• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-scale thermodynamic analysis method for 2D SiC/SiC composite turbine guide vanes

    2018-02-02 08:10:10XinLIUXiuliSHENLongdongGONGPengLI
    CHINESE JOURNAL OF AERONAUTICS 2018年1期

    Xin LIU,Xiuli SHEN,*,Longdong GONG,Peng LI

    aSchool of Energy and Power Engineering,Beihang University,Beijing 100083,China

    bNavigation and Control Technology Research Institute of China Ordnance Industries,Beijing 100089,China

    1.Introduction

    The high-temperature resistance of hot aero engine components,such as the guide vane of a high-pressure turbine,has increased with the growth of the thrust–weight ratio.The turbine inlet temperature of an aero engine with a thrust–weight ratio of 15:20 reaches 1900–2100 °C.1Under the consideration of blade cooling and thermal barrier coating,high-pressure turbine guide vanes need to resist temperatures exceeding 1300°C.2The SiC/SiC Ceramic Matrix Composite(CMC)possesses high-temperature resistance(can resist temperature reaching 1450°C1),corrosion resistance,and low density.As the result,this material not only meets the temperature requirements of the high-pressure turbine guide vane but also increases the thrust–weight ratio by reducing the weight of the guide vane.

    Present studies on CMC turbine guide vanes are mainly based on experiments and macroscopic numerical simulations.Brewer et al.calculated the macroscopic stress distribution of a 2D woven CMC turbine guide vane through a numerical simulation and indicated that the maximum stress occurred on the trailing edge.3Verrilli et al.conducted a thermal shock test of a 2D woven SiC/SiC-CMC turbine guide vane processed by Chemical Vapor Infiltration(CVI).The temperature field and the macroscopic stress distribution of the vane were simulated in the given test condition with the conclusion that high stress distribution appeared at the leading edge.4

    Homogenized stress and strainfields are generally obtained from the Finite Element Method(FEM)in the macroscopic numerical simulation of CMC turbine guide vanes to conduct strength evaluation.Given that woven CMC exhibits inhomogeneity at the microscopic scale,the microscopic stress distribution cannot be reflected by the homogenized macroscopic stressfield.5Since there are differences between the mechanical properties of the compositefiber and matrix,it is necessary to obtain the stress distribution of thefiber and matrix separately by microscopic analysis.Afterward,accurate judgments can be made about turbine guide vane failure.Although the experimental method can be adopted to obtain the macroscopic failure criterion of a certain CMC turbine guide vane,the mechanical properties of the material can change with differentfiber volume fraction,braided structure,porosity and so on.This fact leads to the change in the failure criterion of CMC turbine guide vanes at the macroscopic scale.Considering the high cost and complexity of CMC turbine guide vane experimentation,the test method is generally adopted forfinal verification.However,the mechanical properties of the fiber and matrix do not change with the structural characteristics of the material,and the micro-analysis method can be applied to CMC turbine guide vanes with different materials and processes.

    Complete material thermodynamic properties are the basis of the numerical simulation of CMC turbine guide vanes.The in-plane mechanical properties of 2D woven CMC can be measured through an experiment,but the out-plane normal mechanical properties can only be obtained through numerical analysis at present.6The structure of a CMC turbine guide vane processed by CVI is complex,and the influence of periodic structure modeling,matrix porosity,and thermal–mechanical load should be considered in performance prediction.7Therefore,it is essential to generate a method to predict the thermodynamic properties of CVI-processed 2D woven CMC.

    In the 1970s,Lions8and Kesavan9,10proposed the multiscale method based on homogenization theory.Cun and Cao proved that this method converges to the real solution in mathematics.11Hassani and Hinton introduced the multi-scale asymptotic analysis method.12–14Multi-scale asymptotic homogenization has become an important method to analyze periodic composite structures.Prediction of the thermodynamic properties of woven CMC and multi-scale stress and strain analysis of CMC turbine guide vanes can be conducted with this method.Barroqueiro et al.studied the actual use of the multi-scale homogenization method in calculation software.The thermodynamic properties and stress distribution of a micro Representative Volume Element(RVE)for both unidirectionalfiber-reinforced composite and standard tensile test specimen were predicted as examples.15Gong and Shen established the multi-scale thermal–mechanicalcoupling method and conducted numerical simulation of a unidirectionalfiber-reinforced composite.The calculation results of the material parameters were in good agreement with the experimental results.16This work serves as a theoretical basis for the application of the multi-scale homogenization method in 2D woven CMC turbine guide vanes.

    Overall,the previous work cannot meet the demand for the prediction of the thermodynamic properties of 2D SiC/SiCCMC and the multi-scale stress and strain analysis of CMC turbine vanes.Firstly,the research of 2D woven composites is mainly based on void free RVE model.17,18However,the microstructure of CVI SiC/SiC-CMC is complex with a large number of voids which influence the material property.19A reasonable and effective RVE model fully considering void structure is needed.Secondly,the numerical simulation of the CMC turbine guide blade stays at the macro level without considering the inhomogeneous distribution of the micro stress.There is no method of calculating the distribution of micro stress from the macroscopic response of the CMC turbine vane.It is not conducive to judging the failure of guide vanes accurately and making full use of the designable advantage.Some researchers have been carried out aiming at the above problems in this paper.

    This study investigated the multi-scale thermodynamic analysis method.Initially,a 2D woven composite RVE model with porosity was established based on the minimum energy principle20to predict the thermodynamic properties of CVI-processed 2D woven SiC/SiC-CMC.Moreover,the macroscopic response of the vane under given conditions was predicted with the material distribution model according to the processing technology of the 2D woven SiC/SiC-CMC turbine guide vane.Finally,the stress distribution of the micro-scale RVE model was simulated,and the microscopic stress distribution characteristics were analyzed.Strictly,a complete and feasible multi-scale thermodynamic analysis method was established for SiC/SiC-CMC turbine guide vanes.The predicted material properties and the macroscopic response of the turbine guide vane were in good agreement with the experimental results.

    2.Multi-scale thermal–mechanical coupling method and finite element implementation

    2.1.Mathematical derivation

    The linear thermal–mechanical problem is provided as

    where σ,λ,andtare the component of stress tensors,thermal conductivity,and temperature,respectively;iandjrepresent 3 orthogonal directions;f is the load per unit volume;ψ represents the heat generated by the inner source per unit volume in unit time;xiis the coordinate in different directions.

    On account of the similar forms of mechanical equilibrium and heat conduction differential equations,extended differential operator matrix and combinedfield quantity are introduced.Then,Eq.(1)can be written in a unified form as

    where L is the differential operator matrix,C is the extended matrix of stiffness and thermal conductivity coefficient,U is the combinedfield of displacement and temperature,A is the thermal expansion coefficient matrix,and F is the combinedfield of external loads and internal heat source.

    As shown in Fig.1,for periodic composites,the macro displacement vector is a function of not only macro coordinate x but also micro coordinate y.Define a small parameter ε(0 < ε<1)as the ratio of the actual length of a unit vector in the micro coordinates to the realistic length of a unit vector in the macro coordinates,and y=x/ε.Therefore,any field vector φεhas the following form:

    whereYis the micro period andn=0,1,2,....

    The small parameter asymptotic expansion of U in Eq.(2)is

    Through asymptotic expansion derivation,we conclude that the generalized equilibrium equations are

    The macroscopic homogenization matrix of stiffness and thermal conductivity coefficient CUis

    where Ω is the integral variable.

    The macroscopic homogenization matrix of the thermal expansion coefficient AUis

    The relationship between micro stress σεand macroscopic physical quantities is expressed as

    whereVis the micro cell volume,M(y)and P(y)are coefficient matrices related to micro coordinate y,and U0is the macrofield of displacement and temperature.

    2.2.Finite element solution of macro thermodynamic properties

    By introducing shape function N,thefinite element solution of M(y)and P(y)can be written as

    where q and q*can be obtained by the following equations:

    Fig.1 Periodic structural unit of composites.

    where q and q*are the extended displacement vectors of the nodes,B=LN is the extended strain matrix,and J is the Jacobian matrix,ξ,η,ζ are the integral variable.

    We conclude that

    The elastic modulus,Poisson’s ratio,thermal conductivity,and thermal expansion coefficient are easily obtained from CUand AU.

    2.3.Finite element solution of micro stress distribution

    From Eqs.(8)–(10),the expression of micro stress σεcan be derived as

    Eq.(15)shows the relationship between micro stress distribution and macro physical quantities.q and q*are viewed as microscopicfluctuations caused by the distribution of material properties.Lyi(Nq*)U0in Eq.(15)contains the micro temperaturefluctuation caused by the thermal conductivity coefficient distribution.This part represents the effect of micro temperaturefluctuation on micro stress distribution.

    According to this derivation,a multi-scale thermodynamic analysis program was developed in VC++6.0.This program can calculate the thermodynamic properties of the materials and the stress distribution of the micro-scale RVE model.

    3.Prediction of thermodynamic properties of SiC/SiC-CMC

    3.1.RVE model offiber bundle and 2D woven CMC

    The microstructure of thefiber bundle obtained with a Scanning Electron Microscope(SEM)is shown in Fig.2.

    Thefiber volume fraction of thefiber bundle was 89.3%,as measured from the SEM microstructure photographs.The RVE model of thefiber bundle was established(shown in Fig.3)according to this.The effect of the pore on thefiber bundle was disregarded because of the negligible amount.

    The micro structure of the 2D woven CVI-processed SiC/SiC-CMC is illustrated in Fig.4.

    The characteristics of the microstructure of CVI-processed woven CMC can be concluded from the SEM images as follows.First,the preform is uniformly distributed.Thefiber bundle is connected by the matrix with a consistent crosssectional shape.Second,the matrix thicknesses in each direction along the surface of thefiber bundles are the same,and each layer is closed by the connection matrix along the thickness direction after deposition.Third,the pores are periodically distributed in the matrix and the position and shape are basically similar.

    The structural parameters were obtained from the data collected from SEM images of different parts of the material with statistical analysis.According to the modeling method provided by Ref.20,the RVE model of 2D woven composites in consideration of porosity was established as Fig.5.To reveal the internal structure of the RVE model,the layer was adjusted to become transparent.The model illustrates the internal structure of 2D woven composites ideally,and the effect of porosity is fully considered.

    3.2.Thermodynamic performance calculation and experimental verification

    Thermodynamic parameters of SiCfiber and SiC matrix are the basis of CMC performance prediction.The material supply unit only provided the thermal expansion coefficient of the SiC matrix,and the existing researches focus on the mechanical properties or thermal conductivity,but cannot provide the complete original parameters.Therefore,through the analysis of the parameters of thefiber and the matrix material provided by a number of literatures,the thermodynamic parameters of the SiC-matrix and SiC-fiber are listed in Table 1.

    The calculated thermodynamic properties of thefiber bundles are shown in Table 2,whereEis the modulus of elasticity,Gis the shear modulus,μ is the Poisson ratio,and α is the coef-ficient of thermal expansion.The multi-scale thermodynamic analysis method and the RVE model of thefiber bundle were used to calculate.Subscripts 1 and 2 represent the transverse directions of thefiber bundle,and subscript 3 represents the longitudinal direction.The equivalent performance parameters offiber bundles are orthotropic.

    Based on the thermodynamic properties of thefiber bundle and matrix,the properties of 2D woven SiC/SiC-CMC were predicted with the multi-scale thermodynamic analysis method and the RVE model.The result is shown in Table 3.Subscripts 1 and 2 represent the in-plane warp and weft directions,and subscript 3 represents the out-plane normal direction.The performance parameters of the material are orthotropic.

    To verify the accuracy of the prediction results,a uniaxial tensile test was conducted on 2D woven SiC/SiC-CMC.A comparison of the test and predicted results(Table 4)shows that the relative error is 4.18%,which means that the calculated material performance parameters can be used to analyze the thermodynamic response of CMC turbine guide vanes at micro and macro scales.

    Fig.2 Micro structure offiber bundle.

    Fig.3 RVE model offiber bundle.

    Fig.4 Micro structure of 2D woven CVI-processed SiC/SiCCMC.

    Fig.5 RVE model of 2D woven composites with porosity.

    4.Thermodynamic response analysis of a CMC turbine guide vane in multiple scales

    4.1.Thermal deformation test of CMC turbine vane

    To acquire the temperaturefield and validate the guide vane analysis method,a static experiment was conducted on a CMC turbine guide vane.Strain distribution was observed with a temperature difference of more than 150°C at the trailing edge.To facilitate strain measurement,the hightemperature resistant metal part is open at the end,as shown in Fig.6.

    Eleven temperature control points were arranged on the CMC turbine guide vane,as shown in Fig.7.The change in temperature at each point was measured by a thermocouple.The output power of the high-frequency induction furnace was kept stable when the temperature difference between points 2 and 10 exceeded 150°C.The temperature at each point is listed in Table 5.

    As shown in Fig.8,thefirst principal strain at the trailing edge was measured with a VIC-3D HSt full-field strain measurement system.Points P0,P1,and P2 were selected randomly in the test section;the strain values are 2.935×10-3,2.777×10-3,and 2.211×10-3,respectively.The average value of thefirst principal strain in the test section is 2.913×10-3(C0).

    Table 1 Thermodynamic properties of component materials.

    Table 2 Thermodynamic properties offiber bundle.

    Table 3 Thermodynamic properties of 2D woven SiC/SiC-CMC.

    Table 4 Comparison of calculated and experimental values of material properties.

    Fig.6 Heating device of experiment.

    Fig.7 Distribution of temperature control points.

    4.2.Macro mechanical response calculation

    Thefinite element model of the CMC turbine guide vane is shown in Fig.9.The macroscopic equivalent thermodynamic properties of 2D woven SiC/SiC-CMC were predicted.

    The property distribution model of the material was established according to the manufacturing process of the CMC turbine guide vane.When the vane was processed,the SiCfiber cloth was wrapped on an inner cavity mold initially.Then,the blank was deposited through CVI.Finally,the CMC turbine guide vane was obtained by mechanical processing.In this manufacturing process,although the local coordinate system of the 2D woven CMC turbine guide vane changed with the shape of the component,the material properties were kept continuous.Thus,the material principal axis was determined by the woven structure and shape of the curved surface.The material distribution model involved two aspects.First,the in-plane warp or weft direction offiber bundle was regarded as thefirst principal axis direction.Second,the local normal direction of the turbine guide vane surface was regarded as the third principal axis direction.The second principal axis direction was determined by the right-hand rule.After mapping the material distribution to thefinite element model of the turbine guide vane,the local model was showed with the enlarged material distribution coordinate of the local unit as Fig.10.

    The location and temperature of the 11 controlling points are shown in Fig.7 and Table 5.The convective heat transfer coefficient on the inner wall of the turbine guide vane is 10 W/(m2·°C).The atmospheric temperature is 25 °C.Temperature distribution was obtained through thermal–mechanical coupling analysis,as shown in Fig.11.To simulate the boundary condition in the test state,axial and circumferential displacement constraints were imposed on the sixth controlling point and a radial displacement constraint was imposed on the upper cross section of the turbine guide vane.

    Thefirst principal strain distribution of the vane obtained from the macro analysis is shown in Fig.12 and the trailing edge is enlarged in Fig.13.The maximum and minimumfirst principal strains are 2.774×10-3and 2.574×10-3,respectively.The average value of thefirst principal strain at the trailing edge is 2.650×10-3.Table 6 provides a comparison of the analysis and experimental results.The relative error is 9.7%.

    Fig.8 First principal strain distribution at trailing edge of CMC guide vane.

    Fig.9 Finite element model of CMC turbine guide vane.

    Fig.11 Distribution of temperature on guide vane.

    Fig.12 First principal strain distribution of guide vane.

    Fig.10 Local model of material coordinate mapping.

    Fig.13 First principal strain distribution of guide vane on trailing edge.

    Table 6 Comparison of calculated and experimental values of thefirst principal strain.

    4.3.Simulation of micro stress distribution

    The equivalent stress distribution of the vane is shown in Fig.14.The maximum equivalent stress is located at node 3256 near the trailing edge of the guide vane.The local coordinate system number of this node is 1251.Different from the turbine guide vane of isotropic metal materials,that of the composite material is orthotropic.The properties in normal and in-plane directions are different.Thus,interlaminar and in-plane stress should be discussed separately.

    The macro stress distribution of the trailing edge in local coordinate system 1251 is shown in Fig.15.According to the processing characteristics of the CMC turbine guide vane,the warp or weft direction of thefiber bundle represents the in-plane stress level(stress-Xin Figs.15 and 16).The normal direction of the blade curved surface represents the interlaminar stress level(stress-Yin Figs.15 and 16).

    The macro strain,displacement,and temperature of node 3256 were inputted to the microfluctuating matrix to calculate the stress parameters of the nodes attached to the micro RVE model.The micro stress distribution of the 2D woven RVE model simulated with Tecplot software is shown in Fig.16.The macro stress and the maximum value of micro stress distribution of node 3256 are summarized in Table 7.In both directions,the maximum value of micro stress distribution is more than 1.5 times larger than that of macro stress distribution.

    Fig.14 Distribution of equivalent stress.

    Fig.15 Macroscopic stress distribution of trailing edge in local coordinate system.

    Fig.16 Microscopic stress distribution of RVE model.

    Table 7 Comparison of macroscopic and maximum microscopic stresses.

    Fig.17 Locations and numbers of nodes.

    To verify the universality of the results,the macro stress and the maximum value of micro stress distribution of several other nodes in local coordinate systems were calculated.The positions and numbers of the points are shown in Fig.17.The calculation results are compared in Table 8.The maximum value of micro stress distribution is larger than that of macro stress at different positions on the turbine guide vane.The vane could be destroyed because the stress at the microscopic scale is too large before macro strength reaches its limitation.Therefore,the influence of micro stress distribution should be considered when the stress and strain of CMC turbine guide vanes are analyzed through a numerical method.

    Fig.18 shows the cross-section where the micro stress of node 3256 is maximum in the interlaminar normal direction.The maximum value is on the upper surface,which can be considered as an interlayer matrix of CMC.The characteristic of stress distribution is consistent with the delamination failure of the 2D woven composites.As shown in Fig.19,the distribution of high stress on the cross section is consistent with the location of the pores in the RVE model.Stress increases with the rise of the pore volume and reaches the maximum value at the connections ofA,B,C,andD.We assume that the high stress distribution in the interlayer matrix is due to the porosity in the composites and the stress in the interlayer matrix increases with the increase in pore volume.The relevant laws require further study.

    Table 8 Comparison of macroscopic and maximum microscopic stresses of nodes.

    Fig.18 Section of maximum stress in inter laminar normal direction.

    5.Conclusions

    (1)The multi-scale thermodynamic analysis method of the CMC turbine vane was investigated in this paper.The thermodynamic properties of CVI-processed SiC/SiC-CMC were predicted with an RVE model with porosity.The relative error between the calculated and experimental in-plane tensile moduli is 4.2%.The analysis method is accurate and effective,which can provide complete data for component analysis.A macroscopic numerical simulation and an experiment were conducted on the CMC turbine guide vane under given conditions.The relative error between the predicted strain on the trailing edge and the experimental value is 9.7%.

    Fig.19 Comparison of pore and stress distributions.

    (2)The micro stress distribution of the CMC turbine guide vane was simulated.The maximum value of micro stress is larger than that of macro stress.Thus,the influence of micro distribution should be considered when the stress and strain of CMC turbine guide vanes are analyzed through a numerical method.The maximum value of stress in the interlaminar normal direction is located in the interlayer matrix.The high stress distribution of the interlayer matrix is due to the porosity in the composites.The stress in the interlayer matrix increases with the rise of the pore volume.

    1.Wen SQ,He AJ.Application of CMC on thermal parts of aeroengine.J Aeronaut Manuf Technol2009;(Z):4–7[Chinese].

    2.Vedula V,Shi J,Jarmon D,Zadrozny G.Ceramic matrix composite turbine vanes for gas turbine engines.ASME turbo expo:power for land,sea,and air;2005 June 6–9;Reno,USA.New York:ASME;2005.p.247–51.

    3.Brewer D,Verrilli M,Calomino A.Ceramic matrix composite vane subelement burst testing.ASME turbo expo:power for land,sea,and air;2006 May 8–11;Barcelona,Spain.New York:ASME;2006.p.279–84.

    4.Verrilli M,Calomino A,Robinson RC,Thomas DJ.Ceramic matrix composite vane subelement testing in a gas turbine environment.In:ASME turbo expo:power for land,sea,and air;2004 June 14–17;Vienna,Austria.New York:ASME;2004.p.393–9.

    5.Dong JW,Sun LG,Hong P.Homogenization-based method for simulating micro-stress of 3D braided composites.J Acta Materiae Compositae Sinica2005;22(6):801–5[Chinese].

    6.Murthy PLN,Nemeth NN,Brewer DN,Mital S.Probabilistic analysis of a SiC/SiC ceramic matrix composite turbine vane.J Compos Part B Eng2008;39(4):694–703.

    7.Li J,Jiao GQ,Wang B,Li L,Yang CP.Damage characteristics and constitutive modeling of the 2D C/SiC composite:Part I–Experiment and analysis.Chinese J Aeronaut2014;27(6):1586–97.

    8.Lions JL.Some methods in the mathematical analysis of systems and their control.Beijing:Science Press;1981.

    9.Kesavan S.Homogenization of elliptic eigenvalue problem I.J Appl Math Optim1979;5(1):153–67.

    10.Kesavan S.Homogenization of elliptic eigenvalue problem II.J Appl Math Optim1979;5(1):197–216.

    11.Cun JZ,Cao LQ.Finite element method based on two scale asymptotic analysis.J Mathematica Numerica Sinica1998;20(1):89–102[Chinese].

    12.Hassani B,Hinton E.A review of homogenization and topology optimization I-Homogenization theory for media with periodic structure.J Comput Struct1998;69(6):707–17.

    13.Hassani B,Hinton E.A review of homogenization and topology optimization II-Analytical and numerical solution of homogenization equations.J Comput Struct1998;69(6):719–38.

    14.Hassani B,Hinton E.A review of homogenization and topology optimization III-Topology optimization using optimality criteria.J Comput Struct1998;69(6):739–56.

    15.Barroqueiro B,Dias-de-Oliveira J,Pinho-da-Cruz J,Andrade-Campos A.Practical implementation of asymptotic expansion homogenisation in thermoelasticity using a commercial simulation software.J Compos Struct2016;141:117–31.

    16.Gong LD,Shen XL.Thermal-elastic two-scale asymptotic analysis method for micro periodic composites and implementation utilizing finite element method.J Propuls Technol2016;37(1):18–24[Chinese].

    17.Bakar IAA,Kramer O,Bordas S,Rabczuk T.Optimization of elastic properties and weaving patterns of woven composites.J Compos Struct2013;100(5):575–91.

    18.Obert E,Daghia F,Ladeve`ze P,Ballere L.Micro and meso modeling of woven composites:transverse cracking kinetics and homogenization.J Compos Struct2014;117:212–21.

    19.Chateau C,Ge′le′bart L,Bornert M,Cre′pin J.Micromechanical modeling of the elastic behavior of unidirectional CVI SiC/SiC composites.J Int J Solids Struct2015;58(1):322–34.

    20.Shen XL,Gong LD.Numerical modeling of braided composites using energy method.ASME international mechanical engineering congress and exposition;2014 November 14–20;Montreal,Canada.New York:ASME;2014.p.1–6.

    21.Lamon J,Thommeret B,Percevault C.Probabilistic-statistical approach to matrix damage and stress-strain behavior of 2-D woven SiC/SiC ceramic matrix composites.J Eur Ceram Soc1998;18(13):1797–808.

    22.Katoh Y,Ozawa K,Shih C,Nozawa T,Shinavski RJ,Hasegawa A,et al.Continuous SiCfiber,CVI SiC matrix composites for nuclear applications:Properties and irradiation effects.J Nucl Mater2014;448(1–3):448–76.

    23.Youngblood GE,Senor DJ,Jones RH,Graham S.The transverse thermal conductivity of 2D-SiCf/SiC composites.J Compos Sci Technol2002;62(9):1127–39.

    纵有疾风起免费观看全集完整版 | 久久久久久九九精品二区国产| 久久精品夜夜夜夜夜久久蜜豆| 欧美日韩视频高清一区二区三区二| 水蜜桃什么品种好| 成年女人在线观看亚洲视频 | 色吧在线观看| 久久国内精品自在自线图片| 亚洲av成人精品一区久久| 白带黄色成豆腐渣| 亚洲精品成人久久久久久| 久久综合国产亚洲精品| 国产精品久久久久久久久免| 亚洲成色77777| 在线观看一区二区三区| 午夜亚洲福利在线播放| 亚洲精品国产av蜜桃| 日本熟妇午夜| 婷婷六月久久综合丁香| 最近手机中文字幕大全| 亚洲丝袜综合中文字幕| 边亲边吃奶的免费视频| xxx大片免费视频| 久久国内精品自在自线图片| 一级毛片aaaaaa免费看小| 亚洲欧美精品自产自拍| 亚洲欧洲日产国产| 国产精品国产三级国产专区5o| 少妇的逼水好多| 一区二区三区高清视频在线| 搡老乐熟女国产| 亚洲欧美一区二区三区国产| 日韩成人伦理影院| 少妇被粗大猛烈的视频| 18禁在线无遮挡免费观看视频| 亚洲久久久久久中文字幕| 伊人久久精品亚洲午夜| 少妇丰满av| 国精品久久久久久国模美| 极品教师在线视频| av天堂中文字幕网| 国产精品一区二区三区四区久久| 狂野欧美白嫩少妇大欣赏| av专区在线播放| 成人毛片a级毛片在线播放| xxx大片免费视频| 国产精品熟女久久久久浪| 丝袜喷水一区| 欧美三级亚洲精品| 国产视频首页在线观看| 成年免费大片在线观看| 亚洲国产日韩欧美精品在线观看| 黄片wwwwww| 成人午夜高清在线视频| 在线观看人妻少妇| 久久久亚洲精品成人影院| 国产精品日韩av在线免费观看| 国产美女午夜福利| 亚洲欧美日韩东京热| 美女主播在线视频| 男插女下体视频免费在线播放| 国产亚洲av片在线观看秒播厂 | 亚洲aⅴ乱码一区二区在线播放| 久久精品人妻少妇| 国产高清有码在线观看视频| 国产亚洲av片在线观看秒播厂 | 少妇猛男粗大的猛烈进出视频 | 插逼视频在线观看| 成人特级av手机在线观看| 在线免费观看不下载黄p国产| 国产午夜精品一二区理论片| 久久99精品国语久久久| 美女xxoo啪啪120秒动态图| 超碰97精品在线观看| 久久精品国产亚洲av涩爱| 亚洲欧美日韩无卡精品| 能在线免费看毛片的网站| 国产亚洲av片在线观看秒播厂 | 国产精品久久视频播放| 免费人成在线观看视频色| 午夜福利高清视频| 啦啦啦中文免费视频观看日本| 午夜福利视频1000在线观看| 丝袜喷水一区| 国产免费一级a男人的天堂| 日本与韩国留学比较| 观看美女的网站| 欧美成人精品欧美一级黄| 99久久九九国产精品国产免费| 热99在线观看视频| 国产精品久久久久久精品电影小说 | 人妻制服诱惑在线中文字幕| 人妻少妇偷人精品九色| 国产乱来视频区| 亚洲不卡免费看| 亚洲av中文字字幕乱码综合| 岛国毛片在线播放| av网站免费在线观看视频 | 淫秽高清视频在线观看| 校园人妻丝袜中文字幕| 大香蕉97超碰在线| 韩国高清视频一区二区三区| 国产大屁股一区二区在线视频| 免费人成在线观看视频色| 亚洲三级黄色毛片| 精品国产露脸久久av麻豆 | 欧美成人精品欧美一级黄| 国产精品.久久久| 高清日韩中文字幕在线| 少妇熟女欧美另类| 大陆偷拍与自拍| 黑人高潮一二区| 国产精品一区www在线观看| 亚洲欧美成人精品一区二区| 久久99热这里只有精品18| 国内精品宾馆在线| 欧美高清成人免费视频www| 91av网一区二区| 在线观看免费高清a一片| 中文字幕人妻熟人妻熟丝袜美| 国产一级毛片七仙女欲春2| 色哟哟·www| 国产69精品久久久久777片| 大香蕉久久网| 在线免费观看的www视频| 水蜜桃什么品种好| 黄色一级大片看看| 色吧在线观看| 国产精品一二三区在线看| 黄色一级大片看看| 欧美精品国产亚洲| 亚洲av不卡在线观看| 欧美区成人在线视频| 一边亲一边摸免费视频| 欧美3d第一页| 亚洲欧美一区二区三区黑人 | 精品国产一区二区三区久久久樱花 | 久久久精品免费免费高清| 日本与韩国留学比较| 久久韩国三级中文字幕| 成人欧美大片| 亚洲精品成人久久久久久| 性色avwww在线观看| 青春草视频在线免费观看| 自拍偷自拍亚洲精品老妇| 毛片一级片免费看久久久久| 赤兔流量卡办理| av免费观看日本| 男插女下体视频免费在线播放| 赤兔流量卡办理| 97人妻精品一区二区三区麻豆| 好男人视频免费观看在线| 啦啦啦韩国在线观看视频| 亚洲成人精品中文字幕电影| 男人和女人高潮做爰伦理| 在线播放无遮挡| 久久精品夜夜夜夜夜久久蜜豆| 男人和女人高潮做爰伦理| 欧美日本视频| 亚洲国产精品专区欧美| 韩国高清视频一区二区三区| 亚洲第一区二区三区不卡| 噜噜噜噜噜久久久久久91| 蜜桃久久精品国产亚洲av| 大话2 男鬼变身卡| 亚洲aⅴ乱码一区二区在线播放| 亚洲av成人精品一区久久| 国产亚洲5aaaaa淫片| 色播亚洲综合网| 青春草视频在线免费观看| 国产精品无大码| 一级毛片我不卡| 国产午夜精品一二区理论片| 日韩伦理黄色片| 在线 av 中文字幕| 国产伦在线观看视频一区| 国产精品久久久久久精品电影| 能在线免费观看的黄片| www.av在线官网国产| 国产精品一区二区三区四区久久| 啦啦啦啦在线视频资源| 一区二区三区高清视频在线| 大片免费播放器 马上看| 免费观看精品视频网站| 九九久久精品国产亚洲av麻豆| 成人av在线播放网站| 少妇熟女aⅴ在线视频| av又黄又爽大尺度在线免费看| 日本黄色片子视频| 日韩欧美 国产精品| 91在线精品国自产拍蜜月| 国产一区有黄有色的免费视频 | 久久亚洲国产成人精品v| 日韩制服骚丝袜av| 国产人妻一区二区三区在| 人妻制服诱惑在线中文字幕| 国产亚洲最大av| 欧美成人午夜免费资源| 国产黄频视频在线观看| 男人爽女人下面视频在线观看| 精品少妇黑人巨大在线播放| 成人特级av手机在线观看| 欧美成人午夜免费资源| 亚洲成人精品中文字幕电影| 国产成人aa在线观看| 久久久久久久久久久免费av| 国产综合精华液| 亚洲在线观看片| av免费观看日本| 国产老妇伦熟女老妇高清| 亚洲在久久综合| 亚洲精品乱久久久久久| 亚洲av电影不卡..在线观看| 日本与韩国留学比较| 日本一二三区视频观看| 免费无遮挡裸体视频| 一级毛片电影观看| 国产精品麻豆人妻色哟哟久久 | 国产大屁股一区二区在线视频| 免费高清在线观看视频在线观看| 久久久久网色| 国产熟女欧美一区二区| 在线观看免费高清a一片| 99久久精品一区二区三区| 久久这里只有精品中国| 在线免费观看不下载黄p国产| 老司机影院毛片| 我要看日韩黄色一级片| 啦啦啦韩国在线观看视频| 日韩精品有码人妻一区| 高清欧美精品videossex| 午夜免费观看性视频| 日日啪夜夜撸| 精品久久国产蜜桃| 久久久久精品性色| 免费人成在线观看视频色| 亚洲精品乱码久久久久久按摩| 国产精品日韩av在线免费观看| 欧美xxxx性猛交bbbb| 亚洲国产日韩欧美精品在线观看| 只有这里有精品99| av在线天堂中文字幕| 嘟嘟电影网在线观看| 国产一区二区三区综合在线观看 | 免费在线观看成人毛片| 欧美+日韩+精品| 国产一区二区三区av在线| 69人妻影院| 别揉我奶头 嗯啊视频| 夫妻性生交免费视频一级片| 国产精品国产三级国产av玫瑰| 美女内射精品一级片tv| 中文字幕制服av| 亚洲精品乱码久久久久久按摩| 一区二区三区乱码不卡18| 伦精品一区二区三区| 少妇的逼好多水| 尤物成人国产欧美一区二区三区| 国产不卡一卡二| 国产黄色视频一区二区在线观看| 麻豆久久精品国产亚洲av| 亚洲精品影视一区二区三区av| 中文字幕av在线有码专区| 亚洲av男天堂| 久热久热在线精品观看| 黄片无遮挡物在线观看| 国产乱来视频区| 两个人的视频大全免费| 亚洲四区av| 国产精品.久久久| av在线天堂中文字幕| 国产探花在线观看一区二区| 黑人高潮一二区| 成年av动漫网址| 2022亚洲国产成人精品| 日韩 亚洲 欧美在线| 一级毛片黄色毛片免费观看视频| 午夜福利在线观看吧| 久久精品国产亚洲av涩爱| 久久精品综合一区二区三区| 成人欧美大片| 九色成人免费人妻av| 别揉我奶头 嗯啊视频| 亚洲成人精品中文字幕电影| 建设人人有责人人尽责人人享有的 | 免费在线观看成人毛片| 91午夜精品亚洲一区二区三区| 日本一二三区视频观看| 国产熟女欧美一区二区| 精品久久久精品久久久| 老司机影院毛片| 国产高清有码在线观看视频| 熟妇人妻久久中文字幕3abv| 青青草视频在线视频观看| 久久久精品免费免费高清| 黑人高潮一二区| 直男gayav资源| 国产一区二区三区av在线| 在线免费观看不下载黄p国产| 寂寞人妻少妇视频99o| 午夜福利在线观看吧| 久久鲁丝午夜福利片| 99九九线精品视频在线观看视频| 97超碰精品成人国产| 亚洲内射少妇av| 国产亚洲av片在线观看秒播厂 | 又爽又黄无遮挡网站| 男人舔奶头视频| 成年人午夜在线观看视频 | 欧美激情在线99| 欧美人与善性xxx| 狂野欧美激情性xxxx在线观看| 成人综合一区亚洲| 久久人人爽人人爽人人片va| 大又大粗又爽又黄少妇毛片口| 一级毛片 在线播放| 亚洲图色成人| 国产精品久久久久久精品电影| 亚洲av电影不卡..在线观看| 男人舔女人下体高潮全视频| 精品久久久久久成人av| 热99在线观看视频| 亚洲av在线观看美女高潮| 少妇被粗大猛烈的视频| 亚洲久久久久久中文字幕| 免费观看a级毛片全部| 成年免费大片在线观看| 91aial.com中文字幕在线观看| 少妇熟女欧美另类| 日日啪夜夜撸| 久久精品久久久久久久性| 亚洲精品视频女| 国产精品一区www在线观看| 亚洲av日韩在线播放| 亚洲综合精品二区| 欧美最新免费一区二区三区| 午夜老司机福利剧场| 国产精品.久久久| 免费观看无遮挡的男女| 亚洲在久久综合| 国产精品女同一区二区软件| 亚洲在久久综合| 欧美一区二区亚洲| 麻豆成人av视频| 欧美性猛交╳xxx乱大交人| 国产又色又爽无遮挡免| 综合色av麻豆| av在线亚洲专区| 欧美性猛交╳xxx乱大交人| 人人妻人人看人人澡| 国产黄a三级三级三级人| 联通29元200g的流量卡| 国产精品一区二区三区四区久久| 免费人成在线观看视频色| 久久人人爽人人爽人人片va| 日韩欧美一区视频在线观看 | 亚洲内射少妇av| 青春草视频在线免费观看| xxx大片免费视频| 久久久久久久亚洲中文字幕| xxx大片免费视频| 天堂网av新在线| av又黄又爽大尺度在线免费看| 99热这里只有是精品50| 免费电影在线观看免费观看| 午夜精品一区二区三区免费看| 日韩三级伦理在线观看| av在线老鸭窝| 国产成人福利小说| 国产精品人妻久久久久久| 日韩强制内射视频| 欧美激情国产日韩精品一区| 欧美激情在线99| 色综合色国产| 性色avwww在线观看| 国产熟女欧美一区二区| 午夜免费激情av| 免费观看av网站的网址| 亚洲四区av| 我的老师免费观看完整版| 男人爽女人下面视频在线观看| 国产女主播在线喷水免费视频网站 | 免费无遮挡裸体视频| 91精品伊人久久大香线蕉| 亚洲成色77777| 欧美成人一区二区免费高清观看| av.在线天堂| 男人和女人高潮做爰伦理| 人妻夜夜爽99麻豆av| 美女cb高潮喷水在线观看| 欧美日韩一区二区视频在线观看视频在线 | 免费大片18禁| 大香蕉久久网| 亚洲高清免费不卡视频| 亚洲经典国产精华液单| 国产精品久久视频播放| 在线天堂最新版资源| 99久国产av精品国产电影| 边亲边吃奶的免费视频| 禁无遮挡网站| 亚洲色图av天堂| 欧美性猛交╳xxx乱大交人| 免费黄网站久久成人精品| 边亲边吃奶的免费视频| 啦啦啦中文免费视频观看日本| 一级毛片aaaaaa免费看小| 91av网一区二区| 成年人午夜在线观看视频 | 国产精品无大码| 高清欧美精品videossex| 国产午夜精品论理片| 97超视频在线观看视频| 成年免费大片在线观看| 白带黄色成豆腐渣| 舔av片在线| 天堂影院成人在线观看| 亚洲真实伦在线观看| 一本久久精品| 免费无遮挡裸体视频| 成人无遮挡网站| 永久网站在线| 少妇熟女欧美另类| 精品人妻视频免费看| 国产精品蜜桃在线观看| 免费播放大片免费观看视频在线观看| 丝袜喷水一区| 丰满乱子伦码专区| 亚洲无线观看免费| 久久6这里有精品| 欧美最新免费一区二区三区| 中文乱码字字幕精品一区二区三区 | 一区二区三区乱码不卡18| 国产免费福利视频在线观看| 免费在线观看成人毛片| 哪个播放器可以免费观看大片| 99热这里只有精品一区| 色吧在线观看| 欧美变态另类bdsm刘玥| 国产综合精华液| 国产精品.久久久| 亚洲va在线va天堂va国产| 永久免费av网站大全| 免费黄色在线免费观看| 亚洲国产精品sss在线观看| 亚洲精品乱码久久久v下载方式| 日韩欧美三级三区| 成人欧美大片| 校园人妻丝袜中文字幕| av天堂中文字幕网| 日韩亚洲欧美综合| 在线观看av片永久免费下载| 99久国产av精品| 久久久久久久久大av| 国产日韩欧美在线精品| 国产亚洲最大av| 看免费成人av毛片| 欧美成人a在线观看| 亚洲欧美精品自产自拍| 非洲黑人性xxxx精品又粗又长| 日本色播在线视频| 别揉我奶头 嗯啊视频| 中文精品一卡2卡3卡4更新| 欧美变态另类bdsm刘玥| 校园人妻丝袜中文字幕| 亚洲成人av在线免费| 久久久精品94久久精品| 国产亚洲精品av在线| 女人十人毛片免费观看3o分钟| 插逼视频在线观看| 午夜激情福利司机影院| 免费播放大片免费观看视频在线观看| 午夜精品一区二区三区免费看| 久久久精品欧美日韩精品| 黄色一级大片看看| 亚洲精品日本国产第一区| 人人妻人人澡欧美一区二区| 亚洲国产精品国产精品| 夫妻午夜视频| 国产成人精品福利久久| 五月天丁香电影| 日日啪夜夜撸| 亚洲精品一区蜜桃| 国国产精品蜜臀av免费| 国内精品一区二区在线观看| 日本欧美国产在线视频| 亚洲精品,欧美精品| 久久草成人影院| 亚洲综合色惰| 免费看不卡的av| 在线观看免费高清a一片| 国产精品一区二区性色av| 美女高潮的动态| 亚洲综合色惰| 国产精品人妻久久久久久| 色播亚洲综合网| 午夜福利网站1000一区二区三区| 国产精品伦人一区二区| 爱豆传媒免费全集在线观看| 欧美日本视频| 美女内射精品一级片tv| 日韩av在线免费看完整版不卡| 午夜精品国产一区二区电影 | 青青草视频在线视频观看| 色网站视频免费| 国产精品一区www在线观看| 亚洲精品成人久久久久久| 亚洲av成人精品一区久久| 一级二级三级毛片免费看| 大陆偷拍与自拍| 少妇人妻精品综合一区二区| 草草在线视频免费看| 亚洲丝袜综合中文字幕| 一二三四中文在线观看免费高清| 边亲边吃奶的免费视频| 亚洲av电影不卡..在线观看| 日韩av免费高清视频| 久久久久国产网址| 国产精品久久久久久精品电影小说 | 不卡视频在线观看欧美| 大香蕉97超碰在线| 亚洲熟女精品中文字幕| 男女那种视频在线观看| 视频中文字幕在线观看| 成年女人看的毛片在线观看| 免费看av在线观看网站| 亚洲18禁久久av| 亚洲在久久综合| 一本一本综合久久| 国产真实伦视频高清在线观看| 国产 一区 欧美 日韩| 99九九线精品视频在线观看视频| 高清午夜精品一区二区三区| 麻豆乱淫一区二区| 国产成人91sexporn| 午夜视频国产福利| 18禁在线无遮挡免费观看视频| 亚洲激情五月婷婷啪啪| 尤物成人国产欧美一区二区三区| 青春草亚洲视频在线观看| 国产av码专区亚洲av| 国产精品一二三区在线看| 我的女老师完整版在线观看| 久久久久免费精品人妻一区二区| 国产在视频线精品| 国产一区二区三区av在线| 国产成人精品一,二区| 校园人妻丝袜中文字幕| 我的老师免费观看完整版| 亚洲国产成人一精品久久久| 男女边吃奶边做爰视频| 亚洲成色77777| 非洲黑人性xxxx精品又粗又长| 亚洲综合色惰| 欧美+日韩+精品| 在现免费观看毛片| 日韩伦理黄色片| 亚洲av中文字字幕乱码综合| 国产精品久久视频播放| 只有这里有精品99| 亚洲在线自拍视频| 久久99热这里只频精品6学生| 国产免费一级a男人的天堂| 一边亲一边摸免费视频| 免费无遮挡裸体视频| 亚洲精品第二区| 免费电影在线观看免费观看| 一个人看视频在线观看www免费| 国产片特级美女逼逼视频| 国内揄拍国产精品人妻在线| 国产精品人妻久久久久久| 一本久久精品| 亚洲精品日韩av片在线观看| 亚洲丝袜综合中文字幕| 美女内射精品一级片tv| 日本与韩国留学比较| 国产日韩欧美在线精品| 69av精品久久久久久| 亚洲精品自拍成人| 免费黄频网站在线观看国产| 91在线精品国自产拍蜜月| 国产永久视频网站| 国产在视频线在精品| 一个人免费在线观看电影| 一区二区三区高清视频在线| 国产在线一区二区三区精| 欧美一区二区亚洲| 两个人的视频大全免费| 直男gayav资源| 一级毛片久久久久久久久女| 纵有疾风起免费观看全集完整版 | 久久国产乱子免费精品| 日韩一区二区视频免费看| 18禁在线无遮挡免费观看视频| 国产三级在线视频| 联通29元200g的流量卡| 午夜福利在线观看吧| 日韩欧美精品v在线| 免费人成在线观看视频色| 国产精品久久视频播放| 日韩欧美精品v在线| 国产伦精品一区二区三区四那| 国语对白做爰xxxⅹ性视频网站| 97人妻精品一区二区三区麻豆| 亚洲av中文字字幕乱码综合| 亚洲精品国产av成人精品| av免费观看日本| 国产成人午夜福利电影在线观看| 2021少妇久久久久久久久久久| 精华霜和精华液先用哪个| 午夜免费男女啪啪视频观看| 亚洲欧美清纯卡通| 最新中文字幕久久久久| 亚洲欧美成人精品一区二区| 久久午夜福利片| 亚洲精品自拍成人|