• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-dimensional Reconstruction and Porosity Calculation of Ceramic Coating: Nondestructive X-ray Computed Tomography

    2020-10-15 02:06:32ZHANGZhifengWANGFengjuanWUShengpingJIANGJinyang
    無機(jī)材料學(xué)報(bào) 2020年9期
    關(guān)鍵詞:武勝高清涂層

    ZHANG Zhifeng, WANG Fengjuan, WU Shengping, JIANG Jinyang

    Three-dimensional Reconstruction and Porosity Calculation of Ceramic Coating: Nondestructive X-ray Computed Tomography

    ZHANG Zhifeng, WANG Fengjuan, WU Shengping, JIANG Jinyang

    (Jiangsu Key Laboratory for Construction Materials, Southeast University, Nanjing 211189, China)

    Ceramic coatings can effectively prevent the corrosion of steel bars in marine environments. In this study, we prepared phosphate ceramic coatings on the surface of carbon steel. X-ray diffraction and X-ray fluorescence were used to analyze the phase structure and composition of the ceramic and the results show that the main crystal composition of ceramic is P2O5and SiO2. Scanning electron microscopy was used to characterize the morphology of the surface and the section and results showed that the surface was cracked, and the thickness of ceramic was 349 μm. Meanwhile, a number of high-resolution images of internal structure of solids were obtained by non-destructive X-ray computed tomography (X-CT). Matlab and Mimics software were used to conduct the three-dimensional reconstruction of the CT images. Matrix and holes are distinguished by threshold segmentation in grayscale images, and the porosity of the ceramic coatings was calculated to be 14.0%. In addition, mercury intrusion porosimetry was used to verify the calculation results. Therefore, X-CT can be a useful and reliable tool for the visualization of the internal structure of ceramic coatings.

    ceramics; porosity; X-CT technology; 3D reconstruction

    Reinforced concrete structures are widely used due to their high performance and low cost of their constituent raw materials[1]. Owing to construction of a large amounts of infrastructure, consumption of cement is increasing yearly as the amount of concrete and steel rebar.

    Owing to the presence of holes in concrete, aggressive ions penetrate the concrete and reach the surface of steel rebar, which destroy the passive film on the steel surface[2]. In particular, under an offshore aggressive environment, dry and wet cycling conditions accelerate the transmission of harmful ions. The corroded steel bars undergo stress expansion and the fluffy corrosion products reduce adhesion to the concrete, which cause premature deterioration of civil infrastructures, leading to serious consequences[3]. Therefore, various methods have been used to isolate ions and protect carbon steel, such as ceramic coatings[4], green inhibitors[5], corrosion-resistant steel bars[6], and photogenerated electron cathodic protection[7]. Among these methods, protective ceramic coatings are the most applied and studied methods. Tang,[8]prepared different enamel coatings, and they found that three types of intact ceramic coatings significantly outperformed fusion-bonded expoxy coatings. However, due to the presence of microscopic isolated pores, the properties of the three ceramics are not completely identical. Traditional test methods such as scanning electronic microscopy (SEM) can only characterize the shape of the hole in the ceramic surface and cannot calculate the specific porosity of the entire ceramic. Moreover, mercury intrusion porosimetry (MIP) has been widely used to determine the pore-size distribution (PSD) for most materials, from which a wide range of pore sizes can be found[9]. However MIP can only detect the local zone of the sample and the tests depend on the assumption that the pores are cylindrical, which cannot reflect the actual pore pattern[10]. Therefore, it is necessary and vital to develop a new approach to calculate the porosity of ceramic coatings and to devise a new and improved model of the relationship between the transmission rate of ions and the porosity of ceramic coatings.

    X-ray computed tomography (X-CT) is mostly used in medicine, in which computer-processed X-ray data are used to construct images of bone, the brain, organs,[11]. Two-(2D) or three-dimensional (3D) reconstruction of a test structure can be achieved by computer technology, which makes the internal structure able to be more intuitively explored. Therefore, it is convenient to analyze the pore structure of ceramic solid materials non-destruc-tively[12]. In previous research, Yang,[13]revealed thetracking of water transport in cement paste using X-CT, in which CsCl was added to the water to enhance the contrast. 3D representations of ceramics are achievable at different pore sizes and provide a way to observe the evolution of pores, which is useful in understanding the failure mechanism of ceramic coatings[14].

    In this study, X-CT was applied to porosity calculations of ceramic coatings, which is an important parameter for the transport of aggressive ions inside ceramic structures. 2D and 3D images were generated and the threshold segmentation technique was used to distinguish the pores and substrate. Furthermore, MIP was used to study the porosity and pore size distribution, which provide mutual authentication of the X-CT test results of the porosity of ceramic coatings.

    1 Experiments

    1.1 Materials

    A phosphate ceramic coating was supplied by Eoncoat Coating (Eoncoat Coating Technology Co. Ltd., Beijing, China) and was used without any further alteration. Q235 carbon steel was used and its content is shown in Table 1[5]. First, the carbon steel with the size of20 mm×10 mm, was sand-blasted to remove the surface oxide and achieve a rough surface. Then, the ceramic coating was sprayed onto the surface 10 times to prepare the coating. The resolution of X-CT images is related with the sample size, and smaller size provides higher definition. Therefore a piece of ceramic coating was peeled off from the carbon steel coating as test sample to obtain the high- resolution picture.

    Before the test, the ceramic bulk was dried at 50 ℃ in air oven for 3 h. After cooling to room temperature, epoxy resin was used to wrap and fix the ceramic. The ceramic was then ground in agate mortar to obtain the powder used in X-ray diffraction (XRD), X-ray fluorescence (XRF) and high-resolution transmission electron microscopy (HRTEM) experiments.

    1.2 Characterization

    The phase structure was detected by XRD (Bruker D8 Discover) from 10° to 80° at 0.02 (°)/s. The chemical composition was determined using XRF (Bruker S4 Pioneer) at 40 kV and 100 mA[15]. SEM (Navo Nano SEM450, 30 kV) with Energy Dispersive X-ray Spectroscopy (EDS) was used to determine the morphology of the ceramic surface and section[16-17]. TEM and HRTEM were used to get the morphology of nanosize oxide particles. MIP was performed on a Micrometrics Autopore IV 9500. A contact angle of 130° was assumed. The pressure ranged from 1.5×104Pa to 6.1×104Pa. CT scan test was performed on a Y. CT Precision S X-CT system (YXLON, Germany) with resolution of 1024×1024 pixels[18]. The images were pre-processed in MatLab R2016a software (MathWorks, USA), and the 2D or 3D image reconstructions and porosity calculated using Mimics research software.

    Table 1 Composition of carbon steel Q235

    2 Results and discussion

    2.1 Phase composition analysis

    2.1.1 XRD analysis

    The phase composition and crystal structure of the as-prepared ceramic were examined by XRD. As shown in Fig. 1, the main constituents of the ceramic are P2O5(JCPDS 23-1301), SiO2(JCPDS 27-0605), which correspond to the lattice plane of (111), (111). There are two crystal structures of TiO2in ceramic, which are ascribed to the lattice planes of (110) and (101) for rutile TiO2(JCPDS 21-1276) and anatase TiO2(JCPDS 21-1272), respectively[19]. Also, there are a small amount of CaO, Fe2O3and MgO4, with JCPDS 50-1575, 40-1139 and 27-0759, respectively. Furthermore, the novel type of zeolite in the system of K2O-Na2O-Al2O3-SiO2-H2O with JCPDS 43-0050 was detected.

    2.1.2 XRF analysis

    The XRF results of the as-prepared ceramic coatings, expressed in oxide form, are presented in Table 2. The XRF analysis showed that the main phase composition of ceramic is P2O5, SiO2, K2O, and MgO with a total amount of 81.55wt%. And a small amount of Al2O3, CaO, and TiO2, and the balance being Na2O/SO3/Fe2O3/ZnO. The main reason for the detection of oxides of Al2O3and ZnO in XRF test but not in XRD test is that the content of oxide is too small to be detected. The XRF results are completely consistent with the results of the XRD analysis.

    Fig. 1 XRD pattern of as-prepared ceramic coating

    Table 2 Chemical analysis determined by XRF of the as-prepared ceramic coating

    2.2 SEM analysis

    SEM is a useful technology to study the morphology of the surfaces and sections of the ceramic coatings. Fig. 2(a) shows the surface SEM image of the ceramic coating. It can be seen that the ceramic coating was a stable whole and the surface is rough. However, the oxide particles are not packed densely, resulting in the pore between the oxide particles. Inset is EDS analysis of area #1 shown in Fig. 2(a), which reveals that the main constituents of the ceramic are P, Si, Mg, Fe and K, in good agreement with the XRD and XRF analysis results. Furthermore, the section morphology of the ceramic and steel is shown in Fig. 2(b), demonstrating that the thickness of the ceramic coating is 349 μm and, moreover, that the ceramic coating is tightly bonded to the steel bars. In addition, microcracks are seen in the section, which may be caused by the difference in thermal expansion coefficients between the ceramic coating and the steel.

    Fig. 2 Surface (a) and section (b) SEM images of the as-prepared ceramic coating

    Inset in (a) is the EDS analysis of area #1

    2.3 TEM and HRTEM analysis

    TEM and HRTEM images of the ceramic coating are shown in Fig. 3 which provide more detailed lattice- parameter information regarding the oxide in the ceramic coating. As shown in Fig. 3(a), the coating powder has a plate-like structure, which has been superimposed to form a cluster. Fig. 3(b) clearly shows two sets of lattice fringes with lattice spacings of 0.327 and 0.285 nm, corresponding to the (110) and (420) planes of TiO2and P2O5, respectively, which is consistent with XRD results.

    2.4 3D reconstruction and porosity analysis

    The evolution of ceramic-coating porosity was monitored by the X-CT system. First, eight hundred high- resolution CT high resolution images were obtained after the X-CT test. Pre-processing was performed using Matlab to remove the edge portion of images, such as epoxy resin. The raw X-CT picture is shown in Fig. 4(a) and cropped by Matlab according the red dotted line. The cutting pictures were imported in Mimics Research software. In Mimics software, we can distinguish the hole structure and substrate by threshold segmentation of grayscale value, and results of the division for the end face and side face are shown in Figs. 4(b, c), in which the green part represents the hole and the yellow part represents the substrate. Then 2D pictures with segmentation of grayscale value were 3D reconstructed by Mimics Research software immediately. 3D reconstructions of the hole structure and substrate can be formed by overlay analysis of the high resolution images and are shown in Figs. 4(d, e), respectively. In addition, the volumes of the hole and substrate can be calculated in Mimics software by counting the total amount of the green and yellow areas and marked asholeandsub, respectively. Then the porosity can be calculated by the following equation:

    Fig. 3 (a) TEM and (b) HRTEM images of ceramic coating

    whereis the porosity of ceramic coating. In this work the calculated value ofis 14.0%. A lower porosity of ceramic leads to a lower transmission rate for the aggressive ions. Therefore, a lower porosity ceramic coating can effectively prevent the migration of chloride ions to the surface of the carbon steel and avoid corroding the steel rebar.

    MIP test was used to further verify the porosity of ceramic, and the pore structure and pore size distribution (PSD) were shown in Fig. 5. There are two critical pore diameters, one is less than 10 nm, and another is between 1 μm to 10 μm. Pore diameter less than 10 nm is the gel pores of oxide substrate[20]. And the highest peak in the pore entry size distribution from 1 μm to 10 μm is the gap between the oxides, which is shown in Fig. 5. The porosity obtained by the MIP is 12.275%, which is close to the calculated result by the X-CT. The MIP test confirms that the X-CT can be a fast and non-destructive method to measure the porosity.

    Fig. 4 CT images of ceramic coating

    (a) Raw X-CT image; (b, c) Threshold segmentation of (b) hole structure and (c) substrate structure; (d, e) 3D reconstruction of (d) hole and (e) substrate

    Fig. 5 Pore size distribution test by MIP: cumulative intrusion (mL/g) and lg(differential intrusion/(mL?g–1))

    3 Conclusions

    Ceramic coatings are very effective materials that provide corrosion-protection for steel. However, due to the different thermal expansion coefficient of the steel matrix, microcracks and holes are present in ceramic coatings. X-CT can reveal the internal hole structure nondestruc-tively,, the hole and substrate are distinguished by threshold segmentation. 3D reconstruction the hole and substrate structure can be achieved by analyzing the CT images with Matlab and Mimics. By calculating of hole volume and the volume of the substrate, the porosity of the ceramic coating was calculated as 14%. By the MIP test, the porosity of ceramic coating is 12.275%, which is close to the calculation result of X-CT. The main pore structure is the gel pores of oxide and gap between the oxides. Therefore, it can be seen that X-CT technology is a useful and reliable technique to calculate the porosity of solid material.

    [1] YANG J J, HAI R, WU K R. Effect of ettringite structural transformation on expansive behavior of expansion cement., 2003, 18(1): 136–142.

    [2] Lü J L, JIN H J, LIANG T X. The effect of electrochemical nitridationon the corrosion resistance of the passive films formed on the 2205 duplex stainless steel., 2019, 256: 1–4.

    [3] ZHAO Y P, LIU Y, LIU Q,. Icephobicity studies of superhydrophobic coatings on concretespray method., 2018, 233: 263–266.

    [4] WANG P S. Study on Preparation and Critical Properties of a New Type of Steel Bars Coated with Micro/Nano Ceramics. Nanjing: Master Thesis of Southeast University, 2016.

    [5] ZHANG Z F, WANG F J, LIU Y,. Molecule adsorption and corrosion mechanism of steel under protection of inhibitor in a simulated concrete solution with 3.5% NaCl., 2018, 8: 20648.

    [6] JIANG J Y, CHU H Y, LIU YAO,. Galvanic corrosion of duplex corrosion-resistant steel rebars under carbonated concrete conditions., 2018, 8: 16626.

    [7] WEI Q Y, WANG X T, NING X B,. Characteristics and anticorrosion performance of WSe2/TiO2nanocomposite materials for 304 stainless steel., 2018, 352: 26–32.

    [8] TANG F J, CHEN G D, BROWN R K,. Corrosion resistance and mechanism of steel rebar coated with three types of enamel., 2012, 59: 157–168.

    [9] CUI D, BANTHIA N, WANG Q N,. Investigation on porosity of partly carbonated paste specimens blended with fly ash through dual CT scans., 2019, 196: 692–702.

    [10] LUBELLI B, WINTER D A M, POST J A,. Cryo-FIB-SEM and MIP study of porosity and pore size distribution of bentonite and kaolin at different moisture contents., 2013, 80–81: 358–365.

    [11] COLLINGWOOD J F,ADAMS F. Chemical imaging analysis of the brain with X-ray methods., 2017, 130: 101–118.

    [12] HERMANEK P, CARMIGNATO S. Porosity measurements by X-ray computed tomography: accuracy evaluation using a calibrated object., 2017, 49: 377–387.

    [13] YANG L, ZHANG Y S, LIU Z Y,tracking of water transport in cement paste using X-ray computed tomography combined with CsCl enhancing., 2015, 160: 381–383.

    [14] ZHU W, CAI X N, YANG L,. The evolution of pores in thermal barrier coatings under volcanic ash corrosion using X-ray computed tomography., 2019, 357: 372–378.

    [15] ZHENG Y F, ZHANG L L, WANG K,. Microstructure characterization and luminescent property of mixed spinel Zn6Ga8TiO20:Cr3+phosphors., 2018, 33(1): 9–13.

    [16] LI Y T, CHEN L, GUO Y L,. Preparation and characterization of WO3/TiO2hollow microsphere composites with catalytic activity in dark., 2012, 181–182: 734–739.

    [17] ZHANG X F, ZHANG G H, MENG Y,. Photocatalytic degradation of methylene blue by schiff-base cobalt modified CoCr layered double hydroxides., 2019, 34(9): 974–982.

    [18] WAN K S, LI G, WANG S H,. 3D full field study of drying shrinkage of foam concrete., 2017, 82: 217–226.

    [19] ZHANG Z Y, SANG L X, LU L P,Preparation of TiO2nanotube arrays and their photoelectrochemical properties., 2010, 25(11): 1145–1149.

    [20] KANG S H, HONG S G, MOON J. The effect of superabsorbent polymer on various scale of pore structure in ultra-high performance concrete., 2018, 172: 29–40.

    X-CT無損測(cè)試技術(shù)用于陶瓷涂層三維重構(gòu)和孔隙率計(jì)算

    張志鋒, 王鳳娟, 武勝萍, 蔣金洋

    (東南大學(xué) 江蘇省建筑材料重點(diǎn)實(shí)驗(yàn)室, 南京 211189)

    陶瓷涂層對(duì)海工環(huán)境中的鋼筋有著較好的保護(hù)作用。在碳鋼表面噴涂磷酸鹽陶瓷涂層, 采用XRD和XRF對(duì)陶瓷涂層的物相組成進(jìn)行分析。結(jié)果表明: 實(shí)驗(yàn)用陶瓷的主要晶相成分為P2O5與SiO2。采用SEM對(duì)陶瓷的表面和截面形貌進(jìn)行觀察, 發(fā)現(xiàn)陶瓷涂層內(nèi)存在微裂紋, 涂層的厚度約為349 μm。采用X-CT測(cè)試可以得到陶瓷內(nèi)部結(jié)構(gòu)的高清圖像, 并利用Matlab和Mimics軟件對(duì)高清圖像進(jìn)行三維重構(gòu)。此外通過閾值分割技術(shù), 將CT圖像內(nèi)的孔與基體灰度值區(qū)分開來, 并計(jì)算得到陶瓷涂層的孔隙率為14%, 并采用壓汞測(cè)試技術(shù)對(duì)測(cè)試結(jié)果進(jìn)行驗(yàn)證。研究認(rèn)為X-CT無損測(cè)試是一種建立陶瓷涂層內(nèi)可視化孔結(jié)構(gòu)分析的有效工具。

    陶瓷; 孔隙率; X-CT技術(shù); 三維重構(gòu)

    TQ174

    A

    date:2019-10-21;

    date: 2019-12-18

    National Basic Research Program of China (973 Program, 2015CB65510)

    ZHANG Zhifeng(1989–), male, PhD candidate. E-mail: zzf_0201@126.com

    張志鋒(1989–), 男, 博士研究生. E-mail: zzf_0201@126.com

    Corresponding author:JIANG Jinyang, professor. E-mail: jiangjinyang16@163.com

    蔣金洋, 教授. E-mail: jiangjinyang16@163.com

    1000-324X(2020)09-1059-05

    10.15541/jim20190534

    猜你喜歡
    武勝高清涂層
    塑料涂層的制備
    上海建材(2018年4期)2018-11-13 01:08:52
    高三數(shù)學(xué)復(fù)習(xí)回歸教材最重要
    周武勝理事長(zhǎng)走訪中國(guó)發(fā)明協(xié)會(huì)
    4K高清監(jiān)控需要兩條腿走路
    數(shù)碼單反拍攝高清視頻時(shí)同期聲的收錄探索
    新媒體研究(2015年7期)2015-12-19 09:09:57
    嘉陵江武勝段冬季水鳥多樣性調(diào)查
    Federal—Mogul公司開發(fā)的DuroGlide活塞環(huán)涂層
    用于重型柴油機(jī)濺鍍軸承的新型聚合物涂層
    Properties of tungsten coating deposited onto copper under atmospheric plasma spraying?
    不到200元,也買高清MP4播放器
    欧美变态另类bdsm刘玥| 高清av免费在线| videosex国产| 天天影视国产精品| 国产精品人妻久久久久久| 伦精品一区二区三区| 欧美人与善性xxx| 久久婷婷青草| 在线观看人妻少妇| 亚洲精品中文字幕在线视频| 大香蕉97超碰在线| 亚洲精品国产色婷婷电影| 色吧在线观看| a级毛片在线看网站| 欧美老熟妇乱子伦牲交| 国产日韩欧美亚洲二区| 亚洲av综合色区一区| 人妻人人澡人人爽人人| 成人漫画全彩无遮挡| 菩萨蛮人人尽说江南好唐韦庄| 亚洲一区二区三区欧美精品| 久久精品国产亚洲av涩爱| 国产亚洲精品第一综合不卡 | 性高湖久久久久久久久免费观看| 性色avwww在线观看| 亚洲精品乱久久久久久| 欧美日本中文国产一区发布| av黄色大香蕉| 韩国高清视频一区二区三区| 国产精品嫩草影院av在线观看| 婷婷色综合www| 一二三四中文在线观看免费高清| 2018国产大陆天天弄谢| 欧美日韩成人在线一区二区| 看十八女毛片水多多多| 赤兔流量卡办理| 老熟女久久久| 国产精品一二三区在线看| 免费日韩欧美在线观看| 国产高清有码在线观看视频| 18禁在线播放成人免费| 一本色道久久久久久精品综合| 国产成人91sexporn| 国产伦精品一区二区三区视频9| 欧美亚洲 丝袜 人妻 在线| 国产成人精品久久久久久| 久久女婷五月综合色啪小说| 国产精品国产av在线观看| 内地一区二区视频在线| 男人爽女人下面视频在线观看| 91精品伊人久久大香线蕉| 青青草视频在线视频观看| 色吧在线观看| 少妇被粗大猛烈的视频| 中文天堂在线官网| 亚洲欧美一区二区三区黑人 | 亚洲国产精品专区欧美| 亚洲欧美一区二区三区黑人 | 国产高清国产精品国产三级| 国产亚洲最大av| 国产精品国产av在线观看| 久久国产精品男人的天堂亚洲 | av女优亚洲男人天堂| 国产成人a∨麻豆精品| 久久青草综合色| 在线观看美女被高潮喷水网站| 欧美国产精品一级二级三级| 亚州av有码| 国产男女内射视频| 色哟哟·www| 免费不卡的大黄色大毛片视频在线观看| 日韩制服骚丝袜av| 日韩中字成人| 观看av在线不卡| 亚洲精品久久久久久婷婷小说| 欧美日韩一区二区视频在线观看视频在线| 久久久久久久久久久免费av| 国产一区二区三区综合在线观看 | 亚洲精品国产av蜜桃| 国产成人aa在线观看| av不卡在线播放| 啦啦啦视频在线资源免费观看| 欧美少妇被猛烈插入视频| 久久久久视频综合| 亚洲av男天堂| 少妇人妻久久综合中文| 亚洲欧美成人综合另类久久久| 又大又黄又爽视频免费| 国产精品一国产av| 欧美精品一区二区免费开放| 18在线观看网站| 亚洲精品自拍成人| 亚洲精品乱码久久久久久按摩| 免费观看av网站的网址| 久久人妻熟女aⅴ| 亚洲av日韩在线播放| 熟女电影av网| 欧美xxⅹ黑人| 久久免费观看电影| 22中文网久久字幕| 最新的欧美精品一区二区| 22中文网久久字幕| 欧美精品人与动牲交sv欧美| 亚洲欧美精品自产自拍| 色94色欧美一区二区| 在线精品无人区一区二区三| a级片在线免费高清观看视频| 成人午夜精彩视频在线观看| 精品一区二区三卡| 免费人成在线观看视频色| 日韩电影二区| 日韩电影二区| 色5月婷婷丁香| 高清视频免费观看一区二区| 在线播放无遮挡| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产又色又爽无遮挡免| 日韩视频在线欧美| 亚洲欧美色中文字幕在线| 国产精品麻豆人妻色哟哟久久| 亚洲三级黄色毛片| 亚洲精品久久成人aⅴ小说 | 亚洲av二区三区四区| 久久久久久久久久久免费av| 久久精品人人爽人人爽视色| 免费高清在线观看日韩| 黑丝袜美女国产一区| 一级毛片黄色毛片免费观看视频| 高清黄色对白视频在线免费看| 永久网站在线| 国产成人精品无人区| 精品人妻偷拍中文字幕| 久久免费观看电影| 久热久热在线精品观看| 亚洲国产精品成人久久小说| 狂野欧美激情性bbbbbb| 午夜激情av网站| 亚洲av综合色区一区| 国产日韩欧美亚洲二区| 国产色婷婷99| 国产不卡av网站在线观看| 不卡视频在线观看欧美| 波野结衣二区三区在线| 亚洲精品久久久久久婷婷小说| 五月玫瑰六月丁香| 多毛熟女@视频| 伦理电影免费视频| 91在线精品国自产拍蜜月| 久久午夜福利片| 国产精品熟女久久久久浪| 丝袜脚勾引网站| 秋霞在线观看毛片| 国产乱人偷精品视频| 欧美变态另类bdsm刘玥| 熟女av电影| 亚洲成色77777| 我的老师免费观看完整版| 亚洲av欧美aⅴ国产| 最新的欧美精品一区二区| 69精品国产乱码久久久| 视频区图区小说| 精品一区在线观看国产| 高清不卡的av网站| 午夜老司机福利剧场| 亚洲人与动物交配视频| 亚洲图色成人| 18+在线观看网站| 欧美激情极品国产一区二区三区 | 国产一区有黄有色的免费视频| 久久国产精品男人的天堂亚洲 | 久久久国产欧美日韩av| 亚洲国产毛片av蜜桃av| 国产又色又爽无遮挡免| 成人亚洲精品一区在线观看| 国产免费现黄频在线看| 人成视频在线观看免费观看| av在线观看视频网站免费| 3wmmmm亚洲av在线观看| 一本色道久久久久久精品综合| 男女边吃奶边做爰视频| 91在线精品国自产拍蜜月| 乱码一卡2卡4卡精品| 嘟嘟电影网在线观看| 久久久久久久久久久丰满| 亚洲欧美色中文字幕在线| 另类亚洲欧美激情| www.av在线官网国产| 免费观看av网站的网址| 亚洲欧美成人综合另类久久久| 成人国语在线视频| 免费av中文字幕在线| 日本爱情动作片www.在线观看| 能在线免费看毛片的网站| 人妻系列 视频| 自线自在国产av| 精品视频人人做人人爽| 精品酒店卫生间| av.在线天堂| 只有这里有精品99| 少妇被粗大猛烈的视频| 狂野欧美激情性xxxx在线观看| 亚洲精品av麻豆狂野| 色婷婷久久久亚洲欧美| 美女视频免费永久观看网站| 亚洲国产毛片av蜜桃av| a级片在线免费高清观看视频| 国产白丝娇喘喷水9色精品| 两个人的视频大全免费| 婷婷色综合大香蕉| 七月丁香在线播放| 青春草亚洲视频在线观看| 精品少妇内射三级| 51国产日韩欧美| 内地一区二区视频在线| 久久婷婷青草| 永久网站在线| 日本wwww免费看| 国产国拍精品亚洲av在线观看| 中国国产av一级| 91久久精品国产一区二区成人| 97精品久久久久久久久久精品| 久热久热在线精品观看| 精品一区二区三卡| 国产成人精品福利久久| 人成视频在线观看免费观看| 国产精品无大码| 色婷婷av一区二区三区视频| 国产一区亚洲一区在线观看| xxxhd国产人妻xxx| 亚洲欧美中文字幕日韩二区| 如何舔出高潮| 精品人妻在线不人妻| 国产成人精品福利久久| 久久久亚洲精品成人影院| 日本wwww免费看| 国产精品一区二区在线不卡| 插阴视频在线观看视频| 国产无遮挡羞羞视频在线观看| 日本黄色片子视频| 中文字幕人妻熟人妻熟丝袜美| 在线播放无遮挡| 人体艺术视频欧美日本| 街头女战士在线观看网站| 五月玫瑰六月丁香| 美女福利国产在线| 免费黄色在线免费观看| 亚洲精品乱码久久久v下载方式| 久久久欧美国产精品| 人体艺术视频欧美日本| 亚洲精品,欧美精品| av又黄又爽大尺度在线免费看| 一本一本综合久久| 国产成人午夜福利电影在线观看| 日产精品乱码卡一卡2卡三| 观看美女的网站| 国产乱来视频区| 免费看不卡的av| 国产免费一级a男人的天堂| 极品人妻少妇av视频| 亚洲综合精品二区| 国产高清三级在线| 日韩av不卡免费在线播放| 亚洲精品国产色婷婷电影| 国产视频内射| 女性生殖器流出的白浆| 欧美bdsm另类| 美女内射精品一级片tv| 91精品国产九色| 成年人免费黄色播放视频| 蜜臀久久99精品久久宅男| 国产男人的电影天堂91| 久久青草综合色| 精品人妻熟女av久视频| 国产亚洲av片在线观看秒播厂| 99re6热这里在线精品视频| 日本-黄色视频高清免费观看| 婷婷色综合大香蕉| 啦啦啦视频在线资源免费观看| 内地一区二区视频在线| 久久精品国产亚洲av涩爱| 国产男女超爽视频在线观看| 国产精品偷伦视频观看了| 国产欧美另类精品又又久久亚洲欧美| 国产成人av激情在线播放 | 色视频在线一区二区三区| 国产亚洲精品久久久com| 中文字幕人妻熟人妻熟丝袜美| 免费观看av网站的网址| 色哟哟·www| 午夜91福利影院| 丝袜在线中文字幕| 久久久欧美国产精品| 欧美日韩一区二区视频在线观看视频在线| 只有这里有精品99| 欧美精品国产亚洲| 国产免费视频播放在线视频| 天堂俺去俺来也www色官网| 国产日韩欧美在线精品| 看十八女毛片水多多多| 黄片无遮挡物在线观看| 2018国产大陆天天弄谢| 日韩欧美精品免费久久| 国产精品久久久久久久久免| 国产av一区二区精品久久| 日本免费在线观看一区| 国产一区二区在线观看日韩| 男女国产视频网站| 男人爽女人下面视频在线观看| 亚洲国产精品国产精品| 九草在线视频观看| 大香蕉久久成人网| 免费av中文字幕在线| 色婷婷久久久亚洲欧美| 极品少妇高潮喷水抽搐| av有码第一页| 国产一区二区三区av在线| 一级毛片电影观看| 成年人午夜在线观看视频| videos熟女内射| 人人妻人人爽人人添夜夜欢视频| 亚洲欧美一区二区三区黑人 | 男女边摸边吃奶| 少妇被粗大猛烈的视频| 国产 一区精品| 七月丁香在线播放| 午夜免费鲁丝| 亚洲欧美日韩另类电影网站| 国产免费又黄又爽又色| 五月开心婷婷网| 中文欧美无线码| 九色成人免费人妻av| 好男人视频免费观看在线| 午夜激情久久久久久久| 精品一区在线观看国产| 能在线免费看毛片的网站| 嘟嘟电影网在线观看| 青春草亚洲视频在线观看| 色视频在线一区二区三区| 亚洲人与动物交配视频| 久久久久久久久久久丰满| 97超碰精品成人国产| 国产免费一级a男人的天堂| 亚洲综合色惰| 久久97久久精品| 国产乱来视频区| 久久狼人影院| 日本免费在线观看一区| 男女免费视频国产| 亚洲av.av天堂| 91在线精品国自产拍蜜月| 欧美xxxx性猛交bbbb| 一级爰片在线观看| 人人妻人人澡人人爽人人夜夜| 在线观看免费日韩欧美大片 | 午夜激情av网站| 又黄又爽又刺激的免费视频.| 国产精品.久久久| 18在线观看网站| 在线观看三级黄色| 亚洲综合精品二区| 特大巨黑吊av在线直播| 熟女av电影| 日韩av在线免费看完整版不卡| 黑人高潮一二区| 丝袜美足系列| 韩国高清视频一区二区三区| 国产午夜精品一二区理论片| 日本-黄色视频高清免费观看| 少妇丰满av| 少妇猛男粗大的猛烈进出视频| 婷婷色av中文字幕| 午夜福利,免费看| 美女大奶头黄色视频| 亚洲精品乱久久久久久| 欧美日韩国产mv在线观看视频| 国产乱人偷精品视频| 精品国产一区二区三区久久久樱花| 亚洲伊人久久精品综合| 日韩欧美精品免费久久| 又黄又爽又刺激的免费视频.| 欧美xxⅹ黑人| 大码成人一级视频| 国产老妇伦熟女老妇高清| 午夜免费观看性视频| 这个男人来自地球电影免费观看 | 日日爽夜夜爽网站| videos熟女内射| 你懂的网址亚洲精品在线观看| 亚洲精品色激情综合| 简卡轻食公司| 国产又色又爽无遮挡免| 哪个播放器可以免费观看大片| 国产成人免费无遮挡视频| 免费黄网站久久成人精品| 国产男女超爽视频在线观看| 一本—道久久a久久精品蜜桃钙片| 99九九在线精品视频| 黑人巨大精品欧美一区二区蜜桃 | 日韩视频在线欧美| 国产免费一级a男人的天堂| a级毛片免费高清观看在线播放| 国产视频内射| 日韩熟女老妇一区二区性免费视频| 国产成人免费观看mmmm| 亚洲欧美中文字幕日韩二区| 日韩成人av中文字幕在线观看| 三上悠亚av全集在线观看| 久久久国产精品麻豆| 啦啦啦在线观看免费高清www| 最近2019中文字幕mv第一页| 国产成人freesex在线| 色婷婷av一区二区三区视频| 一本一本综合久久| kizo精华| 最新中文字幕久久久久| 亚洲高清免费不卡视频| 天天影视国产精品| 我的老师免费观看完整版| 美女xxoo啪啪120秒动态图| 久久久久久久久久久丰满| 三级国产精品欧美在线观看| 狂野欧美激情性xxxx在线观看| 91精品国产九色| 中文字幕人妻丝袜制服| 狂野欧美激情性xxxx在线观看| 中文字幕亚洲精品专区| 中文字幕人妻丝袜制服| 成人影院久久| 高清毛片免费看| 亚洲av欧美aⅴ国产| xxxhd国产人妻xxx| 免费黄频网站在线观看国产| 国产黄色免费在线视频| 国产高清有码在线观看视频| 欧美一级a爱片免费观看看| 日本与韩国留学比较| 亚洲婷婷狠狠爱综合网| 亚洲丝袜综合中文字幕| 亚洲天堂av无毛| 亚洲综合精品二区| 国产毛片在线视频| www.色视频.com| 秋霞在线观看毛片| 久久女婷五月综合色啪小说| 欧美另类一区| 久久精品国产a三级三级三级| 母亲3免费完整高清在线观看 | 国内精品宾馆在线| 尾随美女入室| 黑人高潮一二区| 蜜桃国产av成人99| 亚洲第一区二区三区不卡| 久久综合国产亚洲精品| 国产亚洲av片在线观看秒播厂| 日产精品乱码卡一卡2卡三| 亚洲综合精品二区| 伦精品一区二区三区| 18禁裸乳无遮挡动漫免费视频| 热re99久久精品国产66热6| 欧美日韩一区二区视频在线观看视频在线| 男女国产视频网站| 十八禁高潮呻吟视频| 这个男人来自地球电影免费观看 | 精品卡一卡二卡四卡免费| 久久久欧美国产精品| av天堂久久9| 久久韩国三级中文字幕| 大又大粗又爽又黄少妇毛片口| 哪个播放器可以免费观看大片| 老司机影院成人| 不卡视频在线观看欧美| 欧美精品国产亚洲| 特大巨黑吊av在线直播| 一级,二级,三级黄色视频| 亚洲高清免费不卡视频| 热99久久久久精品小说推荐| www.色视频.com| 久久99热6这里只有精品| 免费观看在线日韩| 日本爱情动作片www.在线观看| 亚洲第一av免费看| 少妇被粗大猛烈的视频| 久久久久国产精品人妻一区二区| 色94色欧美一区二区| 久久午夜综合久久蜜桃| av在线app专区| 亚洲精品日韩av片在线观看| 男人爽女人下面视频在线观看| 日韩熟女老妇一区二区性免费视频| 精品一区在线观看国产| 精品亚洲成国产av| 蜜臀久久99精品久久宅男| 婷婷色综合www| 免费大片黄手机在线观看| 亚洲欧洲精品一区二区精品久久久 | 日韩欧美一区视频在线观看| 日韩不卡一区二区三区视频在线| 日韩一区二区三区影片| 狠狠婷婷综合久久久久久88av| 校园人妻丝袜中文字幕| 精品一品国产午夜福利视频| 欧美bdsm另类| 亚洲五月色婷婷综合| 制服丝袜香蕉在线| av国产久精品久网站免费入址| 国产精品.久久久| 国产黄片视频在线免费观看| 精品一品国产午夜福利视频| 少妇人妻久久综合中文| 欧美丝袜亚洲另类| 91久久精品电影网| 热re99久久国产66热| 熟女av电影| 国产男女内射视频| videos熟女内射| 观看av在线不卡| 亚洲精品第二区| 夜夜看夜夜爽夜夜摸| 高清不卡的av网站| 国产不卡av网站在线观看| 亚洲国产欧美在线一区| av黄色大香蕉| 一区在线观看完整版| 免费黄色在线免费观看| 国产熟女欧美一区二区| 啦啦啦视频在线资源免费观看| 亚洲精品一二三| 免费久久久久久久精品成人欧美视频 | 国产永久视频网站| 国产在视频线精品| 日韩熟女老妇一区二区性免费视频| 青春草亚洲视频在线观看| 美女中出高潮动态图| 成人国产av品久久久| 交换朋友夫妻互换小说| 一区二区三区免费毛片| 看免费成人av毛片| 日韩强制内射视频| 中文字幕久久专区| 成人国语在线视频| 亚洲精品一区蜜桃| 少妇被粗大猛烈的视频| a级毛色黄片| 成人毛片a级毛片在线播放| 久久国内精品自在自线图片| 看十八女毛片水多多多| 色视频在线一区二区三区| 国产精品国产av在线观看| 国产男女内射视频| 在线观看一区二区三区激情| 极品人妻少妇av视频| 99热这里只有精品一区| 国产熟女午夜一区二区三区 | 欧美三级亚洲精品| 精品少妇内射三级| 黄色配什么色好看| 人人妻人人添人人爽欧美一区卜| 蜜桃在线观看..| 丰满乱子伦码专区| 99久久精品一区二区三区| 97超视频在线观看视频| 97在线人人人人妻| 亚洲美女视频黄频| 999精品在线视频| 91国产中文字幕| 建设人人有责人人尽责人人享有的| 久久免费观看电影| 亚洲欧美中文字幕日韩二区| 制服丝袜香蕉在线| 免费观看的影片在线观看| 最近中文字幕2019免费版| 久久午夜福利片| 亚洲成色77777| 99久久综合免费| 国产白丝娇喘喷水9色精品| 亚洲色图综合在线观看| 免费看光身美女| 午夜免费鲁丝| 欧美+日韩+精品| 黄片播放在线免费| 人妻一区二区av| 美女xxoo啪啪120秒动态图| 日韩在线高清观看一区二区三区| 亚洲欧洲日产国产| 在线观看免费视频网站a站| 免费久久久久久久精品成人欧美视频 | 日本与韩国留学比较| 青春草国产在线视频| 在线观看免费日韩欧美大片 | 天天操日日干夜夜撸| 久久久久精品性色| 伊人亚洲综合成人网| 国产精品99久久99久久久不卡 | 国产女主播在线喷水免费视频网站| 日韩亚洲欧美综合| 国产女主播在线喷水免费视频网站| 亚洲精品日本国产第一区| 亚洲国产精品一区二区三区在线| 色婷婷久久久亚洲欧美| 国产女主播在线喷水免费视频网站| 中文乱码字字幕精品一区二区三区| 两个人的视频大全免费| 人妻少妇偷人精品九色| 汤姆久久久久久久影院中文字幕| 欧美3d第一页| 精品久久久久久久久亚洲| 亚洲精品国产av蜜桃| 精品国产一区二区久久| 国产在线一区二区三区精| av又黄又爽大尺度在线免费看| 考比视频在线观看| 精品一区在线观看国产| 中国美白少妇内射xxxbb| 观看美女的网站| 久久久久国产网址|