• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Remaining useful life prediction based on variation coefficient consistency test of a Wiener process

    2018-02-02 08:10:06JunLIBoJINGHongdeDAIXioxunJIAOXiodongLIU
    CHINESE JOURNAL OF AERONAUTICS 2018年1期

    Jun LI,Bo JING,Hongde DAI,Xioxun JIAO,Xiodong LIU

    aCollege of Aeronautics and Astronautics Engineering,Air Force Engineering University,Xi’an 710038,China

    bCollege of Mathematics and Statistics,Ludong University,Yantai 264025,China

    cDepartment of Control Engineering,Naval Aeronautical and Astronautical University,Yantai 264001,China

    dChina Aviation Industry Jincheng Nanjing Electrical and Hydraulic Engineering Research Center,Nanjing 210000,ChinaeAviation Science and Technology Key Laboratory of Aviation Mechanical and Electrical System,Nanjing 210000,China

    1.Introduction

    With the increase of reliability and lifetime,it is difficult to obtain failure data of products in a short term,so the traditional failure data based Remaining Useful Life(RUL)prediction methods are limited in utilization.1,2Fortunately,failures of most products are a result of slow degradation of materials,which can be reflected by some performance characteristics gradually.3Therefore,reliability and RUL research based on degradation data gains much attention all over the world,and becomes the key point of Prognostic and Health Management(PHM).4

    Degradation modeling is the core problem of RUL prediction.Considering the complex mechanism of a failure,it is dif-ficult to establish a physical failure model for some products with high reliability and long life,while a data-driven statistical method owns obvious advantages.4,5A random effects degradation model was applied to describe unit-to-unit variations of test units and studied for highly reliable light displays in Ref.6,such as Plasma Display Panels(PDPs)and Vacuum Fluorescent Displays(VFDs).The random effects model is a stochastic variable model,which cannotexpress a dynamic degradation process with time.Therefore,a stochastic process based life prediction method has been developed.The random effects model and the stochastic process model were compared by Peng and Tseng.7A stochastic diffusion process was described in detail in Ref.8,and the Mean-Time-To-Failure(MTTF)of a real Light Emitting Diode(LED)under accelerated testing was achieved.The Gamma process9and the inverse Gaussian process10,11have been extensively applied to degenerate modeling due to their good statistical properties.The random trajectory model and the stochastic process model have been reviewed in Ref.12.Compared to the Gamma process and the inverse Gaussian process,the Wiener process can express the non-monotonicity of the degeneration trend,which has gained great attention.In Ref.13,a Wiener process with a measurement error was used to study the RUL of a lithium battery.In Ref.14,the Wiener process was applied to study accelerated step stress degradation.In Ref.15,the real-time update of RUL prediction was realized by a Wiener process accompanied with recursivefiltering.A new class of Wiener process was proposed in Ref.16,which considers the correlation between the drift parameter and the diffusion parameter,and the proposed Wiener process was demonstrated by a dataset of fatigue crack growth and a dataset of head wears of hard disk drives.Parameters estimation is a part of the major problems in degradation modeling of a Wiener process.Maximum Likelihood Estimation(MLE)is the most widely researched method in the Refs.17–19.However,it is difficult to realize an asymptotically unbiased estimation based on MLE,while the number of samples or the number of observations is small,which may lead to large errors of estimated parameters.Therefore,an unbiased parameters estimation method of the Wiener process in a small-sample case is very important.To solve this problem,an unbiased parameters estimation method for the Wiener process based on modified MLE is proposed.

    Degradation modeling is often researched under the assumption of mechanism consistency in Refs.20,21.Whether the information of different samples or the different stages of the same sample can be fused is based on the consistency of the degradation pattern,so the consistency problem is still ubiquitous in practical engineering.For example,limited by the cost and the actual situation,only a small sample of degradation data can be achieved.A failure happens when degradation reaches a given threshold,22,23and the product can continue to work by replacing some components.Whether the degradation data before the maintenance can be used in RUL prediction after the maintenance is based on the consistency of the degradation data before and after the maintenance,which has never been studied before.Aiming at this problem,considering the independent incremental feature of the Wiener process,a Wiener process variation coefficient based consistency test method is proposed,which is not affected by the sampling time and is suitable for small samples.

    The remainder of this paper is organized as follows.Section 2 introduces the basic theory of the Wiener process and RUL.In Section 3,a modified unbiased MLE method is proposed based on the statistical properties of the Wiener process,and simulations are studied.A Wiener process variation coef-ficient based consistency test method is introduced in Section 4,where simulation data and classic crack data are used for validation of the proposed method.In Section 5,the degradation of an airborne fuel pump is studied,and the RUL prediction after maintenance is discussed;while the consistency test is passed,the work provides a theoretical and practical guidance for engineering.

    2.Basic theory of Wiener process and RUL

    Let{X(t),t≥ 0} be a continuous random process which satis-fiesX(0)=0,tis time,if any two disjoint time intervals with stationary independent increments ΔX(t)=X(t+ Δt)-X(t)obey normal distribution and satisfy

    where Δtis the time interval.The Wiener process{X(t),t≥ 0}is given by

    where θ denotes the drift parameter and σ(σ > 0)the diffusion parameter,whileB(·)denotes the standard Brownian motion function.

    The degradation process can be described by {X(t),t≥ 0}.ldenotes the failure threshold,ξ is defined as the life of the product which is thefirst time arrived at the failure thresholdl,then ξ =inf{t|X(t)≥l} is a random variable of inverse Gaussian distribution,and the distribution functionF(·)and Probability Density Function(PDF)f(·)are given by24

    where Φ(·)is standard normal distribution function.

    If the degradation dataX(tk)=xkis obtained,denote the RUL attkast,the condition distribution function is shown as

    whereP(·)is the probability expressions.As the Wiener process is an independent increment process,the condition distribution function of the RUL can be simplified as15

    Replacing the failure thresholdlbyl-xkin Eq.(4),the density function of the RUL can be get as

    3.Unbiased parameters estimation for Wiener process

    For productsi(i=1,2,···,n),measuredmi+1 times respectively,Xijdenotes thejth measurement about degradation data of theith product.ΔXij=Xi(j+1)-Xij(j=1,2,···,mi)denotes the degradation increment in Δtij=ti(j+1)-tij,considering a constant time interval,that is,Δtij= Δti,and if the time intervals are equal to each other for different products,then Δtij= Δti= Δt.Every product includesmi(i=1,2,···,n)degradation increments.

    3.1.Maximum likelihood estimation

    The MLE is widely used in the parameters estimation of the Wiener process.18,19Considering the independent increment of the Wiener process as ΔXij~N(θiΔti,σ2iΔti),the likelihood functionL(·)is established as

    Deriving the partial differential of Eq.(6),we have

    The MLEs for θiand σ2ican be get as

    Proof.According to Eq.(8)and Δtij= Δti,

    According to the property of the Wiener process in Eq.(1),E(ΔXij)= θiΔti,so

    3.2.Modified maximum likelihood estimation

    By Theorem 1,the modified MLE^θiMof θiand^σ2iMof σ2iare

    Theorem 2.The modified estimations shown in Eq.(12)are unbiased estimations.

    Proof.

    Considering the result of Eq.(11),then

    Corollary.For a small sample number capacity of n,the estimations for^θ,^σ2can be written as

    3.3.Simulations

    Simulations have been done for the verification of the presented unbiased parameters estimation method while the sample numbern=1,drift coefficient θ =5 × 10-5,diffusion parameter σ =2.5× 10-4,and sampling periodT=100.The number of observations about the incremental degradation arem=10,m=100,andm=1000,respectively.The degradation paths are shown in Fig.1.

    Whenm=10,forn=5,10,the degradation paths are shown in Fig.2.

    Fig.1 Degradation paths(n=1).

    Table 1 Parameter estimations(n=1).

    The parameters estimated by the two methods are shown in Table 2.Obviously,the modified estimations are better than those of the MLE method for differentn.

    Fig.2 Degradation paths(m=10).

    Table 2 Parameter estimations(m=10).

    4.Consistency test based on variation coefficient of a Wiener process

    Whether the information of different samples or the different stages of the same sample can be fused is dependent on the consistency of degradation patterns,so the consistency problem is ubiquitous in the practice of engineering.Aiming at the problem of the verification of the consistency,a failure mechanism and degradation model based consistency testing method was proposed in Ref.25,but the ratio of the mean to the variance needs to satisfy a normal distribution,which leads to be inapplicable when the number of samples is small.A rank correlation coefficient based consistency test for the failure mechanism was introduced in Ref.26according to the synergy of different products,but it is influenced by the length of the sampling period.In this paper,according to the incremental independence of a Wiener process,a consistency test method is proposed,based on the Wiener process variation coefficient.

    4.1.Variation coefficient

    The variation coefficient of a normal distribution was discussed clearly in Ref.27,such as the statistical characteristics,the confidence intervals,and the hypothesis testing methods.The variation coefficient ν is defined as the ratio of the standard deviation to the average.

    The variation coefficient is a dimensionless number.For a Wiener process, considering equal time intervals Δtij= Δti=tij-ti(j-1),the variation coefficient νiin theith interval for a product is defined as

    Represent the diffusion level under unit drift.If the distribution of a νicontained statistic is known,hypothesis testing of the variation coefficient can be achieved according to the sampling distribution theorem.In Ref.27,a sampling distribution about the reciprocal of the variation coefficient was constructed,for samples from a normal population,which was applied to the reliability evaluation of a bridge structure.

    A consistency test method based on the variation coefficient of a Wiener process is presented here,considering the normal characteristic of an independent increment from the Wiener process.Inspired by Ref.27,a theorem is presented as follows.

    By the proof in Ref.27,we can have the density function ofSisfS(·)for the Wiener process as

    4.2.Consistency test

    According to Theorem 3,the consistency test based on the variation coefficient of a Wiener process is proposed as follows:

    (5)Calculate h according to the samples observation values.Ifhfalls into the rejection region,the null hypothesis is rejected,which means that the sample variation coeffi-cient has a remarkable difference from the population variation coefficient;otherwise,the null hypothesis is accepted.

    4.3.Simulations and experiment

    Ten groups(n=10)of degradation data are generated by simulations.The sampling periodT=100,and the number of observations is 20,so the number of increments ism=19.

    (1)If θ1=5 × 10-5and σ1=2.5 × 10-4,the degradation path is shown in Fig.3(a).For one new sample with θ2= θ1=5 × 10-5and σ2=5 × 10-4,the degradation path is shown in Fig.3(b).

    (2)When θ1=5 × 10-5,σ1=2.5 × 10-4,the degradation path is shown in Fig.4(a).For one new sample with θ2=10×10-5and σ2= σ1=2.5×10-4,the degradation path is shown in Fig.4(b).

    Fig.3 Degradation paths for different σ.

    Fig.4 Degradation paths for different θ.

    Fig.5 Crack growth paths.

    (3)The classical crack data28is also utilized for the verification of the presented Wiener process variation coeffi-cient based consistency test method.Without loss of generality,assuming that Δt=1 and 13 measurements are contained in each data set,then m=12.M1 to M7 are the population and V1 to V6 are the testing samples.The crack degradation trend is shown in Fig.5(in Fig.5,1 in.=2.54 cm).

    In fact,they came from the same population,but the trend of the variation can be clearly seen by the value ofhstatistics.For example,hV6=0.8325 is farthest from the rejection region,the degradation trend is nearest to the population,and the effectiveness of the proposed method is verified.

    5.Application research

    The fuel pump is one of the important equipment in an aircraft,and RUL prediction is crucial to the safety of the aircraft.The cooperation between each component of the fuel pump is important,the failure mechanism is complex,and themain failureformsareflow-reduced and pressuredropped.The output pressure of the fuel pump is closely related to the healthy status of the fuel pump,which is found in the pre-research by the authors.29Therefore,the output pressure signal of the fuel pump is chosen as an index of performance degradation.

    A piezo-resistive pressure transducer(CY-YZ-001)is chosen in the experiment system,which can transfer a pressure signal to a voltage signal directly,and the pressure transducer is mounted in a transfer tube 70 cm far from the output of the fuel pump.Fig.6 shows the pressure transducer and its installation,and the components of the experiment system were shown in Fig.7.

    Fig.6 Pressure transducer and its installation.

    Fig.7 Components of the experiment system.

    5.1.Basic data analysis

    An experiment under circulations of three voltages has been conducted for the airborne fuel pump,in which each circulation is 10 h including three processes:(A)voltage:207–209 V,frequency:420–422 Hz,0.5 h;(B)voltage:185–187 V,frequency:378–380 Hz,0.5 h;(C)voltage:192–202 V,frequency:398–402 Hz,9 h.Each cycle is 10 h,so Δt=10 h.The output pressure signal of the fuel pump from the pressure sensor is recorded in the experiment.As a highly reliable product,the degradation of the fuel pump is slow and takes a long time.Observations from three samples are recorded asZ1,Z2andZ3,as shown in Fig.8,and the degradation trends are all obvious.According to the experience of engineering applications,the threshold value is chosen as 61.3 kPa.

    When the output pressure of the fuel pump is lower than the threshold value,maintenance about replacing some inner parts of the fuel pump has been done,then the experiment is continued,and the degradation data is recorded asZ2H,which is shown in Fig.9.

    It is appropriate to model the degradation by a Wiener process,while the degradation increment obeys a normal distribution.The Quantiles-Quantiles(QQ)figure is a method of comparing an unknown probability distribution with a speci-fied distribution.If the two distributions are similar,the QQfigure points will be around the 45°line.Computing the increments of the degradation data in Fig. 8,ΔZi=Ai=Zi(t)-Zi(t-1),t=1,2,···,mi;i=1,2,3. By the QQ graph shown in Fig.10,degradation incrementsA1,A2,A3obey normal distributions,and the Wiener process is appropriate for degradation modeling.

    Fig.8 Pressure sensor output value before maintenance.

    Fig.9 Pressure sensor output value after maintenance.

    Fig.10 Quantiles-quantiles graph for normal distribution.

    5.2.Parameters estimation and consistency test

    Table 3 Parameters estimation for θiand σi.

    5.3.RUL estimation

    Taking the pre-repair productZ2as an example,the RUL results of the Wiener process based on the modified MLE are shown in Fig.11.The true value is included in the predicted probability density function,and the prediction of the RUL is realized.

    Fig.11 Comparison between estimated and true RUL values before being repaired.

    Afterfinishing the consistency test,the degradation data before and after the maintenance can be fused,as is shown in Fig.12,compared with the non-integration information before the maintenance.

    It can be seen from the prediction results that the RUL of the airborne fuel pump is exactly predicted after fusing the degradation information before maintenance,and while the consistency test has passed,it provides a feasible method for life prediction of repaired equipment,which lacks prior guidance information.

    6.Conclusions

    (1)A modified unbiased MLE method for estimation about the parameters of a Wiener process is presented,and the estimation precision is improved compared to that of the classical MLE method,when the size of measured data is small.

    (2)A consistency test method based on the variation coeffi-cient of a Wiener process is proposed.Construct a statistical valuehwhich contains the variation coefficient,derive the distribution of the statistical valueh,and propose an H distribution based hypothesis test method.Provide a theoretical foundation for the consistency test of degradation models of different products or different stages of the same product.

    (3)The unbiased MLE method and the consistency test method of a Wiener process proposed in this paper are applied to the performance degradation study of an airborne fuel pump.Under the same degradation model,a weighted method of fusing the information before and after maintenance is proposed,the RUL of the equipment after maintenance is predicted successfully,and the accuracy is improved.

    Fig.12 Comparison for estimated RUL after being repaired.

    Acknowledgement

    This study was supported by the Aeronautical Science Foundation of China(No.201428960221).

    1.Peng CY,Tseng ST.Progressive-stress accelerated degradation test for highly-reliable products.IEEE Trans Rel2010;59(1):30–7.

    2.Guan Q,Tang Y,Xu A.Objective Bayesian analysis accelerated degradation test based on Wiener process models.Appl Math Model2016;40(4):2743–55.

    3.Tseng ST,Hamada M,Chiao CH.Using degradation data to improvefluorescent lamp reliability.J Qual Technol1995;27(4):363–9.

    4.Si XS,Wang WB,Hu CH,Zhou DH.Remaining useful life estimation—A review on the statistical data driven approaches.Eur Oper J Res2011;213(1):1–14.

    5.Gebraeel NZ,Lawley MA,Li R,Ryan JK.Residual-life distributionsfrom componentdegradation signals:A Bayesian approach.IIE Trans2005;37(6):543–57.

    6.Bae SJ,Kvam PH.A nonlinear random-coefficients model for degradation testing.Technometrics2004;46(4):460–9.

    7.Peng CY,Tseng ST.Mis-specification analysis of linear degradation models.IEEE Trans Rel2009;58(3):444–55.

    8.Tseng ST,Peng CY.Stochastic diffusion modeling of degradation data.J Data Sci2007;5(3):315–33.

    9.Noortwijk JV.A survey of the application of gamma processes in maintenance.Reliab Syst Safe2007;94(1):2–21.

    10.Ye ZS,Chen N.The inverse Gaussian process as a degradation model.Technometrics2014;56(3):302–11.

    11.Pan DH,Liu JB,Cao J.Remaining useful life estimation using an inverse Gaussian degradation model.Neurocomputing2016;185:64–72.

    12.Ye ZS,Xie M.Stochastic modelling and analysis of degradation for highly reliable products.Appl Stoch Model Bus2015;31(1):16–32.

    13.Tang S,Yu C,Wang X,Guo X,Si X.Remaining useful life prediction of lithium-ion batteries based on the Wiener process with measurement error.Energies2014;7(2):520–47.

    14.Hu CH,Lee MY,Tang J.Optimum step-stress accelerated degradation test for Wiener degradation process under constraints.Eur J Oper Res2014;241(2):412–21.

    15.Si XS,Wang WB,Hu CH,Chen MY,Zhou DH.A Wienerprocess-based degradation model with a recursivefilter algorithm for remaining useful life estimation.Mech Syst and Signal Pr2013;35(1–2):219–37.

    16.Ye ZS,Chen N,Shen Y.A new class of Wiener process models for degradation analysis.Reliab Syst Safe2015;139:58–67.

    17.Wang X.Wiener processes with random effects for degradation data.J Multivariate Anal2010;101(2):340–51.

    18.Wang X,Lin S,Wang S,He Z,Zhao C.Remaining useful life prediction based on the Wiener process for an aviation axial piston pump.Chin J Aeronaut2016;29(3):779–88.

    19.Tsai C,Tseng S,Balakrishnan N.Mis-specification analyses of gamma and Wiener degradation processes.J Stat Plan Infer2011;141(12):3725–35.

    20.Liao CM,Tseng ST.Optimal design for step-stress accelerated degradation tests.IEEE Trans Rel2006;55(1):59–66.

    21.Tseng ST,Balakrishnan N,Tsai CC.Optimal step-stress accelerated degradation test plan for Gamma degradation processes.IEEE Trans Rel2009;58(4):611–8.

    22.Liu J,Zhang M,Zuo H,Xie J.Remaining useful life prognostics for aeroengine based on superstatistics and information fusion.Chin J Aeronaut2014;27(5):1086–96.

    23.Li Q,Gao Z,Tang D,Li B.Remaining useful life estimation for deteriorating systems with time-varying operational conditions and condition-specific failure zones.Chin J Aeronaut2016;29(3):662–74.

    24.Kao EPC.An introduction to stochastic processes.1st ed.Beijing:China Machine Press;2006.p.374–86.

    25.Wang H,Xu T,Wang W.Test method of failure mechanism consistency based on degradation model.Acta Aeronaut Astronaut Sin2015;36(3):889–97[Chinese].

    26.Feng J.Consistent test of accelerated storage degradation failure mechanism based on rand correlation coefficient.J Aerosp Power2011;26(11):2439–44[Chinese].

    27.Xing RF.The application of estimation method of coefficient of variation in the study on reliability of existing structures[dissertation].Xi’an:Xi’an University of Architecture and Technology;2011[Chinese].

    28.Lu C,Meeker WQ.Using degradation measures to estimate a time-to-failure distribution.Technometrics1993;35(2):161–74.

    29.Li J,Jing B,Qiang XQ,Liu XD.Fault states feature extraction and experimental study for airborne fuel pumps based on sample quantile.ActaAeronautAstronautSin2016;37(9):2851–63[Chinese].

    91狼人影院| 日本黄大片高清| 亚洲乱码一区二区免费版| 久久久久久久久大av| 99九九线精品视频在线观看视频| 一级黄片播放器| 免费观看精品视频网站| 悠悠久久av| 久久婷婷人人爽人人干人人爱| 日本免费a在线| 国产欧美日韩一区二区精品| 免费人成在线观看视频色| 日韩中文字幕欧美一区二区| 国产免费av片在线观看野外av| 免费大片18禁| 蜜桃亚洲精品一区二区三区| 尾随美女入室| 亚洲国产精品sss在线观看| 亚洲精品国产成人久久av| 1024手机看黄色片| 中文字幕久久专区| 日本免费一区二区三区高清不卡| 99在线人妻在线中文字幕| 免费观看的影片在线观看| 亚洲第一电影网av| 在线观看免费视频日本深夜| 色吧在线观看| 日本一二三区视频观看| 中文字幕久久专区| 日日啪夜夜撸| 噜噜噜噜噜久久久久久91| 成人性生交大片免费视频hd| 免费在线观看日本一区| 精品人妻偷拍中文字幕| or卡值多少钱| 干丝袜人妻中文字幕| 欧美日本视频| av中文乱码字幕在线| 久久久久久国产a免费观看| 亚洲欧美日韩高清专用| 在线国产一区二区在线| 国产av在哪里看| 亚洲av日韩精品久久久久久密| 毛片女人毛片| 看片在线看免费视频| 两个人的视频大全免费| 露出奶头的视频| 国产美女午夜福利| av在线亚洲专区| 日韩欧美国产一区二区入口| 一个人免费在线观看电影| 人妻少妇偷人精品九色| 赤兔流量卡办理| 国产乱人视频| 少妇的逼好多水| 久久午夜亚洲精品久久| 免费在线观看日本一区| 我的老师免费观看完整版| 美女高潮喷水抽搐中文字幕| 毛片女人毛片| 日韩欧美在线乱码| 婷婷色综合大香蕉| 毛片一级片免费看久久久久 | 国产精品电影一区二区三区| 日本免费一区二区三区高清不卡| 九色成人免费人妻av| 久久天躁狠狠躁夜夜2o2o| 亚洲国产精品久久男人天堂| 国语自产精品视频在线第100页| 男女下面进入的视频免费午夜| 欧美日韩乱码在线| 成人亚洲精品av一区二区| 成人永久免费在线观看视频| 97人妻精品一区二区三区麻豆| 观看美女的网站| 成人鲁丝片一二三区免费| 两性午夜刺激爽爽歪歪视频在线观看| 国产三级在线视频| 超碰av人人做人人爽久久| 日本撒尿小便嘘嘘汇集6| 国产亚洲精品综合一区在线观看| 搡老岳熟女国产| 天美传媒精品一区二区| 色av中文字幕| 麻豆成人av在线观看| 久久亚洲精品不卡| 给我免费播放毛片高清在线观看| 亚洲avbb在线观看| 欧美人与善性xxx| 国语自产精品视频在线第100页| 欧美人与善性xxx| 国产精品福利在线免费观看| 色播亚洲综合网| 啦啦啦啦在线视频资源| 亚洲av二区三区四区| 丰满的人妻完整版| 少妇猛男粗大的猛烈进出视频 | 国产亚洲精品久久久com| 国产成人a区在线观看| 日本黄大片高清| 成年女人永久免费观看视频| 夜夜夜夜夜久久久久| 成人永久免费在线观看视频| 久久久久久久久大av| 日韩高清综合在线| 波多野结衣巨乳人妻| av天堂在线播放| 我要搜黄色片| 国产 一区 欧美 日韩| 麻豆久久精品国产亚洲av| 有码 亚洲区| 午夜激情欧美在线| 国产精品一区二区三区四区免费观看 | 身体一侧抽搐| 久久久精品欧美日韩精品| 最新在线观看一区二区三区| 黄色配什么色好看| 五月玫瑰六月丁香| 国产精品一区www在线观看 | 99riav亚洲国产免费| 亚洲男人的天堂狠狠| 又紧又爽又黄一区二区| 女生性感内裤真人,穿戴方法视频| 51国产日韩欧美| 91狼人影院| 男女下面进入的视频免费午夜| 日韩欧美精品免费久久| av专区在线播放| 亚洲乱码一区二区免费版| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产精品久久男人天堂| 亚洲 国产 在线| 午夜亚洲福利在线播放| 国产又黄又爽又无遮挡在线| 22中文网久久字幕| 欧美性猛交╳xxx乱大交人| 蜜桃亚洲精品一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 哪里可以看免费的av片| 又爽又黄无遮挡网站| 成年版毛片免费区| 国产精品一区二区三区四区久久| x7x7x7水蜜桃| 精品福利观看| 女生性感内裤真人,穿戴方法视频| 最新在线观看一区二区三区| 欧美三级亚洲精品| 国产精品爽爽va在线观看网站| 女人被狂操c到高潮| h日本视频在线播放| 日韩欧美三级三区| 美女高潮的动态| 免费av不卡在线播放| 国产男人的电影天堂91| 亚洲精品456在线播放app | 久99久视频精品免费| 亚洲无线观看免费| 色吧在线观看| 国产单亲对白刺激| 波野结衣二区三区在线| a级毛片a级免费在线| 国产v大片淫在线免费观看| 国产视频一区二区在线看| 国产成人福利小说| 直男gayav资源| 成人av一区二区三区在线看| 亚洲aⅴ乱码一区二区在线播放| 亚洲av成人精品一区久久| 亚洲精品在线观看二区| 嫩草影院入口| 国产亚洲精品av在线| 久久精品国产自在天天线| 亚洲最大成人手机在线| 天天一区二区日本电影三级| 99久久中文字幕三级久久日本| 欧美xxxx性猛交bbbb| 久久精品国产亚洲av涩爱 | 一区福利在线观看| bbb黄色大片| 看免费成人av毛片| 久久精品综合一区二区三区| 亚洲av电影不卡..在线观看| 日韩一本色道免费dvd| 一区二区三区四区激情视频 | 国产在视频线在精品| 国产爱豆传媒在线观看| 一边摸一边抽搐一进一小说| 熟妇人妻久久中文字幕3abv| 久久中文看片网| 两人在一起打扑克的视频| 国产乱人伦免费视频| 色哟哟·www| 老司机午夜福利在线观看视频| 女同久久另类99精品国产91| 深爱激情五月婷婷| 久久久精品大字幕| 无遮挡黄片免费观看| 99riav亚洲国产免费| 欧美高清成人免费视频www| 18禁黄网站禁片免费观看直播| 国内精品宾馆在线| 99久久九九国产精品国产免费| 亚洲18禁久久av| 欧美中文日本在线观看视频| 一区二区三区高清视频在线| 欧美成人一区二区免费高清观看| 中国美白少妇内射xxxbb| 91麻豆精品激情在线观看国产| 久久久久性生活片| 国产一级毛片七仙女欲春2| 极品教师在线免费播放| 欧美潮喷喷水| 久久精品国产清高在天天线| 91精品国产九色| 不卡一级毛片| 一个人观看的视频www高清免费观看| 窝窝影院91人妻| 日本 av在线| 51国产日韩欧美| 在线观看66精品国产| or卡值多少钱| 日日夜夜操网爽| 国产一区二区在线观看日韩| 国产日本99.免费观看| 变态另类成人亚洲欧美熟女| 深爱激情五月婷婷| 国产精品野战在线观看| 国产精品一及| 国产精品伦人一区二区| 中文字幕av成人在线电影| 免费人成视频x8x8入口观看| 国产亚洲精品av在线| 亚洲一级一片aⅴ在线观看| 性欧美人与动物交配| 久久精品91蜜桃| 国国产精品蜜臀av免费| 又爽又黄a免费视频| 最好的美女福利视频网| 18禁黄网站禁片午夜丰满| av天堂中文字幕网| 最近中文字幕高清免费大全6 | 国产精品免费一区二区三区在线| 欧美日韩亚洲国产一区二区在线观看| 免费观看在线日韩| 亚洲欧美日韩卡通动漫| 欧美人与善性xxx| АⅤ资源中文在线天堂| 男女那种视频在线观看| 精品国产三级普通话版| 非洲黑人性xxxx精品又粗又长| 在线天堂最新版资源| 精品免费久久久久久久清纯| 精品久久久噜噜| 日本色播在线视频| 麻豆av噜噜一区二区三区| 国产免费一级a男人的天堂| 久久6这里有精品| 亚洲中文日韩欧美视频| 亚洲熟妇熟女久久| 国产精品一区二区免费欧美| 99热网站在线观看| 九九爱精品视频在线观看| 亚洲精品一区av在线观看| 国产精华一区二区三区| 麻豆成人av在线观看| 国产黄色小视频在线观看| 亚洲三级黄色毛片| 97超视频在线观看视频| 天堂影院成人在线观看| 国产伦精品一区二区三区视频9| 亚洲人成伊人成综合网2020| 一区二区三区高清视频在线| 在现免费观看毛片| 中文亚洲av片在线观看爽| 亚洲av一区综合| 日日摸夜夜添夜夜添小说| 一进一出好大好爽视频| 亚洲国产精品久久男人天堂| 在线观看一区二区三区| 成人二区视频| 91麻豆av在线| 全区人妻精品视频| 亚洲国产精品成人综合色| 中国美白少妇内射xxxbb| 天堂√8在线中文| 欧美国产日韩亚洲一区| 一区福利在线观看| 欧美日韩亚洲国产一区二区在线观看| 97人妻精品一区二区三区麻豆| 午夜激情福利司机影院| 午夜福利高清视频| 真人一进一出gif抽搐免费| 黄色日韩在线| 国产高清有码在线观看视频| 亚洲午夜理论影院| 亚洲精品国产成人久久av| 精品久久久噜噜| 他把我摸到了高潮在线观看| 亚洲第一电影网av| 色噜噜av男人的天堂激情| 在线看三级毛片| 动漫黄色视频在线观看| 禁无遮挡网站| .国产精品久久| 日本免费a在线| 午夜日韩欧美国产| 成人特级av手机在线观看| 国产色婷婷99| 欧美黑人欧美精品刺激| 观看免费一级毛片| 高清日韩中文字幕在线| 黄色丝袜av网址大全| 18禁黄网站禁片免费观看直播| 久久精品国产亚洲网站| 日韩精品青青久久久久久| 麻豆国产av国片精品| 国产老妇女一区| 少妇猛男粗大的猛烈进出视频 | netflix在线观看网站| 亚洲熟妇中文字幕五十中出| 又黄又爽又刺激的免费视频.| 男人舔女人下体高潮全视频| 国产v大片淫在线免费观看| 人人妻人人澡欧美一区二区| 麻豆av噜噜一区二区三区| 又粗又爽又猛毛片免费看| 久久久色成人| 国产一级毛片七仙女欲春2| a在线观看视频网站| 成年版毛片免费区| 日本 欧美在线| 日本熟妇午夜| 狠狠狠狠99中文字幕| 欧美激情国产日韩精品一区| 我要搜黄色片| 天天一区二区日本电影三级| 两个人视频免费观看高清| 亚洲无线观看免费| 午夜亚洲福利在线播放| 日韩,欧美,国产一区二区三区 | 999久久久精品免费观看国产| 精品久久久久久久末码| 变态另类成人亚洲欧美熟女| 亚洲精华国产精华精| 成年版毛片免费区| 亚洲五月天丁香| 精品福利观看| 亚洲精品久久国产高清桃花| 全区人妻精品视频| 男人和女人高潮做爰伦理| 免费观看在线日韩| 久久久国产成人免费| 欧美日韩黄片免| 久久久久九九精品影院| 夜夜看夜夜爽夜夜摸| 久久午夜福利片| 成人高潮视频无遮挡免费网站| 日韩欧美免费精品| 欧美人与善性xxx| 在线观看美女被高潮喷水网站| 18+在线观看网站| 综合色av麻豆| 亚洲成av人片在线播放无| 国产精品日韩av在线免费观看| 欧美潮喷喷水| 淫秽高清视频在线观看| 亚洲成av人片在线播放无| 亚洲狠狠婷婷综合久久图片| 亚洲无线观看免费| 精品免费久久久久久久清纯| 成年版毛片免费区| www.www免费av| 国产亚洲精品久久久久久毛片| 色精品久久人妻99蜜桃| 99视频精品全部免费 在线| 97热精品久久久久久| 女同久久另类99精品国产91| 午夜精品在线福利| 国产乱人视频| 色视频www国产| 深夜a级毛片| 免费看日本二区| eeuss影院久久| 亚洲男人的天堂狠狠| 亚洲美女视频黄频| 国产久久久一区二区三区| 精品国产三级普通话版| 国产aⅴ精品一区二区三区波| 香蕉av资源在线| 久久人妻av系列| 日本精品一区二区三区蜜桃| 99精品在免费线老司机午夜| 亚洲国产欧美人成| 免费av观看视频| 狂野欧美激情性xxxx在线观看| 亚洲国产日韩欧美精品在线观看| 亚洲av第一区精品v没综合| 欧美日韩瑟瑟在线播放| 国产精品久久视频播放| 国产一区二区三区视频了| 久久久色成人| 男人舔奶头视频| 亚洲成a人片在线一区二区| 精品久久久久久,| 亚洲精品456在线播放app | 国产探花在线观看一区二区| 亚洲精品国产成人久久av| 中国美白少妇内射xxxbb| 午夜亚洲福利在线播放| 国产精品98久久久久久宅男小说| 国产成人影院久久av| 国产极品精品免费视频能看的| 99在线视频只有这里精品首页| 国产女主播在线喷水免费视频网站 | 久久99热6这里只有精品| 亚洲国产欧洲综合997久久,| 成人美女网站在线观看视频| 国产一区二区在线av高清观看| 人人妻人人看人人澡| 亚洲狠狠婷婷综合久久图片| 国产亚洲精品av在线| 男女之事视频高清在线观看| 黄色日韩在线| 日韩亚洲欧美综合| 久久欧美精品欧美久久欧美| 91麻豆av在线| 高清日韩中文字幕在线| 国产av麻豆久久久久久久| 噜噜噜噜噜久久久久久91| 内射极品少妇av片p| 岛国在线免费视频观看| 欧美最新免费一区二区三区| 国产欧美日韩一区二区精品| 自拍偷自拍亚洲精品老妇| 精品午夜福利视频在线观看一区| 亚洲国产精品sss在线观看| 99热这里只有精品一区| 亚洲五月天丁香| 国产白丝娇喘喷水9色精品| 高清毛片免费观看视频网站| 久久热精品热| 性欧美人与动物交配| 热99在线观看视频| 国内精品久久久久精免费| 国产精品三级大全| 伊人久久精品亚洲午夜| videossex国产| 日本-黄色视频高清免费观看| 亚洲成人久久爱视频| 亚洲乱码一区二区免费版| 亚洲久久久久久中文字幕| 国产精品国产三级国产av玫瑰| 啦啦啦观看免费观看视频高清| 噜噜噜噜噜久久久久久91| 人妻制服诱惑在线中文字幕| 桃红色精品国产亚洲av| 中文字幕av成人在线电影| 精品午夜福利视频在线观看一区| 精品久久久久久久久亚洲 | 色哟哟·www| 国产伦一二天堂av在线观看| 男女视频在线观看网站免费| 国产午夜福利久久久久久| bbb黄色大片| 日本色播在线视频| 真实男女啪啪啪动态图| 亚洲狠狠婷婷综合久久图片| 网址你懂的国产日韩在线| 桃红色精品国产亚洲av| 99国产极品粉嫩在线观看| 老司机午夜福利在线观看视频| 丰满的人妻完整版| 波多野结衣巨乳人妻| 精品免费久久久久久久清纯| 国产成年人精品一区二区| 精品久久久噜噜| 黄色视频,在线免费观看| 亚洲最大成人中文| 亚洲四区av| 日韩精品青青久久久久久| 亚洲av不卡在线观看| 99热只有精品国产| 中文资源天堂在线| 精品久久久久久久末码| 日韩人妻高清精品专区| 欧美日韩亚洲国产一区二区在线观看| 精品午夜福利在线看| 韩国av一区二区三区四区| 男女视频在线观看网站免费| 91久久精品电影网| 国产单亲对白刺激| 亚州av有码| 人人妻人人看人人澡| 亚洲国产精品成人综合色| 精品一区二区三区人妻视频| 男人狂女人下面高潮的视频| 久久久久久久久久黄片| 91狼人影院| 午夜老司机福利剧场| 大型黄色视频在线免费观看| 国产精品久久电影中文字幕| 精品久久久久久久久av| 欧美激情久久久久久爽电影| 久久九九热精品免费| 最好的美女福利视频网| 午夜久久久久精精品| 亚洲国产欧美人成| 白带黄色成豆腐渣| 亚洲成人久久爱视频| 少妇丰满av| 精品一区二区三区av网在线观看| 制服丝袜大香蕉在线| 欧美日韩综合久久久久久 | 亚洲中文字幕一区二区三区有码在线看| xxxwww97欧美| 久久精品国产清高在天天线| netflix在线观看网站| videossex国产| 成人国产一区最新在线观看| 欧美国产日韩亚洲一区| 91久久精品国产一区二区三区| 国内精品一区二区在线观看| 亚洲最大成人手机在线| 国产 一区精品| 成人美女网站在线观看视频| 搡老妇女老女人老熟妇| 亚洲一区二区三区色噜噜| 亚洲精品456在线播放app | 国产精品亚洲美女久久久| 一边摸一边抽搐一进一小说| 精品人妻1区二区| 欧美国产日韩亚洲一区| or卡值多少钱| 99视频精品全部免费 在线| 久久久久性生活片| 色吧在线观看| 欧美人与善性xxx| 国产亚洲av嫩草精品影院| 精品久久久久久,| 淫妇啪啪啪对白视频| 免费大片18禁| 亚洲一区二区三区色噜噜| 如何舔出高潮| 精品久久国产蜜桃| 国产精品98久久久久久宅男小说| 中文字幕精品亚洲无线码一区| 日韩欧美一区二区三区在线观看| 欧美高清成人免费视频www| 最后的刺客免费高清国语| 国产三级在线视频| 99热这里只有是精品50| 最近中文字幕高清免费大全6 | 高清毛片免费观看视频网站| 色在线成人网| 人妻丰满熟妇av一区二区三区| 狠狠狠狠99中文字幕| 成人毛片a级毛片在线播放| 国产精品久久电影中文字幕| 91久久精品国产一区二区三区| 三级男女做爰猛烈吃奶摸视频| 非洲黑人性xxxx精品又粗又长| 日日撸夜夜添| 搞女人的毛片| 99精品久久久久人妻精品| 一区福利在线观看| 亚洲精华国产精华液的使用体验 | 色播亚洲综合网| 成人国产一区最新在线观看| 乱码一卡2卡4卡精品| 制服丝袜大香蕉在线| 1000部很黄的大片| 中文字幕免费在线视频6| 91久久精品国产一区二区三区| 欧美区成人在线视频| 性欧美人与动物交配| 变态另类丝袜制服| 在线观看66精品国产| 美女高潮的动态| 亚洲av成人av| 婷婷亚洲欧美| 免费在线观看成人毛片| 国产精品,欧美在线| 一个人看视频在线观看www免费| 99精品久久久久人妻精品| 九九久久精品国产亚洲av麻豆| 18+在线观看网站| 午夜福利视频1000在线观看| 91av网一区二区| 99精品在免费线老司机午夜| 久久午夜福利片| 亚洲欧美日韩无卡精品| 日韩一区二区视频免费看| 亚洲五月天丁香| 色在线成人网| av专区在线播放| 最后的刺客免费高清国语| 97人妻精品一区二区三区麻豆| 99久久精品一区二区三区| 18禁裸乳无遮挡免费网站照片| 搡老岳熟女国产| 小蜜桃在线观看免费完整版高清| 一本久久中文字幕| eeuss影院久久| 亚洲精华国产精华液的使用体验 | 日韩欧美精品免费久久| 久久国产乱子免费精品| 国产在线男女| 俺也久久电影网| 国产一区二区在线观看日韩| 18+在线观看网站| 久久久色成人| 国产免费av片在线观看野外av| 国产精品99久久久久久久久| 国产精品美女特级片免费视频播放器| 丰满的人妻完整版|