• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The method to control the submarine horseshoe vortex by breaking the vortex core*

    2014-04-05 21:44:04LIUZhihua劉志華XIONGYing熊鷹
    關(guān)鍵詞:耕地面積園地結(jié)果表明

    LIU Zhi-hua (劉志華), XIONG Ying (熊鷹)

    Department of Ship Engineering, Naval University of Engineering, Wuhan 430033, China,

    E-mail: meining1014@sina.com

    TU Cheng-xu (涂程旭)

    College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China

    The method to control the submarine horseshoe vortex by breaking the vortex core*

    LIU Zhi-hua (劉志華), XIONG Ying (熊鷹)

    Department of Ship Engineering, Naval University of Engineering, Wuhan 430033, China,

    E-mail: meining1014@sina.com

    TU Cheng-xu (涂程旭)

    College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China

    (Received May 12, 2013, Revised March 15, 2014)

    The quality of the inflow across the propeller is closely related with the hydrodynamic performance and the noise characteristics of the propeller. For a submarine, with a horseshoe vortex generated at the junction of the main body and the appendages, the submarine wake is dominated by a kind of highly non-uniform flow field, which has an adverse effect on the performance of the submarine propeller. In order to control the horseshoe vortex and improve the quality of the submarine wake, the flow field around a submarine model is simulated by the detached eddies simulation (DES) method, and the vortex configuration is displayed using the second invariant of the velocity derivative tensor. The state and the transition process of the horseshoe vortex are analyzed, then a modified method to break the vortex core by a vortex baffle is proposed. The flow numerical simulation is carried out to study the effect of this method. Numerical simulations show that, with the breakdown of the vortex core, many unstable vortices are shed and the energy of the horseshoe vortex is dissipated quickly, and the uniformity of the submarine wake is improved. The submarine wake test in a wind tunnel has verified the effect of the method to control the horseshoe vortex. The vortex baffle can improve the wake uniformity in cases of high Reynolds numbers as well, and it does not have adverse effects on the maneuverability and the speed ability of the submarine.

    horseshoe vortex, submarine wake, flow uniformity, vortex baffle

    Introduction

    The submarine propeller operates in the wake of a submarine, so the quality of the wake has a direct influence on the hydrodynamic performance and the noise characteristics of the submarine propeller. The submarine horseshoe vortex generated at the junction of the main body and the appendages (such as rudder, sail and stern foil), is mainly responsible for the nonuniformity in the submarine wake[1-3]. In order to improve the uniformity in the submarine wake and the submarine propeller performance, the submarine flow fields were extensively studied, and some useful methods to improve the quality of submarine wake were proposed. Rhee et al.[4]studied the flow around an appended submarine model using the numerical simulation method; the detailed flow structures were analyzed. Zhang et al.[5]simulated the submarine wake with different Reynolds numbers and studied the influence of the Reynolds number on the vortex strength in the wake. Wu et al.[6]carried out an optimization design study of the sail of a submarine in order to improve the wake flow.

    In order to reduce the strength of the submarine horseshoe vortex, Paul[7]designed a small lifting surface located in the body-appendage junction area, to induce the tip vortex to disturb and weaken the horseshoe vortex. Adding an arc fillet at the body-appendage junction deems an effective method to improve the flow uniformity at the submarine propeller disc. Li et al.[8]and Zhang et al.[9]carried out pertinent studies with numerical simulations and model experiments.

    Liu et al.[10]presented a method to control thesubmarine horseshoe vortex by inducing a counter revolving vortex.

    In this paper, a modified method is proposed to control the horseshoe vortex by disturbing the initial vortex state, and its effectiveness is shown by numerical simulations and wind tunnel experiments.

    1. Simulation and visualization of submarine horseshoe vortex

    1.1 Numerical simulation method

    But for the detailed flow structure, some high precision turbulent models and transient simulation methods should be applied in order to obtain valuable and accurate results. In this paper, the detached eddies simulation (DES) method is used to simulate the submarine horseshoe vortex.

    The DES model combines the fine tuned RANS method in the thin turbulent boundary layers with the powerful LES in the outer flow regions, to take advantages of the both methods.

    In the DES method, a transform function is needed to control the transition between the computation methods. Because the variable,d, which stands for the distance from the computational node to the closest wall, is used in both RANS and LES, so in the DES model,d is replaced with a new length scale,, defined as:=min(d,Cdes.Δ). Here the grid spacing,Δ, is based on the largest grid space inx,y and zdirections in the computational cell. The DES model functions as the RANS model for=dand as the LES model for=Cdes.Δ.

    1.2 Configuration of study model

    According to the configuration characteristics of a submarine, the study model is designed as shown in Fig.1, which includes a main body and a sail model. The main body is 1 m in length and its maximum diameter is 0.12 m. The sail model is 0.1 m in length and 0.07 m in height, the section of the sail is shown in Fig.2, which has a maximum thickness of 0.025 m. This study model is named the SBM.

    The flow field around the study model of the SBM is simulated by the DES method with the transient state, and the computation grid is as shown in Fig.3.

    The inflow boundary, with an upstream distance of one total model length from the bow of the model, is set as in the velocity-inlet boundary condition. The outflow boundary, with a downstream distance of two times of the total model length from the stern of the model, is set as in the undisturbed pressure-outlet boundary condition. The outer boundary, with a distance of one total model length from the central axis of the model, is set as in the undisturbed velocity boundary condition.

    In this flow simulation, the Reynolds numbe6r about the total length of the SBM model is 1.55×10. The grids close to the model is small enough to reflect the small size flow structure, and the distance of the first layer grid to the surface of the body is set to ensure the non-dimensional spacing reaching the target of y+≈1, and the total number of the computational grid is 1.6×107.

    1.3 Visualization and analysis of the horseshoe vortex

    The transient flow around the SBM model is simulated by the DES method, and the transient simulation is initialized by the primary steady results. According to the requirements of the DES method, the step size of the transient simulation is determined by the Courant-Friedrichs-Lewy (CFL) number.CFL= dtU/Δ, wheredtis the time step size and it should be set to satisfyCFL≈1. Here the time step size,dt, is 4.0×10-5s.

    The surface pressure distribution at the junction of the sail and the main body of the SBM is shown in Fig.4 with the calculation time of 0.24 s after convergence.

    As shown in Fig.4, both of the highest pressure area and the lowest pressure area appear in the junction region, which induces a great pressure gradient. With the great pressure gradient, the perpendicular joint of the main body and the sail model, the flow becomes very complicated, and the horseshoe vortex is induced.

    The horseshoe vortex is the main issue considered in the simulation. When the flow field is solved, the velocity derivative tensor at every point in the flow field can be obtained as dij=?ui/?uj, which is a second-order tensor[16]. The shape and the distribution of vortexes could be expressed by the second invariant of the velocity derivative tensor,I2, as

    Here,iand j are the indexes standing forx,y andz.I2is a scalar to scale the strength and the influence area of the three dimensional vortex.

    The iso-surface of I2at the calculation time of 0.24 s is shown in Fig.5, which displays the initial state of the horseshoe vortex and its development. The horseshoe vortex will cause the non-uniformity of the wake when it goes downstream to the tail of the model. Figure 6 shows the isoline of the axial flow velocity at the section located at0.978L, the excurvature of the isoline is just caused by the horseshoe vortex.

    As shown in Fig.4 and Fig.5, the vortex is generated by the great pressure gradient at the fore part of the sail. With the swash of the inflow and the blocking of the sail, the vortex changes its state from a transverse vortex to a longitudinal vortex and goes downstream. The longitudinal vortex goes straight down to the submarine wake and leads to the flow non-uniformity at the submarine propeller disc. If the longitudinal vortex core is ingeniously disturbed, some significant effect to break or control the vortex can be achieved.

    A kind of vortex baffle is designed to break the longitudinal vortex core. As shown in Fig.7, this vortex baffle is in a shape of a rectangle and its dimension is set to match the size of the dimension of the vortex core. Here the vortex baffle is 0.012 m in length and 0.007 m in height, and it is located at the area where the the longitudinal vortex comes into being (as shown in Fig.7).

    2. Simulation on the effect of the vortex baffle

    The vortex state of the SBM with the vortex baffle is displayed based on the simulation. Figure 9 shows the longitudinal vortex core that has been broken at the calculation time of 0.33 s after convergence.

    As shown in Fig.9, the vortex baffle causes a havoc on the longitudinal vortex core, the relatively stable vortex state is disturbed greatly, which accelerates the dissipation of the vortex energy. It is shown from the comparison between Fig.5 and Fig.9, the disturbed horseshoe vortex goes downstream with a much smaller vortex core, and the influence of the horseshoe vortex on the uniformity of the SBM model wake flow is expected to decrease.

    Figure 10 shows the isoline of the axial flow velocity of the SBM model with the vortex baffle at the section located at 0.978L. Compared with that of the SBM model without the vortex baffle, it is obviously shown that the camber of the isoline caused by the horseshoe vortex is decreased.

    The distribution of the velocity at different radial directions is shown in Fig.11. Here U0stands for the undisturbed inflow velocity,uxstands for the axial velocity component,urstands for the radial velocity component,uθstands for the tangential velocity component, and the superscript “?” stands for the statewith the vortex baffle.R is the maximum radius of the main body of the SBM,r is the distance from the calculation point to the axial line of the model,θ is the circumferential angle(as shown in Fig.10).

    As shown in Fig.10 through Fig.13, with the effect of the vortex baffle, the amplitude of the velocity variation against the circumferential angle is decreased markedly, it indicates that the vortex baffle can improve the uniformity of the wake of the SBM model.

    In order to study the effect of the vortex baffle with high Reynolds numbers, the flow field around the SBM model is further simulated with the Reynolds numbers of 1.24×107by increasing the inflow velocity. In the simulation, the configuration of the vortex baffle is the same as that in the simulation with the Reynolds numbers of 1.55×106, but the total number of the computational grid increases to 48 million. The result of the simulation is shown in Fig.14.

    The non-uniformity of the wake can be reflected distinctly by the distribution of the axial velocity component at the propeller disc. As shown in Fig.14, the wake uniformity can be improved by the vortex baffle in cases of high Reynolds numbers as well.

    Because the propeller operating in the submarine wake has a diameter generally less than 60% of the maximum diameter of the main body, this method to improve the inflow quality across the propeller is practical in real applications.

    2、耕地監(jiān)測。監(jiān)測結(jié)果表明,2012年庫區(qū)耕地1251037.52畝,2017年1240650.22畝,五年間耕地面積減少10387.30畝。庫區(qū)新增耕地主要是由于土地整治開發(fā)將部分林地、園地、草地等地類改造成耕地類型,庫區(qū)耕地面積減少的主要因素是建設(shè)占用和水庫淹沒。

    In literature[2], the author of this paper proposed a method to weaken the horseshoe vortex by inducingthe attached vortex, which is shown in Fig.15.

    Compared Fig.15 with Fig.9, It can be concluded that, the attached vortex controls the horseshoe vortex indirectly, while the modified vortex baffle can directly break the vortex core, so with much better effect on the improvement of the submarine wake.

    3. Experiment to verify the effect of vortex baffle

    In order to test whether the vortex baffle has the practical effect to control the horseshoe vortex and improve the inflow quality at the propeller disc, the wind tunnel experiment on an SBM model is carried out. In this experiment, the axial velocity at the tail of the SMB model with and without the vortex baffle is measured by a hot wire velocimeter system.

    The SBM model is in the configuration described in Section 1.2. The experiment is carried out in the cycle low-speed wind tunnel, the test section of the wind tunnel is 2 m in length and 0.6 m×0.6 m in cross section, and the turbulent intensity is lower than 1% in design. The test error of the velocimeter system is lower than 0.5%.

    Figure 16 shows the tested SBM model in the wind tunnel, and the vortex baffle located at the junction area of the main body and the sail model. The dimension and the position of the vortex baffle is set as the same as that in the simulation; the material of the baffle is cuprum and its thickness is 0.0001 m.

    The experiments about the SBM with and without the vortex baffle are carried out and the wind velocity is 264.45 m/s to have the Reynolds number of 1.55×10. The tested non-dimensional axial velocity, ux/U0, is plotted in Fig.17, and the comparison results of the model with and without the vortex baffle are also displayed in this figure. As shown from the comparison, the effect of the vortex baffle to improve the uniformity of the submarine wake is confirmed by experiment.

    4. The influence of the vortex baffle on the hydrodynamic force acted on the body

    When the submarine navigates in the sea, the hydrodynamic force acted on the submarine has a direct relation to its maneuverability and speed ability. In order to investigate the influence of the vortex baffleon the hydrodynamic force acted on the body, three navigation configurations of the SBM model are simulated, and the resistance, the lift force and the transverse force acted on the SBM model with and without the vortex baffle are analyzed, respectively. The configurations are list in Table 2.

    The simulation is carried out and the force to be analyzed is monitored in an iteration process. Figure 18 shows the pressure distribution on the surface of the SBM model after the calculation is converged.

    Table 3 shows the resistance, the lift force and the transverse force acted on the SBM model with and without the vortex baffle. Here the forces are presented as the hydrodynamic coefficients which are divided by ρV2L/2, andLstands for the total length of the SBM model.

    As shown in Table 2, the vortex baffle has very little influence on the hydrodynamic force acted on the SBM model, and the main reason is that the vortex baffle has a much smaller area than that of the model and it is enveloped in the transverse and vertical projections of the model, so the vortex baffle will not cause an adverse effect on the maneuverability and speed ability of the submarine.

    5. Conclusion

    The submarine horseshoe vortex generated at the sail-body junction is numerically simulated and visualized by the Detached Eddies Simulation method and the second invariant of the velocity derivative tensor. In order to decrease the influence of the horseshoe vortex on the submarine wake, a modified method to break the vortex core is proposed. The numerical simulation on the effect of this method is carried out. It is shown that, the vortex baffle causes a havoc on the longitudinal vortex core, and the vortex energy is dissipated greatly. With the effect of the vortex baffle, the flow uniformity at the submarine propeller disc is greatly improved. The wind tunnel experiment is carried out to test the axial velocity distribution at the propeller disc of the submarine model, and the effect of the method to improve the flow uniformity of the submarine wake is verified by this experiment. This paper means to help the control of the submarine propeller noise and vibration.

    Acknowledgement

    This work was supported by the Science Study Foundation of Naval University of Engineering (Grant No. HGDQNJJ12004).

    [1] ALIN N., FUREBY C. and SVENJBERG S. U. 3D unsteady computations for submarine-like bodies[C]. Proceedings of 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, USA, 2005.

    [2] LIU Zhi-hua, XIONG Ying and WANG Zhan-zhi et al. Method to control unsteady force of submarine propeller based on the control of horseshoe vortex[J]. Journalof Ship Research, 2011, 55(4): 1-11.

    [3] ALIN N., BENSOW R. E. and FUREBY C. et al. Current capabilities of DES and LES for submarine at straight course[J]. Journal of Ship Research, 2010, 54(3): 184-196.

    [4] RHEE B., SUNG C.-H. and KOH I. Y. Validation of the flow around an appended SUBOFF body using parallelization and a new wall method[C]. The 8th International Conference on Numerical Ship Hydrodynamics. Busan, Korea, 2003, 223-232.

    [5] ZHANG Nan, SHEN Hong-cui and YAO Hui-zhi. Prediction the flow around submarine with different Reynolds Number by Reynolds-Stress model[J]. Journal of Ship Mechanics, 2009, 13(5): 688-696(in Chinese).

    [6] WU Fang-liang, WU Xiao-guang and MA Yun-yi. Numerical study of the influence of submarine sail on the resistance and wake[J]. Ocean Engineering, 2009, 27(3): 91-99(in Chinese).

    [7] PAUL F. B. Method and apparatus for mitigating junction flows[P]. United States Patent, US 6,186,445 B1, 2001.

    [8] LI Xin-wen, CHEN Yuan and WANG Wen-qi. Study on the junction of stern appendages and main body of submarine by CFD[J]. Journal of Ship Mechanics, 2003, 7(5): 28-32(in Chinese).

    [9] ZHANG Nan, SHEN, Hong-cui and YAO Hui-zhi. Validation of numerical simulation on resistance and flow field of submarine and numerical optimization of submarine hull form[J]. Journal of Ship Mechanics, 2005, 9(1): 1-13(in Chinese).

    [10] LIU Zhi-hua, XIONG Ying and WANG Zhan-zhi et al. Experimental study on effect of a new vortex control baffler and its influencing factor[J]. China Ocean Engineering, 2011, 25(1): 83-96.

    [11] CASH A. N. Computational studies of fully submerged bodies, propulsions, and body/propulsion interactions[D]. Master Thesis, Starkville, Mississippi, UK: Mississippi State University, 2001.

    [12] ZHANG Nan, ZHANG Sheng-li. Numerical simulation of hull/propeller interaction of submarine in submergence and near surface conditions[J]. Journal of Hydrodynamics, 2014, 26(1): 50-56.

    [13] ZHANG Nan, SHEN Hong-cui and YAO Hui-zhi et al. Large eddy simulation of wall pressure fluctuations of underwater vehicle[J]. Chinese Journal of Hydrodynamics, 2010, 25(1): 106-112(in Chinese).

    [14] ERIC G., PATERSON L. J. and PELTIER M. Detached-eddy simulation of high-Reynolds-number beveledtrailing-edge boundary layers and wakes[J]. Journal of Fluids Engineering, 2005, 127(12): 897-906.

    [15] MICHAEL P. K., JULES W. L. and LEONARD J. et al. Deched-eddy simulations for cavitating flows[C]. Proeding of 18th AIAA Computational Fluid Dynamics Conference, Miami, USA, 2007.

    [16] HU Zi-jun, ZHANG Nan and YAO Hui-zhi et al. Vortex identification in the analysis on the topology structure of vortical flow in cavity[J]. Journal of Ship Mechanics, 2012, 16(8): 839-846(in Chinese).

    10.1016/S1001-6058(14) 60070-6

    * Project supported by the National Natural Science Foundation of China (Grant No. 51209213).

    Biography: LIU Zhi-hua (1981-), Male, Ph. D., Lecturer

    XIONG Ying,

    E-mail: xiongying0920@163.com

    猜你喜歡
    耕地面積園地結(jié)果表明
    互動園地
    2022年中國耕地面積逾19億畝 連續(xù)第二年止減回增
    第三次全國國土調(diào)查主要數(shù)據(jù)發(fā)布耕地面積超過19億畝
    藝術(shù)園地
    藝術(shù)園地
    書畫園地
    體育鍛煉也重要
    闊世瑪與世瑪用于不同冬小麥品種的安全性試驗(yàn)
    又見二惡英
    女性體重致癌?
    久久久久久久久久久久大奶| 日本欧美视频一区| 国产精品99久久99久久久不卡| 两性午夜刺激爽爽歪歪视频在线观看 | 精品国产一区二区三区四区第35| 国产欧美日韩一区二区三区在线| 妹子高潮喷水视频| 日韩精品青青久久久久久| 亚洲第一av免费看| 久久精品国产亚洲av香蕉五月| www.自偷自拍.com| 亚洲一区二区三区色噜噜 | 国产三级在线视频| 午夜激情av网站| 老司机深夜福利视频在线观看| 欧美乱码精品一区二区三区| 正在播放国产对白刺激| 国产三级黄色录像| 91字幕亚洲| 日韩欧美国产一区二区入口| 国产av在哪里看| av中文乱码字幕在线| 国产三级在线视频| 男女下面进入的视频免费午夜 | 国产一区二区三区在线臀色熟女 | 我的亚洲天堂| 免费一级毛片在线播放高清视频 | 中文字幕色久视频| 国产成人欧美在线观看| 色婷婷av一区二区三区视频| 久久精品亚洲av国产电影网| 久久人妻福利社区极品人妻图片| 国产黄a三级三级三级人| 色综合站精品国产| 亚洲av成人av| 一二三四社区在线视频社区8| 国产一卡二卡三卡精品| 国产免费av片在线观看野外av| 久久国产乱子伦精品免费另类| 国产精品影院久久| 丝袜在线中文字幕| 亚洲欧美激情在线| 黑人巨大精品欧美一区二区mp4| 欧美日韩av久久| 欧美日韩精品网址| 激情在线观看视频在线高清| 亚洲三区欧美一区| 大型黄色视频在线免费观看| 99久久久亚洲精品蜜臀av| 欧美+亚洲+日韩+国产| 新久久久久国产一级毛片| 日韩精品青青久久久久久| 在线视频色国产色| 午夜免费成人在线视频| 久久欧美精品欧美久久欧美| 国产野战对白在线观看| 日韩欧美国产一区二区入口| 国产又爽黄色视频| 精品国产一区二区三区四区第35| 日韩欧美一区视频在线观看| 国产主播在线观看一区二区| 一区二区日韩欧美中文字幕| 欧美黑人精品巨大| av有码第一页| 亚洲熟妇中文字幕五十中出 | 大码成人一级视频| 国产97色在线日韩免费| 欧美黄色淫秽网站| 亚洲欧美激情综合另类| 欧美人与性动交α欧美精品济南到| 欧美人与性动交α欧美精品济南到| 国产av又大| 在线观看免费午夜福利视频| 午夜老司机福利片| 国产麻豆69| e午夜精品久久久久久久| 亚洲成a人片在线一区二区| 精品久久蜜臀av无| 国产亚洲欧美精品永久| 欧洲精品卡2卡3卡4卡5卡区| 国产av一区在线观看免费| 国产人伦9x9x在线观看| 国产在线精品亚洲第一网站| 国内久久婷婷六月综合欲色啪| 91老司机精品| 久久热在线av| 在线播放国产精品三级| av国产精品久久久久影院| 咕卡用的链子| 九色亚洲精品在线播放| 欧美亚洲日本最大视频资源| www.自偷自拍.com| 搡老岳熟女国产| 久久精品国产清高在天天线| 亚洲久久久国产精品| 成人亚洲精品一区在线观看| 性色av乱码一区二区三区2| 国产精品久久视频播放| 后天国语完整版免费观看| 热99re8久久精品国产| 狂野欧美激情性xxxx| 久久人妻av系列| 看黄色毛片网站| 午夜激情av网站| 久久欧美精品欧美久久欧美| 亚洲国产毛片av蜜桃av| 十八禁网站免费在线| 久久国产精品男人的天堂亚洲| 一区二区日韩欧美中文字幕| 亚洲精品粉嫩美女一区| 国产精品爽爽va在线观看网站 | 美女扒开内裤让男人捅视频| 9191精品国产免费久久| 欧美亚洲日本最大视频资源| 欧美亚洲日本最大视频资源| 欧美av亚洲av综合av国产av| 亚洲熟妇中文字幕五十中出 | 一级毛片高清免费大全| 757午夜福利合集在线观看| 妹子高潮喷水视频| 久久人人精品亚洲av| 国产91精品成人一区二区三区| 色综合站精品国产| 免费人成视频x8x8入口观看| 欧美色视频一区免费| 成人国语在线视频| 一级毛片女人18水好多| 午夜福利影视在线免费观看| 国产精品一区二区精品视频观看| 在线观看www视频免费| 亚洲自拍偷在线| 午夜免费观看网址| 久久久久久大精品| 日本免费a在线| 桃红色精品国产亚洲av| 亚洲成a人片在线一区二区| 两个人看的免费小视频| 国产亚洲精品一区二区www| 九色亚洲精品在线播放| 伊人久久大香线蕉亚洲五| 亚洲片人在线观看| 黄色视频不卡| 99国产精品一区二区蜜桃av| 人人妻人人澡人人看| 国内久久婷婷六月综合欲色啪| 91在线观看av| 丰满饥渴人妻一区二区三| 欧美日本亚洲视频在线播放| 91麻豆精品激情在线观看国产 | 天堂影院成人在线观看| 欧美 亚洲 国产 日韩一| 老司机福利观看| 久久人人97超碰香蕉20202| 女警被强在线播放| 日本黄色视频三级网站网址| 亚洲中文av在线| 亚洲va日本ⅴa欧美va伊人久久| 亚洲avbb在线观看| 99久久国产精品久久久| 成熟少妇高潮喷水视频| 啦啦啦在线免费观看视频4| 岛国在线观看网站| 国产精品久久久久成人av| 亚洲熟女毛片儿| 成人三级黄色视频| 99精品欧美一区二区三区四区| av在线天堂中文字幕 | 国产高清国产精品国产三级| 欧美乱色亚洲激情| 国产99白浆流出| 精品国产一区二区三区四区第35| 18禁国产床啪视频网站| 精品国产乱码久久久久久男人| 嫁个100分男人电影在线观看| 久久草成人影院| 久久 成人 亚洲| 免费日韩欧美在线观看| 天堂俺去俺来也www色官网| 在线观看www视频免费| 欧美日韩黄片免| 亚洲精品国产区一区二| 黑人巨大精品欧美一区二区蜜桃| 午夜福利,免费看| 天堂中文最新版在线下载| 天堂中文最新版在线下载| 亚洲精华国产精华精| 99久久国产精品久久久| 久久伊人香网站| 无限看片的www在线观看| 在线观看www视频免费| 两个人免费观看高清视频| 99精国产麻豆久久婷婷| 欧美精品一区二区免费开放| 国产精品亚洲av一区麻豆| 精品一区二区三区av网在线观看| 老司机在亚洲福利影院| 久久人人精品亚洲av| 亚洲精品国产精品久久久不卡| 国产成人影院久久av| www.精华液| 女人爽到高潮嗷嗷叫在线视频| 999久久久精品免费观看国产| 国产一区在线观看成人免费| 国产三级黄色录像| 两性夫妻黄色片| 国产成人欧美在线观看| 精品高清国产在线一区| 女同久久另类99精品国产91| 成人国产一区最新在线观看| 亚洲视频免费观看视频| 精品国产乱码久久久久久男人| 国产av又大| 成人影院久久| 国产亚洲精品一区二区www| 欧美日韩亚洲高清精品| 精品人妻在线不人妻| 亚洲av成人av| 中亚洲国语对白在线视频| 欧美中文日本在线观看视频| 我的亚洲天堂| 欧美日韩精品网址| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日本中文国产一区发布| 亚洲国产欧美一区二区综合| 久久草成人影院| 国产亚洲精品一区二区www| 一进一出抽搐gif免费好疼 | 免费在线观看黄色视频的| 美女扒开内裤让男人捅视频| 亚洲中文日韩欧美视频| av电影中文网址| 欧美亚洲日本最大视频资源| 久久天堂一区二区三区四区| 男女之事视频高清在线观看| x7x7x7水蜜桃| 国产aⅴ精品一区二区三区波| 国产精品久久久久成人av| 嫩草影视91久久| 国产蜜桃级精品一区二区三区| 51午夜福利影视在线观看| 国产国语露脸激情在线看| 日韩大尺度精品在线看网址 | 中文字幕精品免费在线观看视频| 日本免费一区二区三区高清不卡 | 精品一品国产午夜福利视频| 黄色视频,在线免费观看| 久久精品成人免费网站| 性少妇av在线| 窝窝影院91人妻| 国产无遮挡羞羞视频在线观看| 久久亚洲精品不卡| 中文字幕另类日韩欧美亚洲嫩草| 午夜精品在线福利| 国产单亲对白刺激| 美女福利国产在线| 999久久久国产精品视频| 18禁国产床啪视频网站| 高清黄色对白视频在线免费看| 亚洲成a人片在线一区二区| 在线观看舔阴道视频| 韩国精品一区二区三区| 亚洲精品美女久久久久99蜜臀| 国产精品久久视频播放| √禁漫天堂资源中文www| 曰老女人黄片| 欧美午夜高清在线| 中亚洲国语对白在线视频| www国产在线视频色| 脱女人内裤的视频| 国产99白浆流出| 国产精品免费一区二区三区在线| 18美女黄网站色大片免费观看| 欧美日韩亚洲国产一区二区在线观看| 国产熟女xx| 午夜影院日韩av| 18禁美女被吸乳视频| 国产单亲对白刺激| 欧美日韩国产mv在线观看视频| 国产精品综合久久久久久久免费 | 国产成人免费无遮挡视频| 在线观看www视频免费| 日韩欧美一区视频在线观看| 亚洲黑人精品在线| 高清在线国产一区| 水蜜桃什么品种好| 一a级毛片在线观看| 69av精品久久久久久| 久久久久久亚洲精品国产蜜桃av| 久久国产亚洲av麻豆专区| 热re99久久精品国产66热6| 1024香蕉在线观看| 午夜福利在线观看吧| 伦理电影免费视频| 97人妻天天添夜夜摸| 在线永久观看黄色视频| 在线看a的网站| 级片在线观看| 在线观看免费视频日本深夜| 久久亚洲精品不卡| 亚洲精华国产精华精| 日韩欧美在线二视频| 国产精品99久久99久久久不卡| 亚洲国产精品sss在线观看 | 欧美日韩福利视频一区二区| 国产精品电影一区二区三区| 男人舔女人的私密视频| 天堂动漫精品| 一区在线观看完整版| 久久国产亚洲av麻豆专区| 麻豆久久精品国产亚洲av | 成人影院久久| 亚洲成人免费电影在线观看| av视频免费观看在线观看| 18美女黄网站色大片免费观看| 国内久久婷婷六月综合欲色啪| 777久久人妻少妇嫩草av网站| 一区福利在线观看| 高清黄色对白视频在线免费看| 亚洲精品国产一区二区精华液| 热99国产精品久久久久久7| 国产又爽黄色视频| 亚洲aⅴ乱码一区二区在线播放 | 精品欧美一区二区三区在线| 色老头精品视频在线观看| 亚洲片人在线观看| 国产精华一区二区三区| 精品久久久久久久久久免费视频 | 黄片小视频在线播放| 两性夫妻黄色片| 日日爽夜夜爽网站| 亚洲精品在线观看二区| 18禁美女被吸乳视频| 国产激情久久老熟女| 一级黄色大片毛片| 国产精品一区二区三区四区久久 | 久久久久久亚洲精品国产蜜桃av| 女人爽到高潮嗷嗷叫在线视频| 国产精品香港三级国产av潘金莲| 黄频高清免费视频| 久久伊人香网站| 每晚都被弄得嗷嗷叫到高潮| av有码第一页| 女人精品久久久久毛片| 不卡av一区二区三区| 丰满的人妻完整版| 午夜精品在线福利| 又黄又粗又硬又大视频| 国产av一区二区精品久久| 黄片大片在线免费观看| 亚洲精品久久午夜乱码| 欧美一区二区精品小视频在线| 宅男免费午夜| 99热国产这里只有精品6| 99久久99久久久精品蜜桃| 亚洲片人在线观看| 后天国语完整版免费观看| 午夜91福利影院| 国产高清激情床上av| 十八禁人妻一区二区| 99精品在免费线老司机午夜| 午夜免费成人在线视频| 欧美成人性av电影在线观看| 多毛熟女@视频| 国产无遮挡羞羞视频在线观看| av在线天堂中文字幕 | a级毛片黄视频| a级片在线免费高清观看视频| 极品人妻少妇av视频| 岛国在线观看网站| 久久精品国产清高在天天线| 午夜精品久久久久久毛片777| 免费一级毛片在线播放高清视频 | 国产深夜福利视频在线观看| а√天堂www在线а√下载| 黄色丝袜av网址大全| 精品一区二区三区视频在线观看免费 | 午夜精品国产一区二区电影| 五月开心婷婷网| 欧美一级毛片孕妇| 999久久久精品免费观看国产| 国产av精品麻豆| 校园春色视频在线观看| 亚洲欧美激情在线| 亚洲av日韩精品久久久久久密| 色综合欧美亚洲国产小说| 亚洲成人免费电影在线观看| 淫秽高清视频在线观看| 亚洲欧美精品综合久久99| 亚洲欧美精品综合一区二区三区| www.999成人在线观看| 亚洲成a人片在线一区二区| 欧美日韩av久久| 日本黄色日本黄色录像| 婷婷丁香在线五月| 激情视频va一区二区三区| 亚洲人成77777在线视频| 熟女少妇亚洲综合色aaa.| 少妇粗大呻吟视频| 国产伦人伦偷精品视频| 久久影院123| 黑人巨大精品欧美一区二区蜜桃| 啪啪无遮挡十八禁网站| 麻豆一二三区av精品| 搡老岳熟女国产| 在线观看午夜福利视频| 一区二区三区国产精品乱码| 午夜a级毛片| 午夜精品久久久久久毛片777| 久久久久国产精品人妻aⅴ院| 天堂动漫精品| 黄色片一级片一级黄色片| 激情在线观看视频在线高清| 女生性感内裤真人,穿戴方法视频| 亚洲第一欧美日韩一区二区三区| 久久香蕉精品热| 亚洲中文av在线| 日韩欧美在线二视频| 12—13女人毛片做爰片一| 国产伦人伦偷精品视频| 成人18禁高潮啪啪吃奶动态图| av天堂在线播放| 久久久久国内视频| 久久精品国产综合久久久| 黄片小视频在线播放| 美女扒开内裤让男人捅视频| ponron亚洲| 99国产精品一区二区蜜桃av| 成人精品一区二区免费| 国产精品国产av在线观看| 99久久国产精品久久久| 欧美精品亚洲一区二区| 国产91精品成人一区二区三区| 免费在线观看亚洲国产| 国产亚洲av高清不卡| 大陆偷拍与自拍| 两个人看的免费小视频| 两个人看的免费小视频| 窝窝影院91人妻| 国产高清激情床上av| 美女 人体艺术 gogo| 亚洲专区国产一区二区| 丝袜美腿诱惑在线| 免费观看精品视频网站| 午夜a级毛片| 日本撒尿小便嘘嘘汇集6| 精品国产亚洲在线| 一级片免费观看大全| 日日摸夜夜添夜夜添小说| 国产一卡二卡三卡精品| 欧美黄色淫秽网站| 午夜视频精品福利| 一级,二级,三级黄色视频| 成人精品一区二区免费| 亚洲视频免费观看视频| 成熟少妇高潮喷水视频| 久久久久亚洲av毛片大全| 久久午夜亚洲精品久久| 欧美在线一区亚洲| 国产精品一区二区免费欧美| 精品一区二区三卡| 国产97色在线日韩免费| 老熟妇仑乱视频hdxx| 久久亚洲真实| 精品久久久精品久久久| 日本精品一区二区三区蜜桃| 高清av免费在线| 自线自在国产av| 日韩av在线大香蕉| 国产熟女xx| 日本黄色日本黄色录像| 久久久国产一区二区| 18禁观看日本| 色精品久久人妻99蜜桃| 午夜91福利影院| 国产一区二区三区综合在线观看| 中出人妻视频一区二区| 老熟妇仑乱视频hdxx| 丝袜人妻中文字幕| 免费在线观看视频国产中文字幕亚洲| 午夜福利,免费看| 亚洲avbb在线观看| 国产亚洲精品第一综合不卡| 国产欧美日韩一区二区精品| 一级黄色大片毛片| 少妇裸体淫交视频免费看高清 | 多毛熟女@视频| 国产不卡一卡二| 久久久久国产一级毛片高清牌| 欧美日本亚洲视频在线播放| 成人国语在线视频| 成人国产一区最新在线观看| 后天国语完整版免费观看| 精品国产亚洲在线| 超色免费av| 精品福利观看| 香蕉丝袜av| 精品国内亚洲2022精品成人| 日韩 欧美 亚洲 中文字幕| 久久久精品国产亚洲av高清涩受| 黑人巨大精品欧美一区二区mp4| 国产亚洲精品久久久久5区| 亚洲精品久久午夜乱码| 亚洲精品一二三| 成熟少妇高潮喷水视频| 神马国产精品三级电影在线观看 | 国产麻豆69| 亚洲成人免费电影在线观看| 精品福利永久在线观看| 国产免费男女视频| 亚洲av日韩精品久久久久久密| 久久久久久久久免费视频了| 免费av毛片视频| 免费久久久久久久精品成人欧美视频| 精品人妻1区二区| 国产色视频综合| 一级黄色大片毛片| 大型av网站在线播放| 好看av亚洲va欧美ⅴa在| 国产精品日韩av在线免费观看 | 免费av中文字幕在线| 国产又爽黄色视频| 在线av久久热| 亚洲少妇的诱惑av| 在线观看日韩欧美| 丝袜在线中文字幕| 一区在线观看完整版| 国产亚洲精品久久久久久毛片| 国产亚洲精品久久久久5区| 日日夜夜操网爽| 黄片小视频在线播放| 久久午夜综合久久蜜桃| 两个人免费观看高清视频| 国产97色在线日韩免费| 国产精品影院久久| 视频区图区小说| 天天躁夜夜躁狠狠躁躁| 岛国视频午夜一区免费看| 在线观看免费午夜福利视频| 12—13女人毛片做爰片一| 久久性视频一级片| 日韩国内少妇激情av| 欧美日韩中文字幕国产精品一区二区三区 | 婷婷六月久久综合丁香| 成人国语在线视频| 嫩草影视91久久| 国产国语露脸激情在线看| 动漫黄色视频在线观看| 丝袜人妻中文字幕| 亚洲五月色婷婷综合| a级毛片在线看网站| 色老头精品视频在线观看| 高清黄色对白视频在线免费看| 超碰成人久久| 欧美日韩乱码在线| 亚洲国产精品合色在线| 性色av乱码一区二区三区2| 9191精品国产免费久久| 国产精品自产拍在线观看55亚洲| 美女福利国产在线| 亚洲精品粉嫩美女一区| 免费一级毛片在线播放高清视频 | 99精品欧美一区二区三区四区| 欧美久久黑人一区二区| 久久中文看片网| 精品国产乱子伦一区二区三区| 99国产精品免费福利视频| 91老司机精品| 日本黄色日本黄色录像| 91老司机精品| 国产精品日韩av在线免费观看 | 丁香六月欧美| 久久久国产精品麻豆| 久久久久久久久中文| 亚洲人成77777在线视频| 精品国产国语对白av| 日韩欧美免费精品| 亚洲午夜精品一区,二区,三区| 亚洲黑人精品在线| 国产亚洲av高清不卡| 国产精品偷伦视频观看了| 妹子高潮喷水视频| 欧美日韩一级在线毛片| 亚洲av成人不卡在线观看播放网| aaaaa片日本免费| 美女大奶头视频| 色综合欧美亚洲国产小说| 精品一品国产午夜福利视频| 午夜成年电影在线免费观看| 18禁国产床啪视频网站| 久久久久久久久免费视频了| 91精品三级在线观看| 麻豆一二三区av精品| 天天添夜夜摸| 在线十欧美十亚洲十日本专区| 精品福利永久在线观看| 亚洲欧美日韩另类电影网站| 免费看十八禁软件| 999久久久精品免费观看国产| 成人黄色视频免费在线看| 亚洲 国产 在线| 97超级碰碰碰精品色视频在线观看| 国产成人系列免费观看| 美女扒开内裤让男人捅视频| 91麻豆精品激情在线观看国产 | 国产av一区二区精品久久| 9色porny在线观看| 露出奶头的视频| 亚洲专区字幕在线| 大型av网站在线播放| 一级a爱视频在线免费观看| 国产av又大| 不卡一级毛片| 99久久国产精品久久久| 亚洲国产毛片av蜜桃av| 欧洲精品卡2卡3卡4卡5卡区|