人巨大精品欧美一区二区蜜桃| 性色av乱码一区二区三区2| 50天的宝宝边吃奶边哭怎么回事| 另类亚洲欧美激情| 99香蕉大伊视频| 又紧又爽又黄一区二区| a级片在线免费高清观看视频| 国产一区二区在线观看av| 亚洲欧美日韩另类电影网站| 日韩 欧美 亚洲 中文字幕| 欧美成狂野欧美在线观看| 免费在线观看视频国产中文字幕亚洲| 亚洲成人国产一区在线观看| 精品久久蜜臀av无| 免费黄频网站在线观看国产| 国产av又大| 9热在线视频观看99| 一个人免费在线观看的高清视频| 国产精品免费大片| 成人国产一区最新在线观看| 亚洲国产av影院在线观看| av天堂在线播放| 女人精品久久久久毛片| 国产不卡一卡二| 欧美国产精品一级二级三级| 亚洲,欧美精品.| 黄色a级毛片大全视频| av有码第一页| 国产亚洲精品一区二区www | 日韩中文字幕视频在线看片| 国产淫语在线视频| 欧美大码av| 高清视频免费观看一区二区| 国产成人免费无遮挡视频| 国产亚洲欧美在线一区二区| 免费在线观看视频国产中文字幕亚洲| 久久久久久久久久久久大奶| 久久久精品区二区三区| 18禁黄网站禁片午夜丰满| 亚洲精品在线观看二区| av网站在线播放免费| 日韩欧美一区视频在线观看| 国产精品一区二区免费欧美| 国产一区二区激情短视频| 欧美乱码精品一区二区三区| 大型av网站在线播放| 国产精品免费视频内射| 美女主播在线视频| 精品亚洲成a人片在线观看| 91麻豆av在线| 午夜福利一区二区在线看| 欧美久久黑人一区二区| 亚洲熟妇熟女久久| 王馨瑶露胸无遮挡在线观看| 99国产精品一区二区蜜桃av | 精品乱码久久久久久99久播| 啦啦啦在线免费观看视频4| 成人免费观看视频高清| 丝袜喷水一区| 女人精品久久久久毛片| 美女午夜性视频免费| 一级毛片电影观看| 欧美激情极品国产一区二区三区| 在线观看舔阴道视频| 亚洲七黄色美女视频| 一级a爱视频在线免费观看| 国产精品偷伦视频观看了| 亚洲国产成人一精品久久久| 亚洲免费av在线视频| 国产高清激情床上av| 久久热在线av| videosex国产| 五月天丁香电影| 这个男人来自地球电影免费观看| 狠狠精品人妻久久久久久综合| 国产成人免费观看mmmm| 国产精品久久久人人做人人爽| 最近最新中文字幕大全电影3 | av超薄肉色丝袜交足视频| 亚洲欧美激情在线| 久久这里只有精品19| 在线观看一区二区三区激情| 欧美大码av| 国产免费现黄频在线看| 国产老妇伦熟女老妇高清| 大香蕉久久成人网| 午夜免费成人在线视频| 国产精品免费大片| 成年人免费黄色播放视频| 91九色精品人成在线观看| a级毛片在线看网站| 少妇粗大呻吟视频| 可以免费在线观看a视频的电影网站| 热99久久久久精品小说推荐| 免费一级毛片在线播放高清视频 | 超碰97精品在线观看| bbb黄色大片| 午夜福利欧美成人| 欧美久久黑人一区二区| 久久中文字幕人妻熟女| 变态另类成人亚洲欧美熟女 | 一区福利在线观看| 亚洲精品久久午夜乱码| 欧美激情高清一区二区三区| 亚洲精品成人av观看孕妇| 99香蕉大伊视频| 国产在线观看jvid| 国产一区二区 视频在线| 天天添夜夜摸| 成年版毛片免费区| 制服诱惑二区| 一个人免费看片子| 国产精品一区二区在线不卡| 90打野战视频偷拍视频| 亚洲色图av天堂| 最黄视频免费看| 午夜福利视频在线观看免费| 国产aⅴ精品一区二区三区波| 国产午夜精品久久久久久| 亚洲专区字幕在线| 桃红色精品国产亚洲av| www.自偷自拍.com| 欧美中文综合在线视频| 19禁男女啪啪无遮挡网站| www日本在线高清视频| 在线观看免费日韩欧美大片| 日本五十路高清| 色尼玛亚洲综合影院| 国产一区二区激情短视频| 亚洲一区中文字幕在线| 男人操女人黄网站| 精品一区二区三卡| 脱女人内裤的视频| 欧美精品一区二区大全| 欧美亚洲日本最大视频资源| 精品午夜福利视频在线观看一区 | 国产精品 欧美亚洲| 亚洲熟妇熟女久久| 五月天丁香电影| 亚洲一卡2卡3卡4卡5卡精品中文| 天天影视国产精品| 久久99热这里只频精品6学生| 免费女性裸体啪啪无遮挡网站| 午夜两性在线视频| 国产成人免费观看mmmm| 深夜精品福利| 99国产精品一区二区三区| 亚洲熟女精品中文字幕| 亚洲第一av免费看| 国产精品电影一区二区三区 | 午夜成年电影在线免费观看| 美女高潮到喷水免费观看| 欧美激情久久久久久爽电影 | 午夜福利视频精品| 18禁美女被吸乳视频| 另类精品久久| 午夜激情久久久久久久| 啦啦啦 在线观看视频| 老司机在亚洲福利影院| 午夜精品久久久久久毛片777| 国产淫语在线视频| 免费一级毛片在线播放高清视频 | 少妇粗大呻吟视频| 熟女少妇亚洲综合色aaa.| 女性生殖器流出的白浆| 九色亚洲精品在线播放| 日本撒尿小便嘘嘘汇集6| 国产一卡二卡三卡精品| 精品少妇内射三级| 国产黄色免费在线视频| 日韩成人在线观看一区二区三区| 青青草视频在线视频观看| 亚洲国产精品一区二区三区在线| 12—13女人毛片做爰片一| www.精华液| 国产免费现黄频在线看| 在线 av 中文字幕| 18禁黄网站禁片午夜丰满| 亚洲视频免费观看视频| 香蕉久久夜色| 亚洲色图 男人天堂 中文字幕| 免费少妇av软件| 国产精品电影一区二区三区 | 欧美大码av| 日韩欧美免费精品| 欧美 日韩 精品 国产| 国产男女内射视频| 人人妻人人澡人人爽人人夜夜| 又紧又爽又黄一区二区| 久久精品国产99精品国产亚洲性色 | 欧美精品一区二区大全| www.自偷自拍.com| 久久午夜综合久久蜜桃| 五月开心婷婷网| 一二三四在线观看免费中文在| 精品国产一区二区久久| 久久久欧美国产精品| 午夜福利影视在线免费观看| 欧美人与性动交α欧美精品济南到| 91成人精品电影| 午夜免费鲁丝| 纵有疾风起免费观看全集完整版| 丝瓜视频免费看黄片| 国产日韩一区二区三区精品不卡| 一夜夜www| 在线观看www视频免费| av片东京热男人的天堂| 精品少妇黑人巨大在线播放| 曰老女人黄片| 桃花免费在线播放| 91精品三级在线观看| 97人妻天天添夜夜摸| 国产麻豆69| 亚洲精品美女久久久久99蜜臀| 9热在线视频观看99| 桃花免费在线播放| 亚洲成av片中文字幕在线观看| a级毛片黄视频| 菩萨蛮人人尽说江南好唐韦庄| 精品少妇黑人巨大在线播放|