• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multipoint optimization on fuel efficiency in conceptual design of wide-body aircraft

    2018-02-02 08:10:05XiaoCHAIXiongqingYUYuWANG
    CHINESE JOURNAL OF AERONAUTICS 2018年1期

    Xiao CHAI,Xiongqing YU,Yu WANG

    College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

    1.Introduction

    The continued growth of air traffic has caused increasing demands to improve aircraft fuel efficiency for minimizing aviation’s environmental impact and for counteracting fuel prices.According to the Intergovernmental Panel on Climate Change(IPCC),the civil air transport is expected to continue increasing at a rate of 4.8%by 2036.1The contribution to global anthropogenic carbon emissions by the continued growth in aviation may increase to 15%by 2050.1Ambitious research goals of the reduction of fuel burned have been set by NASA’s Environmentally Responsible Aviation(ERA)Project2and European ‘‘Clean Sky 2” Program.3

    Traditionally,aircraft conceptual design optimizations have been generally performed to maximize the aircraft fuel efficiency at a design flight condition,4,5which is referred to as single-point optimizations and may result in designs with unsatisfying performance under off-designflight conditions.To improve the robustness of the designs and increase the aircraft fuel efficiency under actual flight operations,there is a need to consider multipleflight conditions in aircraft conceptual design optimization.The multipoint optimization in this paper means that the objective function in the aircraft conceptual design optimization involves multipleflight conditions.

    Early work with a consideration of multiple conditions has been focused on the aerodynamic shape optimizations of airfoils and wings.Buckley et al.6performed an airfoil design optimization under 18flight conditions.Lyu and Martins7investigated the impact of multipoint design optimization on a Navier-Stokes-based aerodynamic shape and planform optimization of a blended-wing-body aircraft.Liem et al.8performed a multipoint aerostructural optimization of a long-rang twin-aisle aircraft,in which high-fidelity aerodynamic and structural analysis models were used.Recently,more studies,which couple aircraft designs and air transport networks,have been conducted with the application of the concept of system of systems oriented design.9Lammering and Schneider10presented an approach focused on singleaisle market requirements.Their results showed that an increase in fuel efficiency and economics of up to 25%was feasible under the consideration of the entire mix of daily operationsofsingle-aisleaircraft.An integrated design and optimization of aircraft families and air transport networks were performed by Jansen and Perez.11Liu et al.12proposed a design index sets evaluation method combining airliner market analysis with aircraft conceptual design.

    However,there was few effort made in rapid aircraft conceptual design and optimization with a consideration of the actual uses of these aircraft in an operator’s route networks.In this paper,a new strategy to formulate multipoint design optimization problems is developed to maximize the aircraft fuel efficiency over a large number of different missions.The remainder of the paper is organized as follows:The actualflight operations of a wide-body aircraft are presented in Section 2,in which a civil jet Boeing 787-8 is chosen as the representative of wide-body aircraft based on market analysis,and itsflight missions are analyzed in terms of payloads and ranges.A multipoint optimization problem considering the actualflight missions is formulated in Section 3.A framework to solve both the single-point and multipoint optimization problems is presented in Section 4.The differences between the results from the single-point and multipoint optimizations are discussed in Section 5,followed by conclusions in Section 6.

    2.Wide-body aircraft market analysis andflight mission data

    Based on the operation capacity of an aircraft,wide-body aircraft can be generally divided into three categories:small widebody,medium wide-body,and large wide-body.According to the Boeing Current Market Outlook13,the design payloads of small wide-body,medium wide-body,and large wide-body aircraft are 200–280,280–400,and more than 400 passengers,respectively.They mainly operate for internationalflights and partially domesticflights.The Boeing current market outlook13predicted that 39620 new commercial aircraft will be delivered over the next 20 years,as shown in Fig.1.

    Although the predicted total number of wide-body aircraft to be delivered in the next 20 years is only about one-third of that of single-aisle aircraft,the total market value of widebody aircraft is about the same as that of single-aisle aircraft,as illustrated in Fig.1.The majority of wide-body aircraft is small and medium wide-body aircraft,and Boeing 787-8 is the latest widely operational small wide-body aircraft now.Also considering that China and Russia are co-developing wide-body aircraft14,a wide-body aircraft similar to Boeing 787-8 is chosen as the baseline aircraft in the following optimizations.

    To obtain a set of missions that is representative of the actual operations of the baseline aircraft,we referred to the American Research and Innovative Technology Administration (RITA)’s Bureau of Transportation Statistics flight database.15The payload and range data for all Boeing 787-8flights that took off from the United States,landed in the United States,or both was extracted.Since such data is only available for the United States market,we assume that the data can also be used to reflect other markets.These data consists of 60453flights,of which the payload and range distribution(surface)in reference to the design payload-range envelope(solid line)of Boeing 787-816is shown in Fig.2.This distribution is plotted using a 26×42 grid of bins.Each bin is 500 km in range by 1000 kg in payload.We chose the midpoint to represent the range and payload of a bin that contains at least oneflight mission.The color map shown in Fig.2 represents the number offlight missions contained within each bin.There are 426 representativeflight missions in our analysis.A more detailed analysis is provided in Fig.3.The white circle in Fig.2 represents the design point of Boeing 787-8.It can be seen that the majority of allflights were operated within a range of around 8000 km and a 30000 kg payload,respectively.It can also be observed that noflights were operated at the maximum range.Hence,current utilization in daily operations yields potential for optimization of the aircraft efficiency by means of considering off-design conditions.As Boeing 787-8 is the main competitive aircraft of our study aircraft and Boeing 787-8flight operation data in other regions is not easy to obtain,the Boeing 787-8flight data in the United States is chosen as a representative of the actual operations of the baseline aircraft and used in the following multipoint optimization study.

    Fig.1 Boeing current market outlook 2016 to 203513.

    Fig.2 Distribution of 60453flights for Boeing 787-8 and its payload-range envelope.

    Fig.3 Range and payload distributions of Boeing 787-8.

    3.Optimization problem definition

    As previously mentioned,a baseline aircraft similar to Boeing 787-8 was taken as an example for the optimizations.The range of the aircraft was designed to be 12000 km with a payload of 280 passengers,and the design cruise Mach number is 0.85,which is chosen as the same as that of the aircraft being co-developed by China and Russia.14The initial configuration of the baseline aircraft is shown in Fig.4.

    3.1.Objective function

    Generally,minimizing Direct Operating Costs(DOCs)is used as the objective of a conceptual design optimization towards improving aircraft economics.However,DOCs are sensitive to many uncertainties and scenario parameters such as fuel price,wages of crew,or operational fees.Therefore,the Speci-fic Hourly Productivity(SHP)17was chosen as the optimization objective for evaluation of aircraft economics.The parameter is defined as

    Fig.4 Configuration of baseline aircraft.

    wherempayloadis the payload,Rmissionis the range,mblockfuelis the block fuel burned,andtblocktimeis the block time.‘Block’in this paper refers to the completion of an entireflight mission,starting from taxing out and ending by taxing in.Consequently,the block fuelmblockfueland the block timetblocktimeare the total fuel burned and the total time spent in the entire trip,respectively.The parameters in Eq.(1)only depend on technical parameters that directly result from aircraft design analysis.

    For the single-point optimization problem discussed in this paper,only oneflight condition is considered.The objective of the single-point optimization,SHPsingle,is the specific hourly productivity in a designflight mission in which the aircraft is designed to transport 280 passengers over 12000 km.The expression is as follows:

    In the multipoint optimization,the objective function,SHPtotal,is defined as the weighted sum of all SHPiof each single mission.The relative frequency of each mission is obtained by normalizing its frequency with respect to the total number offlight missions.Therefore,SHPtotalis expressed as

    whereflightiis the number of each flight mission,and flighttotalis the total number of allflight missions.The Boeing 787-8flight operation data shown in Figs.2 and 3 were used in the calculation of SHPtotal.There were 426 representativeflight missions evaluated using the SHP_total analysis module(see Section 4.6).Then they were summed up to formulate SHPtotalby weighing their frequencies.

    3.2.Design variables

    There are totally eleven design variables,of whichfive geometric variables are wing configuration parameters,while the other six are engine thermodynamic cycle parameters.The design variables and their bounds are listed in Table 1.

    3.3.Design constraints

    There are several constraints imposed in the optimization problems,which are listed in Table 2.These constraints need to be satisfied at the design condition to ensure that the optimized aircraft meets the performance and geometrical requirements,including mission range,takeoff and landingfield lengths,available fuel volume,engine-out climb gradient,and rate of climb at Top Of Climb(TOC).

    4.Overall solution framework

    A multidisciplinary integrated framework for aircraft conceptual analysis and optimization18was applied to solve the optimization problems described above,as illustrated in Fig.5.The aircraft conceptual analysis framework consists of several disciplinary analysis modules,including propulsion,geometry,aerodynamics,weight,and mission performance analysis modules.Empirical formulations with various statistical data,semi-empirical equations,and some simplified numerical methods are used in the modules under considerations of rapid execution and robustness of the framework.Each module is independent and easy to be modified.The analytical methods in each discipline are briefly described below.The optimization algorithm specifies a new combination of input parameters in every loop in the optimization studies.

    4.1.Propulsion

    The propulsion module is used to estimate thrust and fuel consumption performance for various engine configurations.The basic engine architecture for the optimization performed in this study is a two-spool,separate-flow turbofan as shown in Fig.6.

    The code for calculating the engine performance is a zerodimensional steady thermodynamics analysis program.19At the engine design point,the program automatically ensures continuity of mass,speed,and energy by varying the scale factors on the performance maps for the compressor and turbine components.Off-design operation of the engine is handled through the use of component performance tables and minimization of work,flow,and energy errors.The engine is then balanced by altering the free variables of available components.The propulsion code is run for various conditions required by the performance module,and the results of engine performance are then exported in a three-dimensional array of altitude,Mach number,and thrust setting.

    Table 1 Design variables and their bounds.

    Table 2 Design constraints.

    4.2.Geometry

    A parametric geometric model based on the quasi-analytical methods20is used to define the aircraft configuration geometry.The functionality of this model is to estimate the wetted area of the aircraft and the volume of the fuel tank required by the aerodynamics and weight modules.A typical geometrical model of the aircraft configuration generated by the geometry module is shown in Fig.4.

    4.3.Aerodynamics

    The low-and high-speed aerodynamic characteristics of the aircraft are calculated by the aerodynamics module.The lift characteristics of a clean wing are computed using a quasianalytical technique.20A detailed component build-up method is used to calculate the zero-lift drag,which takes into consideration the viscous separation and the mutual interference effects between components.21The method used to estimate the lift-induced drag is the Oswald span efficiency method.20The wave drag is calculated based on the modified Korn’s equation.22The lift increment produced by flap and slat deflections at low speed is estimated based on the methods presented by Isikveren.20The total incremental drag due to one engine’s inoperative condition is also estimated in this module.

    4.4.Weight

    The weight module is used to predict the weight of each component of the aircraft.The maximum takeoff weight of the aircraft is calculated iteratively by adding the component weight,which is estimated using empirical methods.23The fuel required for the design mission is estimated by the iteration of the weight andflight performance modules.Fig.7 illustrates the definition and breakdown of the aircraft weight.

    4.5.Performance

    The performance module estimates the mission required fuel,takeofffield length,landing field length,and second-segment gradient.A typical airliner mission profile is illustrated in Fig.8.The takeoff and landing performances are calculated using a parametric expression24The main mission performance is obtained using a piecewise analytic model based on simpli-fied motion equations for typicalflight segments.25The fuel burned in a reserve mission is predicted based on the fraction of the aircraft’s maximum takeoff weight.Additional performance constraints in the optimization studies are also evaluated in the performance module.

    Fig.5 Framework of multidisciplinary analysis and optimization.

    Fig.6 Turbofan engine model with two-spool separate exhaust.

    4.6.Objective evaluation

    The specific hourly productivities,as the optimization objective,are evaluated in the SHP_single and SHP_total analysis modules as shown in the overall solution framework in Fig.5.

    In the single-point optimization,given the design payloadmpayload,designand the design rangeRmission,design,the design block fuel burnedmblockfueland the design block timetblocktimecan be predicted by the performance module detailed in Section 4.5.Based on the above information,SHPsinglecan be calculated using Eq.(2).

    In the multipoint optimization,the data of Boeing 787-8flight missions is adopted in the computation of the total speci-fic hourly productivity.For each flight mission(the given payload and range),the block fuel and block time can be obtained from the results of the mission performance analysis described in Section 4.5,and consequently the specific hourly productivity SHPifor each mission can be calculated using Eq.(2).Finally,the total specific hourly productivity SHPtotalcan be calculated according to Eq.(3).However,in the multipoint optimization loops,all designs need to meet the design condition with a design payload of 280 passengers and a design rang of 12000 km.The design condition of the current study aircraft(black circle)is slightly different from that of Boeing 787-8(white circle),as shown in Fig.2.As a result,when the aircraft operates atflight conditions near the margin of the payloadrange envelope of Boeing 787-8,it would need so much fuel that its takeoff weight may exceed its maximum takeoff weight.Thus these missions are infeasible;the productivity is set to zero on such a few missions(SHPi=0).

    Fig.7 Aircraft weight breakdown and definition.

    Fig.8 Typical airliner mission profile.

    4.7.Optimization strategy

    A Multi-Island Genetic Algorithm(MIGA)26was used to optimize both the single-point and multipoint optimization problems defined in Section 3.The technique options of the MIGA were set as shown in Table 3.

    Table 3 Technique options of MIGA.

    5.Results

    In this section,we present the results of the single-point and multipoint optimizations for a wide-body aircraft.Both the single-point and multipoint optimizations spent about 48 h on computation using a desktop PC(CPU@2.90 GHz and RAM@4.0 GB)after 5000 iterations.Table 4 lists the optimal design variables for both optimization cases,as well as additional key performance parameters.Figs.9 and 10 show the optimization convergence histories of SHPsinglein the singlepoint optimization and SHPtotalin the multipoint optimization,respectively.To clearly show the optimization convergence histories,only the best feasible design points of each generation are shown in thefigures.

    As shown in Table 4,the multipoint optimal design has a 7.72%greater total specific hourly productivity of entire flight missions compared to that of the baseline aircraft,while the increase in the total specific hourly productivity of the singlepoint optimized design is only 5.73%.

    Both the multipoint and single-point optimal designs have higher aspect ratio wings,which can reduce the induced drag of the aircraft.The multipoint optimal design has a smaller wing area and a smaller wing sweep than those of the singlepoint optimal design.The reason is that the payload,range,or both of the aircraft operating at most off-designflight conditions are smaller than those at the designflight condition.Consequently,the aircraft takeoff weight operating at offdesign flight conditions is lighter than that at the design flight condition,resulting in a smaller wing area and wing sweep in the multipoint optimal design.

    Table 4 Results of single-point and multipoint optimizations.

    Fig.9 Optimization convergence history of SHPsinglein singlepoint optimization.

    Fig.10 Optimization convergence history of SHPtotalin multipoint optimization.

    The two optimized designs have similar engine cycle parameters.Both have a moderate bypass ratio and higher overall pressure and turbine inlet temperature,which can reduce the engine thrust specific fuel consumption.

    6.Conclusions

    To consider the actual use of aircraft in route networks,this paper performed single-point and multipoint optimizations of a wide-body aircraft for the maximum fuel efficiency.The data of Boeing 787-8 flight missions was used to reflect the true objective function in the multipoint optimization.The design from the multipoint optimization results in a smaller wing area and a smaller wing sweep compared to those of the design from the single-point optimization.In addition,the design from the multipoint optimization has a 7.72%total specific hourly productivity increase of entireflight missions compared to that of the baseline aircraft,while the increase in the total specific hourly productivity of the design from the singlepoint optimization is only 5.73%.The difference between the results of the single-point and multipoint optimizations show that the multipoint optimization is a good option to further improve the aircraft efficiency by considering actualflight conditions in the aircraft conceptual design and optimization.This capability to analyze a large number offlight conditions could be extended with a little modification to other objective functions of interest for any commercial aircraft.

    Acknowledgement

    This study was supported by the Fundamental Research Funds for Central Universities(NUAA NS2016010).

    1.Penner JE,Lister HD,Griggs JD.Aviation and the global atmosphere:A special report of the intergovernmental panel on climate change.Cambridge:Cambridge University Press;1999.p.5–6.

    2.Collier F,Thomas R,Burley C.Environmentally responsible aviation—Real solution for environmental challenges facing aviation.27th international congress of the aeronautical sciences;2010 Sep 19-24;Nice,France.Hampton:NASA Langley Research Center;2010.

    3.Brunet M,Aubry S,Lafage R.The Clean Sky Program environmental benefits at aircraft level.Reston:AIAA;2015.Report No.:AIAA-2015-2390.

    4.Henderson RP,Martins JRRA,Perez RE.Aircraft conceptual design for optimal environmental performance.Aeronaut J2012;116(1175):1–22.

    5.Wang Y,Yin HL,Zhang S.Multi-objective optimization of aircraft design for emission and cost reductions.Chin J Aeronaut2014;27(1):52–8.

    6.Buckley HP,Zhou BY,Zingg DW.Airfoil optimization using practical aerodynamic design requirements.J Aircraft2010;47(5):1707–19.

    7.Lyu Z,Martins JRRA.Aerodynamic design optimization studies of a blended-wing-body aircraft.J Aircraft2014;51(5):1604–17.

    8.Liem RP,Kenway GKW,Martins JRRA.Multimission aircraft fuel-burn minimization via multipoint aerostructural optimization.AIAA J2015;53(1):104–22.

    9.Liu H,Tian Y,Gao Y,Bai J,Zheng J.System of systems orientedflight vehicle conceptual design:perspectives and progresses.Chin J Aeronaut2015;28(3):617–35.

    10.Lammering T,Schneider T.The right single-aisle for the future market.53rd AIAA aerospace sciences meeting;2015 Jan 5-9;Kissimmee,USA.Reston:American Institute of Aeronautics and Astronautics,Inc.;2015.

    11.Jansen PW,Perez RE.Coupled optimization of aircraft families andfleet allocation for multiple markets.J Aircraft2016;53(5):1485–504.

    12.Liu H,Tian Y,Liu Y,Sun Y,Wu G.Civil aircraft design indexes trade-off method based on airline network system of systems.Acta Aeronaut Astronaut Sin2016;37(1):96–111[Chinese].

    13.Boeing Commercial Airplanes.Current market outlook 2016-2035[Internet].[updated 2016 Sep 16;cited 2016 Dec 9]Available from:<http://www.boeing.com/commercial/market/>.

    14.Zhao L.China,Russia to co-develop widebody jetliner[Internet].[updated 2015 Sep 21;cited 2016 Dec 9]Available from:<http://www.chinadaily.com.cn/bizchina/2015-09/21/content_21931736.htm/>.

    15.American Research and Innovative Technology Administration’s(RITA)Bureau of Transportation Statistics.T-100 segment(all carriers)[Internet].[updated 2016 Sep 16;cited 2016 Dec 9]Available from:<http://www.transtats.bts.gov/>.

    16.Boeing Commercial Airplanes.787 Airplane characteristics for airport planning.Seattle:Boeing Commercial Airplanes;2015.Report No.:D6-58333.

    17.Lammering T,Anton E,Risse K,Franz K.Influence of off-design performance on design synthesis of laminar aircraft.J Aircraft2012;49(5):1324–35.

    18.Chai X,Yu XQ,Wang Y.Tradeoff study between cost and environmental impact of aircraft using simultaneous optimization of airframe and engine cycle.Int J Aerosp Eng2017.https://doi.org/10.1155/2017/2468535.

    19.Sellers JF,Daniele CJ.DYNGEN:a program for calculating steady-state and transient performance of turbojet and turbofan engines.Washington,D.C.:NASA;1975.Report No.:NASA TND-7901.

    20.Isikveren AT.Quasi-analytical modelling and optimization techniques for transport aircraft design[dissertation].Stockholm:Royal Institute of Technology;2002.p.25–103.

    21.Feagin CR,Morrison WD.Delta method,an empirical drag buildup technique.Washington,D.C.:NASA;1978.Report No.:NASA CR-151971.

    22.Torenbeek E.Optimum wing area,aspect ratio and cruise altitude for long range transport aircraft.Netherlands:Delft University of Technology;1994.Report No.:LR-775.

    23.Howe D.Aircraft conceptual design synthesis.London and Bury St Edmunds:Professional Engineering Publishing Ltd.;2000.p.339–61.

    24.Jenkinson LR,Simpkin P,Rhodes D.Civil jet aircraft design.London:Arnold;1999.p.223–65.

    25.Zhang S,Yu XQ.Piecewise analytic model for en-route performance of airliners.Flight Dynam2012;30(6):502–6[Chinese].

    26.Miki M,Hiroyasu T,Kaneko M.A parallel genetic algorithm with distributed environmental scheme.1999 IEEE international conference on systems,man,and cybernetics;1999 Oct 12-15;Tokyo,Japan.Piscataway:IEEE Press;1999.p.695–700.

    欧美一区二区精品小视频在线| 日本在线视频免费播放| 成人午夜高清在线视频| 久久亚洲精品不卡| 人人妻人人澡欧美一区二区| 2022亚洲国产成人精品| 日韩人妻高清精品专区| 国产精品久久久久久久电影| 久久99热6这里只有精品| 丰满人妻一区二区三区视频av| 午夜福利高清视频| 人体艺术视频欧美日本| av福利片在线观看| 久久亚洲国产成人精品v| 欧美最黄视频在线播放免费| 亚洲国产精品国产精品| 嫩草影院新地址| 亚洲av.av天堂| 精品人妻视频免费看| 亚洲人成网站在线播放欧美日韩| 黄色一级大片看看| 少妇熟女aⅴ在线视频| 国内精品一区二区在线观看| 波多野结衣巨乳人妻| 亚洲丝袜综合中文字幕| 欧美潮喷喷水| 成人二区视频| 国产精品一区www在线观看| 中文字幕精品亚洲无线码一区| 好男人在线观看高清免费视频| 一进一出抽搐动态| 午夜亚洲福利在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 尤物成人国产欧美一区二区三区| 精品久久久久久成人av| 直男gayav资源| 久久九九热精品免费| 99久久人妻综合| 青青草视频在线视频观看| 国产高清视频在线观看网站| 日本色播在线视频| 在线观看av片永久免费下载| 插逼视频在线观看| 久久久久免费精品人妻一区二区| 久久人妻av系列| 久久精品国产99精品国产亚洲性色| 一级毛片电影观看 | 99久国产av精品国产电影| 黄色视频,在线免费观看| 久久久久久久久大av| 亚洲精品久久久久久婷婷小说 | 精品无人区乱码1区二区| 国产高清有码在线观看视频| 日韩强制内射视频| 国产高清有码在线观看视频| 成人漫画全彩无遮挡| 久久99蜜桃精品久久| 国产极品精品免费视频能看的| 三级男女做爰猛烈吃奶摸视频| 欧美最新免费一区二区三区| 插逼视频在线观看| 精品人妻偷拍中文字幕| 看片在线看免费视频| 亚洲欧美日韩高清在线视频| 久久久欧美国产精品| 少妇熟女aⅴ在线视频| 网址你懂的国产日韩在线| 99久久九九国产精品国产免费| 国产真实乱freesex| 国产精品三级大全| 99久久中文字幕三级久久日本| 91麻豆精品激情在线观看国产| 少妇的逼好多水| 综合色av麻豆| 亚洲欧洲国产日韩| 久久99蜜桃精品久久| 1000部很黄的大片| 亚洲最大成人中文| 日韩欧美在线乱码| 大香蕉久久网| 夫妻性生交免费视频一级片| 天堂中文最新版在线下载 | 性欧美人与动物交配| 干丝袜人妻中文字幕| 久久久国产成人免费| 熟女人妻精品中文字幕| 久久精品夜色国产| 女人被狂操c到高潮| 久久精品国产亚洲av天美| 内地一区二区视频在线| 最近手机中文字幕大全| 国产精品爽爽va在线观看网站| 久久久久久久午夜电影| 一夜夜www| 国产成人影院久久av| 一边摸一边抽搐一进一小说| 少妇的逼好多水| 五月玫瑰六月丁香| 久久婷婷人人爽人人干人人爱| 18禁黄网站禁片免费观看直播| 亚洲av.av天堂| 亚洲av.av天堂| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 人妻系列 视频| 久久人人爽人人片av| 欧美极品一区二区三区四区| 国产片特级美女逼逼视频| 欧美zozozo另类| 我要看日韩黄色一级片| 国产黄a三级三级三级人| 久久久久久伊人网av| 久久精品久久久久久噜噜老黄 | 九九在线视频观看精品| 岛国毛片在线播放| 国产免费男女视频| 中文字幕av在线有码专区| 中出人妻视频一区二区| 夜夜夜夜夜久久久久| 亚洲精品乱码久久久v下载方式| 大又大粗又爽又黄少妇毛片口| 婷婷亚洲欧美| 夜夜看夜夜爽夜夜摸| 精品久久久久久久人妻蜜臀av| 成人亚洲精品av一区二区| 亚洲美女视频黄频| 婷婷六月久久综合丁香| 免费不卡的大黄色大毛片视频在线观看 | 亚洲精品亚洲一区二区| 村上凉子中文字幕在线| 国产私拍福利视频在线观看| 久久精品国产亚洲av香蕉五月| 亚洲一区二区三区色噜噜| 色5月婷婷丁香| 国产 一区 欧美 日韩| 中文字幕av在线有码专区| 亚洲中文字幕一区二区三区有码在线看| 午夜福利在线在线| 少妇被粗大猛烈的视频| 12—13女人毛片做爰片一| 国产女主播在线喷水免费视频网站 | 天堂中文最新版在线下载 | 插逼视频在线观看| 小说图片视频综合网站| 亚洲国产高清在线一区二区三| 亚洲精品亚洲一区二区| 亚洲精品亚洲一区二区| 亚洲成人久久性| 91av网一区二区| 男女边吃奶边做爰视频| 青春草亚洲视频在线观看| 亚洲欧洲日产国产| 久久精品国产自在天天线| 国产高清不卡午夜福利| 寂寞人妻少妇视频99o| 亚洲自拍偷在线| 九九在线视频观看精品| 黄色一级大片看看| 三级男女做爰猛烈吃奶摸视频| 全区人妻精品视频| 精品一区二区三区人妻视频| 国产高潮美女av| 91午夜精品亚洲一区二区三区| 成年女人看的毛片在线观看| 女同久久另类99精品国产91| 亚洲精品成人久久久久久| 免费电影在线观看免费观看| 精品人妻视频免费看| 村上凉子中文字幕在线| 91av网一区二区| 26uuu在线亚洲综合色| 国产高清激情床上av| 国产伦精品一区二区三区视频9| 九九久久精品国产亚洲av麻豆| 九九久久精品国产亚洲av麻豆| 久久久久久久久大av| 爱豆传媒免费全集在线观看| 亚洲精品色激情综合| 亚洲av.av天堂| 美女国产视频在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99热这里只有是精品50| 美女被艹到高潮喷水动态| 美女被艹到高潮喷水动态| 亚洲人成网站在线观看播放| 国产伦理片在线播放av一区 | 久久久午夜欧美精品| 欧美日本亚洲视频在线播放| 2022亚洲国产成人精品| av免费在线看不卡| АⅤ资源中文在线天堂| 亚洲自偷自拍三级| 国国产精品蜜臀av免费| 18禁在线播放成人免费| 在线免费十八禁| 精品欧美国产一区二区三| 国产亚洲av嫩草精品影院| 精品欧美国产一区二区三| 久久草成人影院| 日韩在线高清观看一区二区三区| 高清午夜精品一区二区三区 | 国产高清有码在线观看视频| 精品久久久久久久末码| 日本撒尿小便嘘嘘汇集6| 欧美潮喷喷水| 三级国产精品欧美在线观看| 国产蜜桃级精品一区二区三区| 国产黄a三级三级三级人| 美女黄网站色视频| 男女做爰动态图高潮gif福利片| 国产精品,欧美在线| 亚洲国产欧美人成| 国内精品宾馆在线| 亚洲人成网站在线播| 美女被艹到高潮喷水动态| 99热这里只有是精品50| 久久这里有精品视频免费| 天天一区二区日本电影三级| 悠悠久久av| 男的添女的下面高潮视频| 久久精品国产亚洲av香蕉五月| 欧美一区二区亚洲| 精品无人区乱码1区二区| 成人欧美大片| 尾随美女入室| 国产精品一区二区三区四区免费观看| 亚洲真实伦在线观看| 国产一区二区激情短视频| av在线播放精品| 亚洲精品影视一区二区三区av| 国产单亲对白刺激| 尾随美女入室| 日韩精品青青久久久久久| 99热网站在线观看| 国国产精品蜜臀av免费| 欧美精品国产亚洲| 成年女人永久免费观看视频| 丝袜美腿在线中文| 啦啦啦啦在线视频资源| 18+在线观看网站| 中文字幕av在线有码专区| 国产午夜精品一二区理论片| 亚洲经典国产精华液单| 国产精品综合久久久久久久免费| 色噜噜av男人的天堂激情| 国产一区二区在线av高清观看| 日日摸夜夜添夜夜爱| 人妻少妇偷人精品九色| 久久久久久久久久久丰满| 日韩欧美国产在线观看| 内射极品少妇av片p| 午夜福利高清视频| 欧美日韩精品成人综合77777| 国产私拍福利视频在线观看| 国产精品爽爽va在线观看网站| 亚洲五月天丁香| 51国产日韩欧美| 99热这里只有精品一区| 少妇的逼水好多| av在线蜜桃| 99热只有精品国产| 亚洲五月天丁香| 麻豆精品久久久久久蜜桃| 国产69精品久久久久777片| 国产成人a区在线观看| 99久久九九国产精品国产免费| 欧美日韩精品成人综合77777| 日韩成人av中文字幕在线观看| 干丝袜人妻中文字幕| 人妻制服诱惑在线中文字幕| 久久久午夜欧美精品| 美女黄网站色视频| 毛片一级片免费看久久久久| 日本三级黄在线观看| 岛国毛片在线播放| 搡女人真爽免费视频火全软件| 一个人免费在线观看电影| 国内精品宾馆在线| 中文字幕精品亚洲无线码一区| 日韩欧美国产在线观看| 天天一区二区日本电影三级| 国产午夜精品久久久久久一区二区三区| 亚洲精品国产成人久久av| 秋霞在线观看毛片| 亚洲欧美成人精品一区二区| 婷婷亚洲欧美| 91午夜精品亚洲一区二区三区| 久久中文看片网| 丝袜美腿在线中文| 国产成人aa在线观看| 乱码一卡2卡4卡精品| 少妇高潮的动态图| 亚洲欧洲国产日韩| 一本久久中文字幕| 国产大屁股一区二区在线视频| 蜜臀久久99精品久久宅男| 亚洲无线在线观看| 国产老妇伦熟女老妇高清| 联通29元200g的流量卡| 午夜福利高清视频| 亚洲内射少妇av| 男人的好看免费观看在线视频| 午夜久久久久精精品| 国产高清不卡午夜福利| 亚洲美女视频黄频| 插阴视频在线观看视频| 大又大粗又爽又黄少妇毛片口| 日韩欧美 国产精品| 亚洲内射少妇av| 最近手机中文字幕大全| 亚洲av不卡在线观看| 天堂av国产一区二区熟女人妻| 精品一区二区三区人妻视频| 久久久久久久午夜电影| 美女高潮的动态| 国产成人freesex在线| 免费观看a级毛片全部| 有码 亚洲区| 午夜免费激情av| av黄色大香蕉| 久久久久久久久久久免费av| eeuss影院久久| 综合色丁香网| 欧美丝袜亚洲另类| 欧美潮喷喷水| av在线蜜桃| 中文精品一卡2卡3卡4更新| 日韩高清综合在线| 大又大粗又爽又黄少妇毛片口| 亚洲av中文av极速乱| 欧美性猛交╳xxx乱大交人| 在线观看午夜福利视频| 亚洲欧美精品综合久久99| 国产伦理片在线播放av一区 | 人人妻人人澡欧美一区二区| 国产一区二区激情短视频| 精品欧美国产一区二区三| 尤物成人国产欧美一区二区三区| 亚洲国产精品合色在线| 久久人人精品亚洲av| 黄片无遮挡物在线观看| 久久久精品94久久精品| 1024手机看黄色片| 亚洲人成网站高清观看| 网址你懂的国产日韩在线| 黄片wwwwww| 亚洲av第一区精品v没综合| 99热这里只有是精品在线观看| 看片在线看免费视频| 我的老师免费观看完整版| 爱豆传媒免费全集在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲美女搞黄在线观看| 99久久九九国产精品国产免费| 亚洲精品成人久久久久久| 69av精品久久久久久| 日本在线视频免费播放| 国产白丝娇喘喷水9色精品| 91麻豆精品激情在线观看国产| 国产淫片久久久久久久久| 久久亚洲国产成人精品v| 国产高清激情床上av| 99久国产av精品国产电影| 午夜精品一区二区三区免费看| 美女脱内裤让男人舔精品视频 | 久久久精品94久久精品| 成年免费大片在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲精品粉嫩美女一区| 嘟嘟电影网在线观看| 变态另类成人亚洲欧美熟女| 男人舔女人下体高潮全视频| 欧美成人a在线观看| 观看免费一级毛片| 中文字幕av成人在线电影| 亚洲av第一区精品v没综合| 真实男女啪啪啪动态图| 精品人妻偷拍中文字幕| 国产黄a三级三级三级人| 久久九九热精品免费| 免费黄网站久久成人精品| 色综合色国产| 精品久久久久久久久亚洲| 亚洲婷婷狠狠爱综合网| 欧美最黄视频在线播放免费| 亚洲真实伦在线观看| 亚洲精品影视一区二区三区av| 国内久久婷婷六月综合欲色啪| 欧美高清成人免费视频www| 免费看a级黄色片| 在线观看美女被高潮喷水网站| 女的被弄到高潮叫床怎么办| 两性午夜刺激爽爽歪歪视频在线观看| 日韩精品青青久久久久久| 免费人成视频x8x8入口观看| 波多野结衣巨乳人妻| 成人国产麻豆网| 简卡轻食公司| 欧美不卡视频在线免费观看| 长腿黑丝高跟| 韩国av在线不卡| 岛国毛片在线播放| 爱豆传媒免费全集在线观看| 狂野欧美白嫩少妇大欣赏| 久久久久久久久中文| 久久精品久久久久久噜噜老黄 | 午夜福利在线观看吧| kizo精华| 精品一区二区免费观看| 国产视频内射| 免费av不卡在线播放| 国产一区二区三区av在线 | 国产在线精品亚洲第一网站| 国产一级毛片七仙女欲春2| 精品免费久久久久久久清纯| 亚洲av中文字字幕乱码综合| 九九久久精品国产亚洲av麻豆| 国产黄色视频一区二区在线观看 | 免费黄网站久久成人精品| 全区人妻精品视频| 九色成人免费人妻av| 啦啦啦啦在线视频资源| 欧美最新免费一区二区三区| 国产亚洲91精品色在线| 99热6这里只有精品| 国产毛片a区久久久久| 免费电影在线观看免费观看| 日韩高清综合在线| 波多野结衣巨乳人妻| 色吧在线观看| 99久国产av精品| 午夜福利在线在线| 性插视频无遮挡在线免费观看| 免费黄网站久久成人精品| 成年女人看的毛片在线观看| 有码 亚洲区| 亚洲一区高清亚洲精品| 国产成人freesex在线| 99在线人妻在线中文字幕| 老司机福利观看| 国内精品美女久久久久久| 国产国拍精品亚洲av在线观看| 成年免费大片在线观看| 国产精品一区二区在线观看99 | 一级毛片久久久久久久久女| 国产单亲对白刺激| 日本黄色视频三级网站网址| 亚洲电影在线观看av| 99久久中文字幕三级久久日本| 麻豆精品久久久久久蜜桃| 日本-黄色视频高清免费观看| 岛国在线免费视频观看| 亚洲国产精品国产精品| ponron亚洲| 亚洲aⅴ乱码一区二区在线播放| 亚洲在线观看片| 亚洲欧美精品专区久久| 插阴视频在线观看视频| 精品少妇黑人巨大在线播放 | 国产精品国产三级国产av玫瑰| 99久国产av精品| 日韩一本色道免费dvd| 亚洲五月天丁香| 97超碰精品成人国产| 久久这里有精品视频免费| 在线观看一区二区三区| 亚洲欧美中文字幕日韩二区| 亚洲色图av天堂| 久久久精品欧美日韩精品| 级片在线观看| av免费观看日本| 中文字幕精品亚洲无线码一区| 变态另类成人亚洲欧美熟女| 免费看美女性在线毛片视频| 午夜精品一区二区三区免费看| 男女做爰动态图高潮gif福利片| 三级毛片av免费| 九九在线视频观看精品| 日本av手机在线免费观看| 欧美变态另类bdsm刘玥| 亚洲精品色激情综合| 国产单亲对白刺激| av在线蜜桃| 成人无遮挡网站| 伦理电影大哥的女人| 免费大片18禁| 中文字幕av在线有码专区| 亚洲国产欧洲综合997久久,| 日韩欧美国产在线观看| 少妇被粗大猛烈的视频| 久久精品久久久久久久性| 你懂的网址亚洲精品在线观看 | 美女黄网站色视频| 亚洲人成网站在线播| 亚洲乱码一区二区免费版| 国产成人aa在线观看| 三级国产精品欧美在线观看| 一本久久精品| 人体艺术视频欧美日本| videossex国产| 麻豆成人av视频| 国产成人精品婷婷| 直男gayav资源| 精品人妻视频免费看| 国产人妻一区二区三区在| 国产老妇女一区| 亚洲av熟女| 久久久欧美国产精品| 精品午夜福利在线看| 久久精品国产亚洲av天美| 国产精品无大码| 狂野欧美白嫩少妇大欣赏| 亚洲国产高清在线一区二区三| 少妇猛男粗大的猛烈进出视频 | 国产精品不卡视频一区二区| 99热只有精品国产| 内地一区二区视频在线| 日本五十路高清| 好男人在线观看高清免费视频| 国产白丝娇喘喷水9色精品| 成人漫画全彩无遮挡| 国产色婷婷99| 久久久成人免费电影| 啦啦啦啦在线视频资源| 一进一出抽搐gif免费好疼| 中国美女看黄片| 伊人久久精品亚洲午夜| 丰满乱子伦码专区| 亚洲在线自拍视频| 九九久久精品国产亚洲av麻豆| 欧美3d第一页| 久久精品人妻少妇| 一本久久中文字幕| 看十八女毛片水多多多| 一级毛片久久久久久久久女| 国产激情偷乱视频一区二区| 爱豆传媒免费全集在线观看| 欧美高清性xxxxhd video| 国产精品无大码| 三级毛片av免费| 色哟哟哟哟哟哟| 性色avwww在线观看| 国产精品.久久久| 日本免费a在线| 97超碰精品成人国产| 国产一区二区在线av高清观看| 国产精品麻豆人妻色哟哟久久 | 亚洲欧美日韩卡通动漫| 天堂av国产一区二区熟女人妻| 色吧在线观看| 亚洲美女搞黄在线观看| 少妇人妻一区二区三区视频| 精品人妻熟女av久视频| 亚洲欧美日韩东京热| 亚洲精品粉嫩美女一区| 99热这里只有精品一区| 亚洲精品日韩av片在线观看| 日本撒尿小便嘘嘘汇集6| 成人毛片a级毛片在线播放| 男人的好看免费观看在线视频| 国产白丝娇喘喷水9色精品| 岛国在线免费视频观看| 亚洲最大成人中文| 亚洲最大成人av| 成人一区二区视频在线观看| 日韩欧美一区二区三区在线观看| 日本黄色片子视频| 午夜福利高清视频| 久99久视频精品免费| 寂寞人妻少妇视频99o| 欧美xxxx黑人xx丫x性爽| 国产白丝娇喘喷水9色精品| 日本爱情动作片www.在线观看| 看黄色毛片网站| 国产精品一区二区三区四区久久| 亚洲图色成人| 91av网一区二区| 精品无人区乱码1区二区| 欧美区成人在线视频| 中文字幕熟女人妻在线| 午夜视频国产福利| 国产成人福利小说| 成人综合一区亚洲| 深夜精品福利| 亚洲在线自拍视频| 天堂√8在线中文| 美女被艹到高潮喷水动态| 在线免费观看的www视频| 亚洲国产精品国产精品| avwww免费| 麻豆精品久久久久久蜜桃| 国内精品美女久久久久久| 亚洲七黄色美女视频| 欧美人与善性xxx| 久久综合国产亚洲精品| 国产午夜精品一二区理论片| 国产黄a三级三级三级人| 久久人妻av系列| 亚洲欧美成人综合另类久久久 | 久久久久久大精品| 久久久欧美国产精品| 丰满乱子伦码专区| 国产在线男女| 欧美性猛交黑人性爽| 精品国内亚洲2022精品成人| 美女国产视频在线观看| av黄色大香蕉| 亚洲av成人av| 在线国产一区二区在线| 天美传媒精品一区二区| 三级经典国产精品| videossex国产| 欧美三级亚洲精品| 精品一区二区三区视频在线| 日韩av不卡免费在线播放| 成人鲁丝片一二三区免费|