• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A direct position determination method with combined TDOA and FDOA based on particlefilter

    2018-02-02 08:10:21ZhiyuLUBinBAJinhuiWANGWenchoLIDmingWANG
    CHINESE JOURNAL OF AERONAUTICS 2018年1期

    Zhiyu LU,Bin BA,Jinhui WANG,Wencho LI,Dming WANG

    aChina National Digital Switching System Engineering&Technological R&D Cente,Zhengzhou 450000,China

    bJiuquan Satellite Launch Center,Jiuquan 735000,China

    1.Introduction

    Target localization is widely used in civil and militaryfields.Localization algorithms have been developed rapidly,among which the traditional two-step algorithm is the most signifi-cant.Under the two-step framework,the signal measurements,such as the Time of Arrival(TOA),1Angle of Arrival(AOA),2,3Time Difference of Arrival(TDOA),4and Frequency Difference of Arrival(FDOA),5should be extractedfirst from the received source signal.Then the target position is estimated by calculating the location equation.Vast literatures have shown that the two-step method has better performance at high Signal-to Noise Ratio(SNR).6,7However,it ignores the intrinsic link between the positioning parameters of the receivers.The signal parameters acquired in thefirst step are not in accordance with the source position found in the second step,leading to the loss of the location information.Furthermore,it is inevitable to involve processing errors in the step by step calculation.Therefore,the two-step method is suboptimal,failing to get the best positioning performance.8Compared with the traditional two-step approach,the DPD algorithm proposed in recent years does not need to estimate the signal parameters or calculate the position step by step,but acquires the source position from the received signals directly based on the maximum likelihood criterion.Because of its better performance,it has become a hot research topic.9–15

    Ref.9gives a systematic analysis of the DPD algorithm,and proposes a target approach for single narrowband signal emitter,which proves that the DPD algorithm outperforms the two-step method especially at low SNR.In order to further explore the advantages of DPD algorithm,Refs.10–15give a variety of improved algorithms with the integration of TOA,AOA,etc.,but these algorithms are mainly based onfixed receivers to estimate a narrowband signal emitter.With the increase of signal bandwidth and the wide use of moving receivers,such as aircraft-based,ship-based and vehicle-based platforms,it is urgent to research the DPD algorithms for wideband signal emitters in the moving receiver system.

    In this paper,we focus on the location of wideband signal emitters based on moving observation platforms.To this end,the common method partitions the received signal into multiple short-time signal segments,in which the narrowband localization algorithm can still play a role to obtain the position by the joint use of all the signal segments.A DPD algorithm based on Doppler shift received by moving platforms is proposed for narrowband emitters in Ref.16,which is more precise compared with the two-step algorithms.On the basis of Refs.16,17gives a DPD algorithm which is combined with TOA and Doppler shift based on non-coherent summation of short-time signal segments.To further improve the positioning performance,Ref.18proposes an improved DPD algorithm exploiting the coherent summation of multiple short-time signal segments,while solves the problem of phase synchronization error between the receivers and the target to make the algorithm more practical.

    In the passive location system,the synchronization is not accurate between the receivers and the target,so the DPD algorithm using delay and Doppler is difficult to get better performance.To solve this problem,Ref.19presents an adaptive DPD algorithm based on TDOA with least mean square(LMS)filtering,achieving good positioning accuracy.Combined with the Doppler information obtained by the moving receiver,a distributed DPD algorithm based on TDOA and FDOA is proposed in Ref.20.But the correlation between the short-time signal segments is not taken into account,so there is still room for the positioning accuracy improvement.Besides,it is very difficult to obtain the analytical solution because of the high nonlinearity of the above DPD algorithms.So in order to obtain the maximum likelihood estimation,the ergodic search method is used,which makes the positioning accuracy reach the CRLB with huge computation load and communication bandwidth.To overcome these problems,novel information technology can be used.For example,the intelligent algorithm21and the cloud computing and storage technology22,23can be used to reduce the computation loads,and the compressive sensing technology24and automatic network management technology25are helpful for reducing the communication bandwidth.Filteriterative algorithm is another method for parameter estimation,such as Extended Kalman Filter(EKF),26Unscented Kalman Filter(UKF)27and Particle Filter(PF),28which has good performance.Especially,the PF algorithm can solve the strong non-linear and non-Gaussian estimation problem,which has been proven in a variety of applications.

    In summary,there are still some deficiencies in the existing DPD algorithms when the positioning of wideband signal emitters is executed based on TDOA and FDOA.How to make use of more location information contained in the signal segments to improve positioning accuracy,while avoiding the problem of large computation cost,has tremendous challenge and research merit.To accomplish this target,this paper proposes a DPD algorithm with combined TDOA and FDOA based on particlefilter,using coherent summation of the short-time signal segments to improve positioning accuracy(labeled as PFC-TF DPD).Compared with the existing literatures,the contributions of this paper lie in:

    (1)The algorithm proposed in this paper makes full use of the location information contained in the coherency among the signal segments to improve positioning accuracy.The CRLB of the source position is derived,which shows that the positioning accuracy is better compared with the existing algorithms.

    (2)One iterative maximum likelihood estimation method based on particlefilter is designed to solve the problem of high computation load,which improves the estimated efficiency.

    (3)The influence of different parameters on the positioning performance is analyzed in the simulation part.It is shown that the positioning accuracy of the proposed DPD algorithm is proportional to interception interval of two adjacent signal segments and the number of short-time signals.The above results can be used to provide a reference of the optimal parameter configuration for different application environments.

    The rest of the paper is organized as follows.The following section gives the direct positioning model.We derive Maximum Likelihood(ML)estimators based on particlefilter for our DPD algorithm in Section 3 and develop the source position CRLB in Section 4.Section 5 provides the simulation and the result analyses.Finally,Section 6 concludes the paper.

    2.Positioning modeling and problem formulation

    A stationary source located at o= [ox,oy]is considered.Lis the number of moving receivers which have been synchronized.The number of short-time signal segments isK,while the interception interval of two adjacent signal segments isT0.The receivers get the signal segment at timetk,k=1,2,...,Kwhen they are located at ul,kwith velocities˙ul,k,l=1,2,...,L.The DPD scenario is shown in Fig.1.

    We suppose that the source signal is

    wherefcis the carrier frequency ands(t)is the signal envelope.The signal received with thelth receiver in thekth period is

    Taking the signal of thefirst receiver as reference,we let

    Fig.1 DPD scenario.

    and then represent Eq.(2)as

    where Δτl1,kand Δvl1,kare TDOA and FDOA respectively as shown in Eqs.(5)and(6),andwl,k(t)is the statistically independent complex Gaussian noises whose probability density function isC(0,σl,k).

    The received source signal would be sampled as

    wherec=3×108m/s is the speed of light.Tsis the sampling interval,Nkis the number of samples taken in each signal segment,ntk=tk/Tsis the starting time of thekth segment,Δnl1,k= Δτl1,k/Tsis the discrete representation of TDOA,ejΔvl1,k(ntk+nk)Tsis the coherency item among the signal segments received in the same receiver andcis the light speed.In the PFC-TF DPD algorithm discussed in the following parts,we will use the position information inherent in ejΔvl1,kntkTsto improve location accuracy.

    The signals received from all receivers are combined to be fully utilized.Let

    and then gk[nk- Δnl1,k]can be expressed as

    where 1Nkis aNk×1 vector with all the elements equal to 1.With combined Eqs.(8)–(10),the received signal can be expressed as

    With the above notations,the combination of all received signals is

    whereE[wwH]= Γ =diag{Γ1,Γ2,...,Γk,...,ΓK} and Γk=E[wkwHk].Next we will analyze the PFC-TF DPD algorithm in detail based on this signal model.

    3.PFC-TF DPD algorithm

    Under the positioning model given in Section 2,the PFC-TF DPD algorithm is derived step by step in the following to prove its feasibility.From Eq.(15),the received signal r is a complex Gaussian random vector with mean Hg and covariance Γ.So the Probability Density Function(PDF)can be given by

    The Maximum Likelihood Estimator(MLE)of the target can be obtained by Ref.18

    It is difficult to obtain the MLE of the target position because of the strong non-linearity in Eq.(17).So the ergodic search method is commonly used in many DPD algorithms,which are poor practical with huge computation load.The particlefilter algorithm has better performance when it is used to solve the strong non-linear estimation.The result can be obtained quickly through iteration procedure,which has been proved in a large number of applications.

    The MLE of gkis given by

    Therefore,in terms of the Bayesianfiltering problem,drawing the particles according to Eq.(21)moves the weights from timej-1 toj,i.e.,performs the prediction stage and Eq.(28)performs the update stage.

    In order to update the particle more stably,we set a strategy that retains the largest weight particle of the previous generation to the next generation.That is

    According to the above analysis,the computation load is mainly concentrated in Eq.(27),whose total computation cost is

    The DPD algorithm based on ergodic search dividesNgrids in the target region,so the total computation cost is approximate toNDC.

    The convergence accuracy of the proposed algorithm is related to the signal length,SNR,and the number of receivers.The convergence rate is related to the initial value and the number of particles.Thus,it is difficult to give a theoretical suggestion on the number of iterations when so many parameters are dealt with.In this paper,in order to simplify the calculation,afixed iteration number and particle number are set without affecting thefinal location results according to many experiments,so the total computation cost of the PFC-TF DPD algorithm is approximate toMJDC.Thus,the ratio of computation load is

    The simulation part will prove thatMJwill be far less thanN,but the location accuracy is almost not decreased.In order to show the algorithm architecture more clearly based on the principle derived in this section,a possible implementation of the PFC-TF DPD algorithm is in Table 1.

    4.Cramer-Rao lower bound

    In this section,we are interested in the CRLB for estimation of the source position to further analyze the positioning performance of the PFC-TF DPD algorithm proposed in this paper.We define that the vector η is composed of the real-part of g,the imaginary-part of g,and the target parameters o.That is

    Table 1 Implementation of PFC-TF DPD algorithm.

    The receive signal is

    According to Ref.18,the Fisher Information Matrix(FIM)of η is given by

    Combining Eqs.(35)–(43),we can express Jηas

    According to the partitioned matrix inversion formula,the FIM of o can be expressed as

    CRLB can be obtained by the inverse of the Fisher Information Matrix matrix,so CRLBois

    5.Simulations

    In order to test the performance of the PFC-TF DPD algorithm,computer simulations are conducted in this section.Compared with the DPD algorithm based on Doppler shift(labeled with NC-F DPD)and the DPD algorithm with combined TDOA and FDOA based on non-coherent summation of short-time signal segments(labeled with NC-TF DPD),the positioning accuracy and CRLB will be analyzed.It is assumed that the target is located at o= [0,0]in a 2-D plane.The number of receivers isL=4.The number of short-time signal segments isK=10.All parameters of the receivers are shown in Table 2.

    We adopt the Gaussian random signal with zero mean and unit variance as the source signal.The simulated nominal signal carrier frequency isfc=300 MHz.The sampling interval isTs=2×10-5s.The interception interval of two adjacent signal segments isT0=0.01 s.The duration of every shorttime signal isT=1 ms.The number of samples isNk=50.The interesting region is [-1000,1000]m.

    To compare the location performance of different algorithms,in thefirst experiment,the cost functions of the candidate source positions with 1 m interval are evaluated at SNR=20 dB.The results are shown in Fig.2.In order to show the result clearly,the 3D plots and their top views are given,in whichxaxis andyaxis are the position coordinates,and z axis is the cost function value normalized by the maximum.It can be seen from Fig.2(a)and(b)that,although the SNR is very high,the NC-F DPD algorithm exhibits a curvature of large radius around the real source location.It is difficult to obtain accuracy estimation.Once the SNR is decreased,the location performance will decline rapidly.Fig.2(c)and(d)show that there is a curvature of smallradius around the true source position,which improves the estimation accuracy compared with NC-F DPD algorithm.Fig.2(e)and(f)demonstrate the effectiveness of the PFC-TF DPD algorithm with the sharper peak around the true source position,which will bring higherlocation accuracy.The simulation results are consistent with the theoretical derivation,showing that the use of the location information contained in the coherency among the signal segments is significative,which is expected.

    Table 2 Parameters of receivers.

    Fig.2 Evaluation of cost functions of source location estimators for each algorithm.

    Fig.3 Convergence of particles.

    In order to verify the computational performance of the PFC-TF algorithm,in the second experiment,with the iteration increasing,the convergence of particles and thefiltering error are shown in Figs.3 and 4 respectively under the conditions of SNR=20 dB andT0=0.01 s.The number of particles isM=50 and the number of iteration isJ=50.As can be seen from Fig.3,with the iteration increasing,the particlesflow toward the target position and eventually converge to the real position.Fig.4 shows that thefiltering error is shaking more seriously at the beginning,but after a short adjustment,the error is tiny and tends to be stable,which proves the good performance in the convergent speed.According to the simulation conditions,the ratio in Eq.(32)is λ =2.5×10-3,that is,the computation load of PFC-TF algorithm decreases by nearly 3 orders of magnitude compared with that of the DPD algorithms based on ergodic search,indicating a signifi-cant increase in computing efficiency.

    In order to further illustrate the performance of PFC-TF DPD algorithm,in the third experiment,we shall contrast the localization performance of each algorithm with their CRLBs.The CRLB and RMSE of each algorithm,as a function of SNR,are achieved across 50 Monte-Carlo simulation experiments,and shown in Fig.5.It can be seen that,with the increase of SNR,the performance of each algorithm is improved,but the PFC-TF DPD algorithm is significantly better than the NC-TF DPD algorithm and NC-F DPD algorithm,which proves that the location information contained in the coherency can effectively improve positioning accuracy.The performance of PFC-TF DPD algorithm remains close to the CRLB,especially at high SNRs it coincides with the CRLB.Combined with the results of Fig.6,we can get that our algorithm is more computationally efficient and more precise for weak signals than the conventional approach,which demonstrates the utility and practicability of the method.

    The performance development of each algorithm with the increase ofK,the number of short-time signals,is given in Fig.7 under the conditions of SNR=10 dB andT0=0.01 s.It can be seen that all algorithms have a performance improvement with the increase ofK.But compared with the NC-TF DPD algorithm and NC-F DPD algorithm,the performance of PFC-TF DPD algorithm is improved significantly.In addition,the PFC-TF DPD algorithm has better performance whenKis small,which means that the positioning efficiency is improved.

    In the last experiment,we examine the performance of each algorithm versusT0,the interception interval of two adjacent signal segments,under the conditions of SNR=10 dB andK=10.The results are shown in Fig.6.It can be seen that the performance of NC-F DPD algorithm and NC-TF DPD algorithm are not changed for better because of their independence of the variableT0,while the performance of PFC-TF DPD algorithm is improved asT0increases.In addition,the localization accuracy of the PFC-TF DPD algorithm is always close to its CRLB,resulting in excellent performance.But whenT0<0.001 s,due to the fact that the time interval is too short,there is no extra location information contained in the coherency,so the PFC-TF algorithm has the same performance as NC-TF algorithm.

    Fig.4 Filtering error with iteration increasing.

    Fig.5 Estimation accuracy of each algorithm as a function of SNR.

    Fig.6 Estimation accuracy of each algorithm as a function of T0.

    Fig.7 Estimation accuracy of each algorithm as a function of K.

    As can be seen from the above simulation results,the PFCTF DPD algorithm proposed in this paper has excellent performance.Compared with the NC-TF DPD algorithm,it uses the correlation information among the signal segments,which solves the problem of huge computation load.Under the same conditions,the proposed algorithm obtains better estimations with less number of short-time signals,which makes the algorithm more practical.

    6.Conclusions

    (1)We conducted a comprehensive study on the DPD algorithm.The PFC-TF DPD algorithm is proposed,which acquires extra target position information through the correlation information among the signal segments to get better positioning performance.The CRLB of the source position is derived,which shows that the positioning accuracy is better compared with the existing algorithms.

    (2)One iterative maximum likelihood estimation method based on particlefilter is designed to solve the problem of high computation load.Simulation results show that the proposed method can get better location performance than other DPD algorithms under low SNR,making it full of practical value.

    (3)The algorithm can be used in many multi-sensor cooperative location scenarios,such as double-star position system,Unmanned Aerial Vehicle(UAV)-based formation system and ship-based formation system,tofinish the job of target reconnaissance,search,rescue,and so on.

    Acknowledgement

    This study was supported by the National Natural Science Foundation of China(No.61401513).

    1.Oh D,Kim S,Yoon SH.Two-dimensional ESPRIT-like shiftinvariant TOA estimation algorithm using multi-band chirp signals robust to carrier frequency offset.IEEE Trans Wireless Commun2013;12(7):3130–9.

    2.Yan F,Jin M,Qiao X.Low-complexity DOA estimation based on compressed MUSIC and its performance analysis.IEEE Trans Signal Process2013;61(8):1915–30.

    3.Ba B,Liu GC,Li T,Lin YC,Wang Y.Joint for time of arrival and direction of arrival estimation algorithm based on the subspace of extended hadamard product.Acta Phys Sin2015;64(7):384–92[Chinese].

    4.Lu ZY,Wang DM,Wang JH,Wang Y.A tracking algorithm based on orthogonal cubature Kalmanfilter with TDOA and FDOA.Acta Phys Sin2015;64(15):25–32[Chinese].

    5.Wang G,Li YM,Ansari N.A semidefinite relaxation method for source localization using TDOA and FDOA measurements.IEEE Trans Veh Technol2013;62(2):853–5.

    6.Ho KC,Chan YT.Geolocation of a known altitude object from TDOA and FDOA measurements.IEEE Trans Aerosp Electron Syst1997;33(3):770–83.

    7.Chan YT,Ho KC.Joint time-scale and TDOA estimation:analysis and fast approximation.IEEE Trans Signal Process2005;53(8):2625–34.

    8.Bosse J,Ferre′ol A,Larzabal P.Performance analysis of passive localization strategies:direct one step approach versus 2 steps approach.IEEE Statistical signal processing(SSP)workshop;2011.p.701–4.

    9.Weiss AJ.Direct position determination of narrowband radio frequency transmitters.IEEESignalProcessLett2004;11(5):513–7.

    10.Weiss AJ,Amar A.Direct position determination of multiple radio signals.EURASIP J Adv Signal Process2005;1:37–49.

    11.Amar A,Weiss AJ.Direct position determination in the presence of model errors-known waveforms.Digital Signal Process2006;16(1):52–83.

    12.Shalom OB,Weiss AJ.Direct positioning of stationary targets using MIMO radar.Signal Process2011;91(10):2345–58.

    13.Reuven AM,Weiss AJ.Direct position determination of cyclostationary signals.Signal Process2009;89(12):2448–64.

    14.Naresh V,Steven K,Quan D.TDOA based direct positioning maximum likelihood estimator and the Cramer-Rao Bound.IEEE Trans Aerosp Electron Syst2014;50(3):1616–46.

    15.Tom T,Weiss AJ.High resolution direct position determination of radio frequency sources.IEEE Signal Process Lett2016;23(2):192–7.

    16.Amar A,Weiss AJ.Localization of narrowband radio emitters based on Doppler frequency shifts.IEEE Trans Signal Process2008;56(11):5500–8.

    17.Weiss AJ.Direct geolocation of wideband emitters based on delay and Doppler.IEEE Trans Signal Process2011;59(6):2513–21.

    18.Li JZ,Yang L,Guo FC.Coherent summation of multiple shorttime signals for direct positioning of a wideband source based on delay and Doppler.Digital Signal Process2015;48:58–70.

    19.Zhong S,Xia W,He Z.Adaptive direct position determination of emitters based on time differences of arrival.IEEE China summit&international conference on signal and information processing;2013 July 6–10;Beijing,China.Piscataway:IEEE Press;2013.p.230–4.

    20.Pourhomayoun M,Fowler M.Distributed computation for direct position determination emitter location.IEEE Trans Aerosp Electron Syst2014;50(4):2878–89.

    21.Xue Y,Jiang J,Zhao B,Ma T.A self-adaptive artificial bee colony algorithm based on global best for global optimization.Soft Comput2017;8:1–18.

    22.Shen J,Shen J,Chen XF,Huang XY,Susilo W.An efficient public auditing protocol with novel dynamic structure for cloud data.IEEE Trans Inf Foren Secur2016;12(10):2402–15.

    23.Fu ZJ,Ren K,Shu J,Sun XM,Huang FX.Enabling personalized search over encrypted outsourced data with efficiency improvement.IEEE Trans Parallel Distrib Syst2016;27(9):2546–59.

    24.Sun YJ,Gu FH.Compressive sensing of piezoelectric sensor response signal for phased array structural health monitoring.Int J Sensor Networks2017;23(4):258–64.

    25.Qu ZG,Keeney J,Robitzsch S,Zaman F,Wang XJ.Multilevel pattern mining architecture for automatic network monitoring in heterogeneous wireless communication networks.China Commun2016;13(7):108–16.

    26.Luo L,Tian ZS,Chen JY.Algorithm of EKF positioning and tracking.J Chongqing Univ Posts Telecommun(Nat Sci Ed)2009;21(1):50–5[Chinese].

    27.Liu Y,Wang H,Hou CH.UKF based nonlinearfiltering using minimum entropy criterion.IEEE Trans Signal Process2013;61(20):4988–99.

    28.Gustafsson F.Particlefilter theory and practice with positioning applications.IEEE Aerosp Electron Syst Mag2010;25(7):53–82.

    女性被躁到高潮视频| 美国免费a级毛片| 亚洲激情五月婷婷啪啪| 午夜福利免费观看在线| www.999成人在线观看| 欧美精品高潮呻吟av久久| 婷婷成人精品国产| 一级黄色大片毛片| 亚洲自偷自拍图片 自拍| 亚洲欧洲精品一区二区精品久久久| 欧美精品人与动牲交sv欧美| 成年动漫av网址| 每晚都被弄得嗷嗷叫到高潮| 国产精品国产三级国产专区5o| 水蜜桃什么品种好| 99久久99久久久精品蜜桃| 久久 成人 亚洲| 正在播放国产对白刺激| 夜夜夜夜夜久久久久| 国产国语露脸激情在线看| 操出白浆在线播放| 又大又爽又粗| 国产有黄有色有爽视频| 日本黄色日本黄色录像| 国产精品久久久av美女十八| www.自偷自拍.com| 成年人午夜在线观看视频| 精品国产国语对白av| 一区二区三区四区激情视频| 色视频在线一区二区三区| 国产极品粉嫩免费观看在线| 男人操女人黄网站| 黄片大片在线免费观看| 中亚洲国语对白在线视频| 美女脱内裤让男人舔精品视频| 91成年电影在线观看| 视频区欧美日本亚洲| 91精品三级在线观看| 亚洲成av片中文字幕在线观看| 脱女人内裤的视频| 十分钟在线观看高清视频www| 精品一区二区三区四区五区乱码| bbb黄色大片| 欧美人与性动交α欧美精品济南到| 亚洲av国产av综合av卡| 成人免费观看视频高清| 91麻豆精品激情在线观看国产 | 久久人人爽av亚洲精品天堂| 久久久久久久精品精品| 久久久久久久久免费视频了| 久久热在线av| 久久国产精品人妻蜜桃| 啦啦啦在线免费观看视频4| 中文字幕精品免费在线观看视频| 亚洲色图综合在线观看| 久久久久久久精品精品| 少妇猛男粗大的猛烈进出视频| 人妻久久中文字幕网| 国产亚洲欧美精品永久| 久久这里只有精品19| 女人精品久久久久毛片| 爱豆传媒免费全集在线观看| 国产色视频综合| 高清黄色对白视频在线免费看| 国产伦人伦偷精品视频| 天堂中文最新版在线下载| 69av精品久久久久久 | 午夜福利乱码中文字幕| h视频一区二区三区| 成年动漫av网址| 久久久欧美国产精品| 国产精品自产拍在线观看55亚洲 | 99热网站在线观看| 日本撒尿小便嘘嘘汇集6| 99热国产这里只有精品6| 国产成人精品无人区| 久久久久久久久久久久大奶| 大型av网站在线播放| 美女大奶头黄色视频| 汤姆久久久久久久影院中文字幕| 亚洲精品自拍成人| 中国美女看黄片| 亚洲一码二码三码区别大吗| 99国产精品一区二区蜜桃av | 亚洲熟女毛片儿| 国产欧美日韩一区二区三区在线| 久久久久久久大尺度免费视频| 少妇粗大呻吟视频| 999久久久国产精品视频| 好男人电影高清在线观看| 国产深夜福利视频在线观看| 999久久久精品免费观看国产| 秋霞在线观看毛片| 热re99久久精品国产66热6| 黄色 视频免费看| 黑人巨大精品欧美一区二区蜜桃| 亚洲成人免费av在线播放| 国产在线一区二区三区精| 欧美精品高潮呻吟av久久| 另类精品久久| 三上悠亚av全集在线观看| 精品亚洲成国产av| 欧美精品高潮呻吟av久久| 波多野结衣av一区二区av| 日韩视频在线欧美| 国产av一区二区精品久久| 热99久久久久精品小说推荐| 日本精品一区二区三区蜜桃| www.999成人在线观看| 一个人免费在线观看的高清视频 | 国产一区二区在线观看av| 两人在一起打扑克的视频| 最新在线观看一区二区三区| 大码成人一级视频| 亚洲第一欧美日韩一区二区三区 | 少妇裸体淫交视频免费看高清 | 国产一区二区 视频在线| 青青草视频在线视频观看| 亚洲第一欧美日韩一区二区三区 | 一级,二级,三级黄色视频| 波多野结衣一区麻豆| 久久精品亚洲av国产电影网| 亚洲色图 男人天堂 中文字幕| 日韩人妻精品一区2区三区| 亚洲人成电影免费在线| 国产欧美日韩一区二区精品| 亚洲精品国产色婷婷电影| 中国国产av一级| 日日摸夜夜添夜夜添小说| 我的亚洲天堂| 精品国内亚洲2022精品成人 | 日韩欧美一区二区三区在线观看 | 国产区一区二久久| 亚洲天堂av无毛| 久久精品久久久久久噜噜老黄| 桃花免费在线播放| 成人国产av品久久久| 国产色视频综合| 欧美人与性动交α欧美精品济南到| 国产成人精品久久二区二区91| 久久性视频一级片| 99热国产这里只有精品6| 可以免费在线观看a视频的电影网站| 亚洲欧美日韩高清在线视频 | 99国产精品一区二区三区| 建设人人有责人人尽责人人享有的| 午夜视频精品福利| 91成人精品电影| 天天影视国产精品| 久久亚洲国产成人精品v| 国产一区二区激情短视频 | 女人爽到高潮嗷嗷叫在线视频| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲成av片中文字幕在线观看| 精品久久久久久久毛片微露脸 | 成年女人毛片免费观看观看9 | 一边摸一边抽搐一进一出视频| 欧美成人午夜精品| 动漫黄色视频在线观看| www.自偷自拍.com| 久久精品aⅴ一区二区三区四区| 日本精品一区二区三区蜜桃| 国产有黄有色有爽视频| 这个男人来自地球电影免费观看| 操美女的视频在线观看| 国产高清国产精品国产三级| 精品少妇久久久久久888优播| 国产免费一区二区三区四区乱码| 欧美人与性动交α欧美软件| 国产精品国产三级国产专区5o| 丁香六月天网| 久久精品aⅴ一区二区三区四区| av有码第一页| 亚洲七黄色美女视频| 18禁黄网站禁片午夜丰满| 91麻豆av在线| 国产成人av激情在线播放| 丰满少妇做爰视频| 热99国产精品久久久久久7| 91字幕亚洲| 深夜精品福利| 老汉色av国产亚洲站长工具| 国产在线免费精品| 欧美精品人与动牲交sv欧美| 精品熟女少妇八av免费久了| 色综合欧美亚洲国产小说| 精品国产一区二区久久| 婷婷丁香在线五月| 狠狠精品人妻久久久久久综合| 亚洲avbb在线观看| 精品一区二区三区av网在线观看 | 精品国产乱码久久久久久男人| 一级片免费观看大全| 在线观看免费午夜福利视频| 精品一区在线观看国产| 国产成人精品久久二区二区免费| 国产亚洲一区二区精品| 丝袜喷水一区| 欧美黄色片欧美黄色片| 天天操日日干夜夜撸| 大香蕉久久成人网| 欧美一级毛片孕妇| 中文字幕高清在线视频| 国产亚洲一区二区精品| 久久精品国产亚洲av香蕉五月 | 午夜福利视频精品| 欧美日韩av久久| 国产野战对白在线观看| 亚洲男人天堂网一区| 男女下面插进去视频免费观看| 精品熟女少妇八av免费久了| 国产精品 欧美亚洲| 亚洲专区字幕在线| 男人舔女人的私密视频| 亚洲国产看品久久| 男女床上黄色一级片免费看| 高清黄色对白视频在线免费看| 一进一出抽搐动态| 正在播放国产对白刺激| 我要看黄色一级片免费的| 激情视频va一区二区三区| 日韩视频在线欧美| av有码第一页| 亚洲人成电影免费在线| 人人澡人人妻人| 欧美成人午夜精品| 欧美午夜高清在线| 肉色欧美久久久久久久蜜桃| 99香蕉大伊视频| 制服人妻中文乱码| 九色亚洲精品在线播放| 久久亚洲精品不卡| 国产精品av久久久久免费| 中文字幕人妻熟女乱码| 99国产精品99久久久久| 一区二区三区激情视频| 热99久久久久精品小说推荐| 久久免费观看电影| 2018国产大陆天天弄谢| av电影中文网址| 18禁观看日本| 18禁国产床啪视频网站| 肉色欧美久久久久久久蜜桃| 少妇人妻久久综合中文| 欧美精品啪啪一区二区三区 | 国产欧美日韩精品亚洲av| 久久亚洲国产成人精品v| 欧美日本中文国产一区发布| 新久久久久国产一级毛片| 妹子高潮喷水视频| 精品人妻在线不人妻| 久久国产精品大桥未久av| 美女高潮到喷水免费观看| 成人亚洲精品一区在线观看| 视频区欧美日本亚洲| 美女脱内裤让男人舔精品视频| 久久精品国产亚洲av高清一级| 欧美变态另类bdsm刘玥| 亚洲欧美色中文字幕在线| 精品视频人人做人人爽| 午夜福利乱码中文字幕| 久热这里只有精品99| 人妻一区二区av| 亚洲男人天堂网一区| 国产精品.久久久| 91精品三级在线观看| av欧美777| 国产免费av片在线观看野外av| 久久天堂一区二区三区四区| 亚洲av美国av| 国产又色又爽无遮挡免| 80岁老熟妇乱子伦牲交| 久久精品aⅴ一区二区三区四区| 视频区欧美日本亚洲| 国内毛片毛片毛片毛片毛片| 亚洲国产精品一区二区三区在线| 国产成人精品无人区| 亚洲黑人精品在线| 99热网站在线观看| av又黄又爽大尺度在线免费看| 国产精品欧美亚洲77777| 91大片在线观看| 青青草视频在线视频观看| 国产精品久久久久成人av| 成人国产一区最新在线观看| 亚洲成人免费av在线播放| 国产真人三级小视频在线观看| 少妇被粗大的猛进出69影院| 日本91视频免费播放| 久久毛片免费看一区二区三区| 午夜福利一区二区在线看| 久久精品亚洲熟妇少妇任你| a级毛片黄视频| 人妻 亚洲 视频| 黄色视频不卡| 国产区一区二久久| 欧美亚洲日本最大视频资源| 青春草亚洲视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 免费不卡黄色视频| 久久久久久亚洲精品国产蜜桃av| 免费久久久久久久精品成人欧美视频| 一级片'在线观看视频| 18禁黄网站禁片午夜丰满| 啪啪无遮挡十八禁网站| 亚洲人成电影观看| 国产极品粉嫩免费观看在线| 午夜激情久久久久久久| 香蕉国产在线看| 亚洲美女黄色视频免费看| 色视频在线一区二区三区| 欧美精品啪啪一区二区三区 | 啦啦啦在线免费观看视频4| 精品少妇内射三级| 97精品久久久久久久久久精品| 国产成人系列免费观看| 成年动漫av网址| 久久精品成人免费网站| 男女免费视频国产| 国产精品 国内视频| 少妇被粗大的猛进出69影院| 亚洲精品自拍成人| videosex国产| 国产亚洲欧美在线一区二区| 国产色视频综合| 成人三级做爰电影| 久久 成人 亚洲| 在线看a的网站| 免费在线观看完整版高清| 91九色精品人成在线观看| 亚洲成人免费av在线播放| 国产福利在线免费观看视频| 极品少妇高潮喷水抽搐| 欧美日本中文国产一区发布| 国产黄色免费在线视频| av天堂久久9| 亚洲国产成人一精品久久久| 国产免费现黄频在线看| 精品久久久久久电影网| 亚洲综合色网址| 黄色视频在线播放观看不卡| 亚洲精品成人av观看孕妇| 国产欧美日韩一区二区三 | 少妇被粗大的猛进出69影院| av有码第一页| 一本色道久久久久久精品综合| 黑人猛操日本美女一级片| 欧美成人午夜精品| 大香蕉久久网| av片东京热男人的天堂| 国产在视频线精品| 国产精品麻豆人妻色哟哟久久| 久久久久国内视频| 高清在线国产一区| 欧美亚洲日本最大视频资源| 午夜福利在线免费观看网站| 亚洲国产av影院在线观看| 亚洲欧美精品综合一区二区三区| 欧美激情 高清一区二区三区| 精品久久久久久电影网| 国产老妇伦熟女老妇高清| 亚洲国产毛片av蜜桃av| 交换朋友夫妻互换小说| 91大片在线观看| 欧美日韩亚洲高清精品| 狠狠婷婷综合久久久久久88av| 久久久久精品国产欧美久久久 | 人人妻,人人澡人人爽秒播| 亚洲七黄色美女视频| 伦理电影免费视频| 乱人伦中国视频| 电影成人av| 亚洲 欧美一区二区三区| 老熟女久久久| 亚洲精品粉嫩美女一区| 久9热在线精品视频| 真人做人爱边吃奶动态| tube8黄色片| 欧美xxⅹ黑人| 久久热在线av| 精品人妻1区二区| 美女大奶头黄色视频| 成人影院久久| 亚洲全国av大片| 高清视频免费观看一区二区| 免费在线观看黄色视频的| 欧美精品亚洲一区二区| 十八禁网站网址无遮挡| 国产黄色免费在线视频| 少妇的丰满在线观看| 精品高清国产在线一区| 日韩一区二区三区影片| 波多野结衣av一区二区av| 欧美激情极品国产一区二区三区| 亚洲精华国产精华精| 国产麻豆69| 欧美人与性动交α欧美软件| 12—13女人毛片做爰片一| 91av网站免费观看| av福利片在线| 又黄又粗又硬又大视频| 亚洲专区字幕在线| 国产又色又爽无遮挡免| 人成视频在线观看免费观看| 男女国产视频网站| 色婷婷久久久亚洲欧美| videos熟女内射| 啦啦啦 在线观看视频| 成年人黄色毛片网站| 欧美久久黑人一区二区| www日本在线高清视频| 嫩草影视91久久| 精品一品国产午夜福利视频| 人人妻人人澡人人看| 中文字幕精品免费在线观看视频| 国产精品麻豆人妻色哟哟久久| 亚洲美女黄色视频免费看| 一级毛片电影观看| 亚洲精品中文字幕在线视频| 男女床上黄色一级片免费看| 免费人妻精品一区二区三区视频| 久久精品国产综合久久久| 日韩欧美国产一区二区入口| 国产伦理片在线播放av一区| 久久亚洲国产成人精品v| 亚洲精品久久久久久婷婷小说| 欧美97在线视频| 国产欧美日韩一区二区三区在线| 日韩欧美一区二区三区在线观看 | 老司机在亚洲福利影院| 久久精品国产a三级三级三级| 欧美在线一区亚洲| 日日爽夜夜爽网站| 蜜桃国产av成人99| 日韩人妻精品一区2区三区| 亚洲av片天天在线观看| 国产精品香港三级国产av潘金莲| 久久久久国内视频| 国产成人精品久久二区二区免费| 婷婷色av中文字幕| 国产亚洲精品久久久久5区| 欧美日韩亚洲国产一区二区在线观看 | a级片在线免费高清观看视频| 男女免费视频国产| √禁漫天堂资源中文www| 精品少妇内射三级| 欧美午夜高清在线| a级毛片在线看网站| 国产成人精品无人区| 9色porny在线观看| 精品亚洲成国产av| 欧美日韩亚洲综合一区二区三区_| 亚洲综合色网址| 久久国产亚洲av麻豆专区| 国精品久久久久久国模美| 18禁观看日本| 十八禁人妻一区二区| 免费在线观看视频国产中文字幕亚洲 | 免费少妇av软件| 亚洲第一青青草原| 黑丝袜美女国产一区| 国产片内射在线| 97精品久久久久久久久久精品| 啦啦啦中文免费视频观看日本| 亚洲午夜精品一区,二区,三区| 国产av一区二区精品久久| 亚洲av男天堂| 欧美性长视频在线观看| 成年人免费黄色播放视频| 精品国产一区二区久久| 精品少妇一区二区三区视频日本电影| 精品人妻一区二区三区麻豆| 大香蕉久久成人网| 欧美激情久久久久久爽电影 | 色老头精品视频在线观看| 日韩熟女老妇一区二区性免费视频| 三级毛片av免费| 啦啦啦视频在线资源免费观看| 男人爽女人下面视频在线观看| 亚洲中文av在线| 久久免费观看电影| 欧美中文综合在线视频| 侵犯人妻中文字幕一二三四区| 亚洲精品国产精品久久久不卡| 国产精品 国内视频| 午夜日韩欧美国产| 亚洲av成人不卡在线观看播放网 | 99精品久久久久人妻精品| 777久久人妻少妇嫩草av网站| 亚洲人成77777在线视频| 桃花免费在线播放| 妹子高潮喷水视频| 日本黄色日本黄色录像| 2018国产大陆天天弄谢| 国产精品1区2区在线观看. | 叶爱在线成人免费视频播放| 各种免费的搞黄视频| 夜夜骑夜夜射夜夜干| 精品视频人人做人人爽| 麻豆av在线久日| svipshipincom国产片| 日本欧美视频一区| 母亲3免费完整高清在线观看| 国产激情久久老熟女| 亚洲国产精品成人久久小说| 国产亚洲精品久久久久5区| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日韩精品网址| 一个人免费在线观看的高清视频 | 久久人妻熟女aⅴ| 国产成人免费观看mmmm| 在线观看舔阴道视频| 国产一区有黄有色的免费视频| 满18在线观看网站| 少妇人妻久久综合中文| 少妇猛男粗大的猛烈进出视频| 纯流量卡能插随身wifi吗| 日韩电影二区| 亚洲九九香蕉| 久久影院123| 777米奇影视久久| 亚洲欧美日韩另类电影网站| 欧美日韩黄片免| 美女中出高潮动态图| 天堂俺去俺来也www色官网| 99国产精品99久久久久| 日韩中文字幕欧美一区二区| 久久久久久久大尺度免费视频| www.999成人在线观看| 中文精品一卡2卡3卡4更新| 日韩电影二区| 精品久久蜜臀av无| 中文字幕精品免费在线观看视频| 女性生殖器流出的白浆| 18禁裸乳无遮挡动漫免费视频| 精品卡一卡二卡四卡免费| 91麻豆精品激情在线观看国产 | 99热国产这里只有精品6| 老熟妇仑乱视频hdxx| 国产伦人伦偷精品视频| 两性夫妻黄色片| 午夜福利影视在线免费观看| 国产欧美日韩一区二区三 | 亚洲成av片中文字幕在线观看| 最新在线观看一区二区三区| 久久国产精品影院| 午夜福利免费观看在线| 久久精品久久久久久噜噜老黄| 黄色a级毛片大全视频| 美女高潮喷水抽搐中文字幕| 丝袜美腿诱惑在线| 亚洲精品国产一区二区精华液| 久久久久久人人人人人| 国产黄色免费在线视频| 91精品国产国语对白视频| 国产精品九九99| 久久ye,这里只有精品| 飞空精品影院首页| 肉色欧美久久久久久久蜜桃| 夜夜骑夜夜射夜夜干| 每晚都被弄得嗷嗷叫到高潮| 91成年电影在线观看| 色播在线永久视频| 国产91精品成人一区二区三区 | 久久精品熟女亚洲av麻豆精品| 777米奇影视久久| 侵犯人妻中文字幕一二三四区| 久久久久国内视频| 中文字幕高清在线视频| 国产成人精品在线电影| √禁漫天堂资源中文www| 天天躁夜夜躁狠狠躁躁| 免费女性裸体啪啪无遮挡网站| 国产成人a∨麻豆精品| 人人妻人人澡人人爽人人夜夜| 黑人猛操日本美女一级片| 久久毛片免费看一区二区三区| 两性夫妻黄色片| 中文字幕av电影在线播放| 十八禁高潮呻吟视频| 首页视频小说图片口味搜索| 在线观看www视频免费| 免费观看av网站的网址| 777米奇影视久久| 日韩一区二区三区影片| 欧美xxⅹ黑人| 亚洲 欧美一区二区三区| 女性生殖器流出的白浆| 日韩中文字幕视频在线看片| 黑人巨大精品欧美一区二区mp4| 国产精品av久久久久免费| 久久久久国产一级毛片高清牌| 侵犯人妻中文字幕一二三四区| 18在线观看网站| 国产成人a∨麻豆精品| 午夜影院在线不卡| 麻豆av在线久日| 一区二区三区乱码不卡18| 老司机影院毛片| 一本色道久久久久久精品综合| 精品福利观看| 午夜福利,免费看| 成人国产av品久久久| 美女高潮到喷水免费观看| 国产麻豆69| 丁香六月欧美| 他把我摸到了高潮在线观看 | 亚洲成人免费av在线播放| 欧美日韩成人在线一区二区| av片东京热男人的天堂| 国产精品国产三级国产专区5o| 亚洲精品自拍成人| 日本av手机在线免费观看| 曰老女人黄片| 人妻 亚洲 视频|