• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust design and analysis of a conformal expansion nozzle with inverse-design idea

    2018-02-02 08:10:01WenioGANXiouiZHANGTielinMAQinlingZHANGWuYUAN
    CHINESE JOURNAL OF AERONAUTICS 2018年1期

    Wenio GAN,Xioui ZHANG,Tielin MA,Qinling ZHANG,Wu YUAN

    aResearch Institute of Unmanned System,Beihang University,Beijing 100083,China

    bThe First Aircraft Institute,Aviation Industry Corporation of China,Xi’an 710089,China

    cComputer Network Information Center,Chinese Academy of Sciences,Beijing 100190,China

    1.Introduction

    Modernflying wing Unmanned Aerial Vehicles(UAVs)always employ the Conformal Expansion Nozzle(CEN)to improve aerodynamic/stealth integrate performance(such as the RQ-180).The CEN has special design features.On the one hand,the nozzle has good shadowing effect of the airframe to reduce Radar Cross-Storage(RCS).Its expansion surfaces have the certain curvature.The edges of exit generally are parallel to the edges of the airframe as much as possible.On the other hand,to ensure good aerodynamic performance,expansion surfaces of the nozzle need refinement design.These surfaces can improveflow features of the nozzle in complex conditions,such as expansion,compression and interference.Therefore,in view of stealth constraints,aerodynamic design and analysis of the conformal expansion nozzle have been widely concerned.

    Capone et al.1studied aerodynamic performance of the Conformal Single-Expansion Nozzle(CSEN)at different speeds.Berrier and Leavit2analyzedflow distortion characteristics of CSEN.MacLean3applied experiment methods to examine the flow characteristics of CSEN.Carlson4investigated static performance of a Single Expansion Ramp Nozzle(SERN).Capone and Schirmer5explored static internal performance of a SERN with multi-axis thrust vectoring capability.Marathe and Thiagarajan6conducted effect analysis of geometric parameters on the performance of SERN.Huang et al.7used data mining for design exploration of a SERN.Damira et al.8carried out parametric optimization of SERN.Gruhn et al.9,10has improved the SERN performance by aerodynamicflap design.These researches always focus on high speed nozzle and pay attention to parameter effect and single-point optimization.They take little consideration to multi-point performance and uncertainties for the conformal expansion nozzle of modernflying wing UAV.So,it is necessary to concern multi-point performance and uncertainties to carry out the conformal expansion nozzle design offlying wing.

    2.Design system

    2.1.Inverse-design idea

    Starting from airframe/intake-exhaust integration configuration,the design of a conformal expansion nozzle is carried out.Fig.1 shows the shape of airframe/intake-exhaustflying wing16that includes a nozzle.Only the parameters of the nozzle are adjusted in nozzle design process.

    The inverse-design idea is proposed and involves four elements.Firstly,the edges of the nozzle exit need to parallel the edges of airframe for stealth.The location of the nozzle exit is initially defined.Secondly,the area of the nozzle exit is gained by approximate isentropic expansion.Thirdly,the surfaces of the nozzle have special curvature tofit great expansion.At last,there are slip lines between shearflow of the nozzle exit and outflow to avoid shock wave and reduce inflow/outflow interference.In fact,the center line of the nozzle is close to chord of the fuselage to produce slip lines.

    The inverse-design idea is used for the parametric approach and determining basic space of design variables.On the one hand,the length,width,central point coordinates and round corner radius of the nozzle exit are 6 basic variables,which can determine the nozzle exit.On the other hand,9 cubic curves(8 of edges,1 of center)are selected to guide the streamwise of nozzle,which has 18 variables.Based on these variables,the nozzle is transformed into digital surfaces.The initial full-aircraft mesh is generated by Gridgen.The local mesh of the nozzle is automatically reconstructed by the TransFinite Interpolation(TFI)method.

    Fig.2 shows basic schematic of the nozzle view and guide curves.The nozzle has some special curvature constraints of curvature to meet the inverse-design idea.The guide curves adopt cubic spline(as Eq.(1))of 5 points,which are divided into equal segments along the chord.

    Fig.1 Shape offlying wing and airframe/intake-exhaust.

    whereSi(x)stands foryorzcoordinate values,xandxiare the coordinate values of anywhere and theith point respectively.ai,bi,cianddiare parameters which can be determined by coordinate values offive points.Based on the inverse-design idea,the middle and two end points(thefirst,third and fifth points)can be determined by the inlet and exit of the nozzle.Theyorzvalues of two other points are design variables.

    Fig.2 Schematic of nozzle view and guide curves.

    Optimization design of the conformal nozzle should not only have large thrust coefficient of the nozzle,but also ensure high lift-drag ratio of full-aircraft.The design state is as follows:Mach number is 0.6;angle of attack is 2°.The design objects are the thrust coefficient of the nozzle and lift-drag ratio of full-aircraft.The relation of thrust coefficient is shown as

    where η is the thrust coefficient;Fis the practical total thrust andFtis the ideal total thrust;ρ,V,p,p∞,A,Aeand n stand for density,velocity,pressure,freestream pressure,area,integral area and normal vector respectively.

    2.2.Robust design model

    The aircraft manufacturing process is influenced by many random factors.When the production process is stable,the actual geometric size is subject to normal distribution as Eq.(4).

    where μ is mathematical expectation and σ is standard deviation.

    Generally,the basic tolerance of high accuracy manufacture is±0.8 mm.The limit tolerance of full-aircraft shape is±1.2 mm.The tolerance of shape is translated as dimensionless standard deviations of design variables.

    There are uncertain influences of wind, flight height and velocity in realflight condition.These influences are concentrated in the variation of Mach number and the angle of attack.Theflight condition has great randomness in an uncertainty range,and the randomness is lack of a core.So the angle of attack and Mach number can reasonably be considered to be uniformly distributed.

    In the robust design process,a robust design model is needed.It adopts multi-objective optimization strategy.The mean and standard deviation of performance function should be optimized.The optimization objectives contain the meanE(K),E(η)and the standard deviation σ(K),σ(η).The model is shown as

    whereKis the lift-drag ratio at design state;X1=[x1,x2,...,xm]is design variable;Xo1is the design space of X1;Gis the geometric shape function of the nozzle;Gois the design space of the geometric shape;MalandMauare the lower and upper bounds of Mach numberMa; αland αuare the lower and upper boundaries of the angle of attack α;W1andW2are relevant parameter of design objectives,which correspond to ψ1(X)and ψ2(X);f(X)is macro expression of design objectives.The constraints satisfy 6σ criterion.The characteristic statistics are obtained by using Monte Carlo simulation sample,which is based on the surrogate model.The mean and variance of the discrete analysis are obtained as Eqs.(6)–(9).

    wheren,Ki(X),ηi(X)are sample number,the lift-drag ratio of theith sample and the thrust coefficient of theith sample respectively.

    2.3.Numerical simulation method

    The source term of γ is defined as follows:

    whereReθtis the transition Reynolds number;γeffis the effective intermittency;Fθtis the blending function;Pkis the source terms of turbulent kinetic energy in SST turbulent model.

    The destruction sources of γ andkare defined as follows:

    Reynolds numbers are given by the following expressions:

    whereyis the normal distance of near wall;the transition Reynolds numberReθtis shown as a special function.15,17Specific expressions ofReθtandFlengthare defined as follows:

    whereTu,Fλ,K′are turbulence intensity and correlation function respectively;λ andK′are new empirical correlations;FλandFK′are functions of λ andK′respectively.They are shown in Ref.15γeffis given by

    whereFreattachis the function of reattachment.It disables the modification once the viscosity ratio is large enough to cause reattachment.

    There are many constants,such asCa1,Cθt,Ca2andCe2.The detailed constants and validation encountered in the model are given in Ref.15

    2.4.Robust design system

    2.4.1.Robust design method

    Based on the robust model and inverse-design idea,the framework of the robust design method is built(Fig.3).

    The design method includes three steps.Firstly,the design idea is determined.The design problem is expressed as optimization problem.Secondly,by combining numerical simulation method,RadialBasisFunction (RBF)surrogate model18,and Multi-Object Genetic Algorithm(MOGA)19,the deterministic optimization process is built.Thirdly,based on uncertainty analysis,the robust optimization process can be determined,and the new round of multi-objective genetic algorithm optimization is carried out to gain design nozzle.Then,verification analysis on aerodynamic performance of design nozzle will be carried out.

    In deterministic optimization process,MOGA is based on surrogate model to improve the efficiency of design.RBF is employed as the surrogate model.In robust optimization process,partition design shapes of Pareto frontier are employed in uncertainty sampling and gain uncertainty analysis results.The results of uncertainty analysis are used to replace some initial samples.And then,surrogate model is rebuilt,design constraint is modified,and MOGA is carried out again to determine robust design result.

    2.4.2.Experimental design and surrogate model

    Fig.3 Framework of the robust design method.

    Because of the effectiveness of large space sampling,the Latin hypercube sample15is used as the initial experimental design.As uniformity sampling20can describe the characteristics of the sampling range and is suitable to solve multi-level problems,the uniformity sampling is used in initial and basic uncertainty analysis of robust optimization.The Monte Carlo sampling is applied to surrogate model analysis of robust optimization.

    The optimization is based on the RBF surrogate model.RBF is a feed forward neural network with strong selfadaptive and learning abilities(Eq.(25)).It is widely used in aerodynamic optimization.15

    2.4.3.Optimization algorithm and grid deformation

    MOGA has been real-coded as the optimization algorithm.To evaluate thefitness of each individual in the population,the value of each objective is determined,and then the normalized value offitness is expressed as21

    The method combines two objective functions as a scalar value.wis a random number varying in a range between 0 and 1.It is randomly generated for each solution vector in each generation.f’1jandf’2jare the normalized values off1jandf2j(values of objective functions forjth solution)respectively.They are calculated as follows:

    The algorithm has four steps.Firstly,a random population in sizeNis generated.Secondly,after evaluation of initial population,non-dominated solutions are determined and archived.And then offspring population is generated using roulette wheel selection,crossover and mutation operators.At last,after producing child population,the next generation(λ′+ μ′)-selection strategy is applied as survivor selection rule(μ′stands for the number of a generation;λ′is the number of offspring of the μ′individuals).In the process of survival selection,λ′offspring is produced and the respectivefitness is calculated.And then,according to (λ′+ μ′)-selection strategy,the best μ′chromosomes in λ′+ μ′ones are selected as the next population members in each generation.22In each generation,the archive of non-dominated solution is updated by the current population.

    TFI method has been widely adapted to grid deformation.23It is used to compute the displacements in the interior of the grid blocks in design process.

    The displacements are computed in the interior by straightline interpolation in the direction:

    Then the match of the displacements must be added along other two directions.

    Finally,the grid deformation isfinished as

    where dx,(s,t,u),and(ξl, ηl, ζl)are displacement,original coordinate and normalized coordinate respectively;superscripts 1,2,3 stand for three directions;w1,w2,w3,w4,w5andw6are six weight function;NI,NJandNKstand for the maximum value of ξl,ηland ζlrespectively.

    3.Design results and analysis

    3.1.Design results and basicflow features

    Fig.4 shows samples and Pareto frontier of deterministic design.The distribution of Pareto frontier is uniform.Since the inverse-design idea can effectively control basic design space,the number of samples is less than 100.It is shown that the design optimization has low computation cost and excellent optimization efficiency.

    The design result and Pareto frontier of robust design are shown in Fig.5.ψ1and ψ2are expressed in Eq.(5),whereW1=-1 andW2=-200.Their thrust coefficient and liftdrag ratio are less than deterministic design,because the robust design compromises the robustness and values of design objects.Different design results are given in Table 1.The robust design has minimum σ(K)and σ(η).It greatly improves the robustness of design result.

    Fig.4 Samples and Pareto frontier of deterministic design.

    Fig.6 shows guide curves of the design nozzle.Based on stealth requirements,the edges of exit parallel to the edges of airframe.To improve exhaust performance,the exit has four round corners.Inside,guide curves expand and tend to parallel with symmetry plane.Outside,guide curves expand and shrink with the airframe as soon as possible.These will reduce the spanwiseflow interference between nozzle and airframe.To reduce the chordwise effect of exhaust,upper guide curves are S-shape to match airframe as much as possible.Lower guide curves slowly expand and become linear to match the trailing edge of airframe.The center guide curve is almost straight to ensure the good macro performance of exhaust.

    Figs.7 and 8 show thrust coefficient and lift-drag ratio of the design nozzle respectively.The robust design result has better robustness of Mach number and angle of attack than deterministic design.Compared to original design,thrust coefficient and lift-drag ratio have obviously been improved(the thrust coefficient of nozzle and the lift-drag ratio of full-aircraft are increased by 2.3%and 6.7%in design state,respectively).

    Fig.9 shows Mach number distribution of the design nozzle at different spanwise sections.Firstly,flow begins to expand from entrance.Secondly,there are weak compressions to maintain lower pressure(correspond to high Mach number)in the middle of the nozzle.And then,pressure is adjusted by expansion at trailing edge.Finally,internalflow mixes into outflow using slow compression.These are beneficial for reducing the drag of front half and increasing the thrust of rear half.The expansions are obvious along the spanwise direction.They are related with inflow/outflow interference of the nozzle.There are slip lines between internal and externalflow(as red dotted line in Fig.9)to meet the inverse-design idea.

    Fig.10(a)showsflow field of design state.Mach number distribution of cross sections gradually changes from round to rectangular ‘‘peach”.The interference between internal and externalflow causes separation to induce vortices and secondaryflow.The secondaryflow mixes with the mainstream to form the peach of cross section.The streamlines are characterized by eddy viscosity in Fig.10(b).These show that outlet streamlines of nozzle almost parallel to the edges of airframe(correspond to slip lines of Fig.9).There are special strong shear layers,whose viscosity increases significantly.

    Fig.5 Design result and Pareto frontier of robust design.

    Fig.6 Guide curves of design nozzle.

    Fig.7 Thrust coefficient of design nozzle(α =2°).

    Fig.8 Lift-drag ratio of design nozzle(Ma∞=0.60).

    Table 1 Comparison of design results.

    Fig.9 Mach number distribution of typical spanwise sections(Ma∞ =0.60,α =2°).

    Fig.10 Flow field of design state(Ma∞ =0.60,α=2°).

    3.2.Performance of robust design nozzle

    Generally,there are some off-design states offlying wing.Aerodynamic performance of the design nozzle is particularly analyzed in off-design conditions(Ma∞=0.60,0.65 and 0.70)now.

    Fig.11 shows the thrust coefficient of the nozzle at different Mach numbers.The thrust coefficient increases more quickly at small angle of attack,but decreases at large angle of attack.There is separation at large angle of attack.The interference between internal and externalflow causes great variation of pressure distribution and thrust coefficient.Fig.12 shows lift-drag ratio of full-aircraft at different Mach numbers.With Mach number increasing,maximum lift-drag ratio is reduced obviously.

    Fig.13 shows density distribution of the middle sections at typical state(Ma∞=0.60,α =0°),where ‘‘inf” stands for free stream.As shown in Fig.13 the development offlow filed is similar with the design state(Fig.9).Density distribution of the typical sections(Ma∞=0.60, α =6°)are shown in Fig.14.The expansion area changes slightly at rear of the nozzle.It is available for maintaining high pressure to increase the thrust coefficient.

    Fig.15 shows limiting streamlines and pressure coefficientCpin different conditions(Ma∞=0.60,α =0°and 6°).At α =6°,because of shock wave,pressure gradient increases at rear of the airframe and the inflow/outflow interference becomes slightly large along the spanwise.These will slightly increase pressure of the nozzle to maintain large thrust coeffi-cient,but decrease lift-drag ratio significantly.

    Fig.11 Thrust coefficient of the nozzle at different Mach numbers.

    Fig.12 Lift-drag ratio offull-aircraftatdifferentMach numbers.

    Fig.13 Density distribution of typical sections(Ma∞=0.60,α =0°).

    Fig.16 showsflow field of spanwise middle section at large angle of attack(Ma∞=0.65 andMa∞=0.70).The expansion region is large at the front half of nozzle.It helps for maintaining largethrustcoefficient.AsMach number increases,the variation of expansion induces that the thrust coefficient increases a little.

    Limiting streamlines of large angle of attack are shown in Fig.17.There is significant separation at high speed and large angle of attack(Ma∞=0.70,α =8°).We can see clear spiral point and saddle point on the surface of airframe.The lift-drag ratio will decrease sharply.

    Compared to design state,the thrust coefficient of high speed off-design states is a little larger,but lift-drag performance decreases obviously.

    Fig.14 Density distribution of typical sections(Ma∞=0.60,α =6°).

    4.Conclusions

    Based on the inverse-design idea,considering uncertainties of geometry,Mach number and angle of attack,the robust design system combines deterministic optimization and robust optimization and is applied to the design of a conformal expansion nozzle.The mean and standard deviation of design objects meet the requirement of 6σ.The robustness of design objects is improved obviously.

    The design nozzle employs special curved surfaces tofit the anticipation of the inverse-design idea.Its aerodynamic performance of design state is improved(the thrust coefficient of nozzle and the lift-drag ratio of full-aircraft are increased by 2.3%and 6.7%,respectively).It has ‘‘peach” type Mach number distribution features of cross sections in design state.Compared to the design state,the thrust coefficient is a little larger and the lift-drag ratio is lower in high speed off-design conditions.

    The present method has integrated the advantages of robust optimization and inverse-design idea.It provides a feasible design strategy for the nozzle design offlying wing.

    Acknowledgements

    This study was co-supported by the Aeronautical Science Foundation of China(No.2016ZA51003),Aerospace Science and Technology Foundation of China(No.2017129001),National Key R&D Program of China(No.2016YFB 1200100)and National Natural Science Foundation of China(No.11502267).

    1.Capone FJ,Re RJ,Bare EA.Parametric investigation of single expansion-Ramp nozzles at Mach numbers from 0.60 to 1.20.Washington,D.C.:NASA;1992.Report No.:NASA-TP-3240.

    2.Berrier BL,Leavit LD.Static internal performance of singleexpansion-ramp nozzles with thrust-vectoring capability up to 60 deg.Washington,D.C.:NASA;1984.Report No.:NASA-TP-2364.

    3.MacLean MK.Static internal performance tests of single expansion ramp nozzle concepts designed with LO consideration.Reston:AIAA;1993.Report No.:AIAA-1993-2429.

    4.Carlson J.Prediction of static performance for single expansion ramp nozzles.Reston:AIAA;1993.Report No.:AIAA-1993-2571.

    5.Capone FJ,Schirmer AW.Static internal performance a single expansion ramp nozzle with multi-axis thrust vectoring capability.Washington,D.C.:NASA;1994.Report No.:NASA-TM-4450.

    6.Marathe A,Thiagarajan V.Effect of geometric parameters on the performances of single expansion ramp nozzle.Reston:AIAA;2005.Report No.:AIAA-2005-4429.

    7.Huang W,Wang ZG,Ingham DB,Ma L,Pourkashania M.Design exploration for a single expansion ramp nozzle(SERN)using data mining.Acta Astronaut2013;83:10–7.

    8.Damira SK,Marathe AG,Sudhakar K,Issacs A.Parametric optimization of single expansion ramp nozzle(SERN).Reston:AIAA;2006.Report No.:AIAA-2006-5188.

    9.Gruhn P,Henckels A,Kirschstein S.Flap contour optimization forhighly integrated SERN nozzles.AerospSciTechnol2000;4:555–65.

    10.Gruhn P,Henckels A,Sieberger G.Improvement of the SERN nozzle performance by aerodynamicflap design.Aerosp Sci Technol2002;6:395–405.

    11.Lee DS,Periaux J,Onate E,Gonzalez LF,Qin N.Active transonic aerofoil design optimization using robust multi-objective evolutionary algorithms.J Aircraft2011;48(3):1084–94.

    12.Li J,Gao ZH,Huang JT,Zhao K.Robust design of NLF airfoils.Chin J Aeronaut2013;26(2):309–18.

    13.Huang JT,Gao ZH,Zhao K,Bai JQ.Robust design of supercritical wing aerodynamic optimization considering fuselage interfering.Chin J Aeronaut2010;23(5):523–8.

    14.Li J,Gao ZH,Huang JT,Zhao K.Aerodynamic design optimization of nacelle/pylon position on an aircraft.Chin J Aeronaut2013;26(4):850–7.

    15.Gan WB.Research on aerodynamic numerical simulation and design of near space low-Reynolds unmanned aerial vehicles[Dissertation].Xi’an:Northwestern Polytechnical University;2014[Chinese].

    16.Gan WB,Zhang XC.Design optimization of a three-dimensional diffusing S-duct using a modified SST turbulent model.Aerosp Sci Technol2017;63:63–72.

    17.Keerati S,Pramote D,Ekachai J.Correlations for modeling transitional boundary layers under influences of freestream turbulence and pressure gradient.Int J Heat Fluid Fl2009;30(1):66–75.

    18.Jackson IRH.Convergence properties of radial basis function.Constr Approx1988;4(1):243–6.

    19.Zitzler E,Thiele L.Multi-objective evolutionary algorithms:a comparative case study and the strength Pareto approach.IEEE T Evolut Comput1999;3(4):257–71.

    20.Swiler LP,Slepoy R,Giunta AA.Evaluation of sampling methods in constructing response surface approximations.Reston:AIAA;2006.Report No.:AIAA-2006-1827.

    21.Zhou G,Min H,Gen M.A genetic algorithm approach to the bi criteria allocation of customers to warehouses.Int J Prod Econ2003;86(1):35–45.

    22.Rabiee M,Zandieh M,Ramezani P.Bi-objective partialflexible job shop scheduling problem:NSGA-II,NRGA,MOGA and PAES approaches.Int J Prod Res2012;50(1):1–16.

    23.Weatherill PW,Soni BK,Thompson JF.Handbook of grid generation.London:CRC Press Inc;1999.p.15–80.

    精品免费久久久久久久清纯| 欧美激情国产日韩精品一区| 国产免费男女视频| 亚洲成人av在线免费| 22中文网久久字幕| 日本午夜av视频| 欧美精品国产亚洲| 有码 亚洲区| 国国产精品蜜臀av免费| 一级二级三级毛片免费看| 综合色丁香网| 免费观看人在逋| 成年女人永久免费观看视频| 美女国产视频在线观看| 2021天堂中文幕一二区在线观| 国产爱豆传媒在线观看| 亚洲精品久久久久久婷婷小说 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产成年人精品一区二区| 国产一区二区亚洲精品在线观看| 日本免费a在线| 禁无遮挡网站| 免费看日本二区| videos熟女内射| 日韩成人伦理影院| 免费观看在线日韩| 哪个播放器可以免费观看大片| 亚洲av福利一区| av在线播放精品| 老司机影院成人| 欧美成人免费av一区二区三区| av专区在线播放| 老司机影院毛片| av播播在线观看一区| 亚洲18禁久久av| av在线播放精品| 亚洲欧美一区二区三区国产| 精品久久久久久久久久久久久| av在线亚洲专区| 日韩欧美 国产精品| 五月伊人婷婷丁香| a级毛片免费高清观看在线播放| 精品久久久久久久末码| 人妻少妇偷人精品九色| 三级毛片av免费| 亚洲美女搞黄在线观看| 欧美高清成人免费视频www| 九九在线视频观看精品| 午夜日本视频在线| 亚洲av免费在线观看| 久久精品久久精品一区二区三区| 精品一区二区三区视频在线| 99久久人妻综合| 尾随美女入室| 欧美+日韩+精品| 全区人妻精品视频| 免费观看a级毛片全部| 一级毛片电影观看 | 国产淫语在线视频| 国产精品一区二区三区四区免费观看| 又粗又爽又猛毛片免费看| 国产精品一及| av在线播放精品| 中文乱码字字幕精品一区二区三区 | 亚洲国产精品专区欧美| 美女xxoo啪啪120秒动态图| 成人性生交大片免费视频hd| 高清在线视频一区二区三区 | 国产精品,欧美在线| 美女xxoo啪啪120秒动态图| 国产精品久久视频播放| 亚洲成人久久爱视频| 老师上课跳d突然被开到最大视频| 天天一区二区日本电影三级| 男女啪啪激烈高潮av片| 国产一区亚洲一区在线观看| av视频在线观看入口| 亚洲欧美清纯卡通| 日韩 亚洲 欧美在线| 国产精品永久免费网站| 亚洲国产日韩欧美精品在线观看| 久久久久久久久久久免费av| ponron亚洲| 美女国产视频在线观看| 少妇裸体淫交视频免费看高清| 99久久精品国产国产毛片| 精品99又大又爽又粗少妇毛片| 久久久久久久久中文| 熟女电影av网| 久久精品久久久久久噜噜老黄 | 亚洲在线自拍视频| 国产精品国产高清国产av| 2022亚洲国产成人精品| 国产精品国产三级国产av玫瑰| 我要搜黄色片| 一级黄片播放器| 午夜久久久久精精品| 日韩国内少妇激情av| 日韩一本色道免费dvd| 我的女老师完整版在线观看| 国产精品女同一区二区软件| 欧美xxxx黑人xx丫x性爽| 欧美成人精品欧美一级黄| 欧美日本视频| 久久精品人妻少妇| 国产男人的电影天堂91| 最后的刺客免费高清国语| 久久久久久久国产电影| 熟妇人妻久久中文字幕3abv| 汤姆久久久久久久影院中文字幕 | 国产精品一及| 99久久无色码亚洲精品果冻| 国产私拍福利视频在线观看| 欧美精品国产亚洲| 一本久久精品| 久久精品国产亚洲av天美| 伊人久久精品亚洲午夜| 日本免费在线观看一区| 欧美日韩精品成人综合77777| 青春草亚洲视频在线观看| 国产精品久久久久久精品电影小说 | 日韩亚洲欧美综合| 亚洲国产精品久久男人天堂| 日本熟妇午夜| 欧美日韩在线观看h| 久久久精品欧美日韩精品| 精品一区二区三区视频在线| 国产又黄又爽又无遮挡在线| 波野结衣二区三区在线| 少妇被粗大猛烈的视频| 国产黄色小视频在线观看| 建设人人有责人人尽责人人享有的 | av黄色大香蕉| 人人妻人人澡人人爽人人夜夜 | 国产免费一级a男人的天堂| 久久婷婷人人爽人人干人人爱| 91在线精品国自产拍蜜月| 亚洲一区高清亚洲精品| 尾随美女入室| 国产av在哪里看| 狂野欧美激情性xxxx在线观看| 亚洲欧美中文字幕日韩二区| 久久人人爽人人片av| 天堂网av新在线| 在线天堂最新版资源| www.色视频.com| 国产免费视频播放在线视频 | 赤兔流量卡办理| 22中文网久久字幕| 国产精品三级大全| 成人性生交大片免费视频hd| 欧美潮喷喷水| 成人毛片a级毛片在线播放| 床上黄色一级片| 国产真实乱freesex| 成人一区二区视频在线观看| 寂寞人妻少妇视频99o| 日韩大片免费观看网站 | 国产又色又爽无遮挡免| 又爽又黄无遮挡网站| 波多野结衣巨乳人妻| 亚洲精品乱码久久久久久按摩| 国产亚洲午夜精品一区二区久久 | 亚洲欧洲日产国产| 亚洲国产精品成人久久小说| 欧美潮喷喷水| 中文天堂在线官网| 国产一区二区亚洲精品在线观看| 国产精品嫩草影院av在线观看| 免费黄网站久久成人精品| 天堂av国产一区二区熟女人妻| 国产极品精品免费视频能看的| 99热网站在线观看| 免费搜索国产男女视频| 99久久成人亚洲精品观看| 亚洲美女搞黄在线观看| 小蜜桃在线观看免费完整版高清| 日本黄色视频三级网站网址| 亚洲美女视频黄频| 舔av片在线| 性色avwww在线观看| 简卡轻食公司| 亚洲国产成人一精品久久久| 99热全是精品| 精品久久久久久久人妻蜜臀av| 我的老师免费观看完整版| 高清av免费在线| 成人av在线播放网站| 看片在线看免费视频| 22中文网久久字幕| 乱人视频在线观看| 麻豆av噜噜一区二区三区| 尾随美女入室| 2021天堂中文幕一二区在线观| 欧美一区二区国产精品久久精品| 少妇人妻精品综合一区二区| 精品久久久久久久人妻蜜臀av| 亚洲激情五月婷婷啪啪| 久久久久久大精品| 色视频www国产| 欧美人与善性xxx| 国产 一区精品| 日韩av在线大香蕉| 99久久人妻综合| 日本免费在线观看一区| 变态另类丝袜制服| 国产精品国产三级国产专区5o | 中国国产av一级| 又爽又黄无遮挡网站| 国产毛片a区久久久久| 国产精品久久久久久精品电影| 最近手机中文字幕大全| 青春草视频在线免费观看| 久久久亚洲精品成人影院| 中国国产av一级| 国产v大片淫在线免费观看| 亚洲欧美日韩东京热| 村上凉子中文字幕在线| 日日干狠狠操夜夜爽| 欧美成人午夜免费资源| 欧美日韩一区二区视频在线观看视频在线 | 69av精品久久久久久| 欧美成人午夜免费资源| 99视频精品全部免费 在线| 97超视频在线观看视频| av女优亚洲男人天堂| kizo精华| 日本色播在线视频| 性插视频无遮挡在线免费观看| 国产 一区 欧美 日韩| ponron亚洲| 深爱激情五月婷婷| 精品久久久久久成人av| 国产精品一区二区在线观看99 | 中文欧美无线码| 成人午夜高清在线视频| 亚洲图色成人| 高清av免费在线| 婷婷色综合大香蕉| 日韩精品青青久久久久久| 尾随美女入室| 久久这里只有精品中国| 亚洲五月天丁香| 国产免费福利视频在线观看| 亚洲最大成人av| 欧美3d第一页| 永久免费av网站大全| 听说在线观看完整版免费高清| 晚上一个人看的免费电影| 亚洲第一区二区三区不卡| 久久综合国产亚洲精品| 国产淫语在线视频| 亚洲精品成人久久久久久| 99久国产av精品国产电影| 国产午夜精品一二区理论片| 爱豆传媒免费全集在线观看| 欧美高清性xxxxhd video| 日本免费在线观看一区| 国产高清有码在线观看视频| 国产午夜精品一二区理论片| 长腿黑丝高跟| 日韩欧美国产在线观看| 精华霜和精华液先用哪个| 国产精品熟女久久久久浪| 日韩国内少妇激情av| 亚洲18禁久久av| 久热久热在线精品观看| 亚洲精品自拍成人| 国产亚洲av嫩草精品影院| 亚洲,欧美,日韩| 国产精品人妻久久久影院| 久久精品国产99精品国产亚洲性色| 免费观看在线日韩| 性插视频无遮挡在线免费观看| 秋霞伦理黄片| 日韩三级伦理在线观看| 色尼玛亚洲综合影院| 国产亚洲5aaaaa淫片| 免费观看的影片在线观看| 免费看光身美女| 一级毛片电影观看 | 成人无遮挡网站| 国产精品人妻久久久久久| 国产成人91sexporn| 韩国av在线不卡| 久久精品91蜜桃| 久久6这里有精品| 看黄色毛片网站| 99久久中文字幕三级久久日本| 超碰97精品在线观看| 国产女主播在线喷水免费视频网站 | 日本wwww免费看| 国产中年淑女户外野战色| 欧美区成人在线视频| 午夜亚洲福利在线播放| 尾随美女入室| 我要看日韩黄色一级片| av专区在线播放| 久久久久久久久大av| 国产69精品久久久久777片| av在线蜜桃| 天天躁日日操中文字幕| 国产精品乱码一区二三区的特点| 嫩草影院精品99| 国产 一区 欧美 日韩| av免费观看日本| 久久人人爽人人片av| 午夜福利在线观看免费完整高清在| 日日摸夜夜添夜夜爱| 免费av观看视频| 丰满人妻一区二区三区视频av| 国产一级毛片在线| 亚洲国产精品sss在线观看| 亚洲精品国产av成人精品| 日本熟妇午夜| 日本免费a在线| 国产一区有黄有色的免费视频 | 国产成人免费观看mmmm| 国产精品伦人一区二区| 亚洲精品乱码久久久久久按摩| 久久久久九九精品影院| 欧美高清成人免费视频www| 97人妻精品一区二区三区麻豆| 中文乱码字字幕精品一区二区三区 | 老司机影院毛片| 少妇裸体淫交视频免费看高清| 可以在线观看毛片的网站| 久久久成人免费电影| 精品人妻熟女av久视频| av在线蜜桃| 男插女下体视频免费在线播放| 99久久九九国产精品国产免费| 国产欧美另类精品又又久久亚洲欧美| 真实男女啪啪啪动态图| av免费在线看不卡| 午夜久久久久精精品| 男人舔女人下体高潮全视频| 一卡2卡三卡四卡精品乱码亚洲| 久久99精品国语久久久| 99热全是精品| 久久欧美精品欧美久久欧美| 午夜激情欧美在线| 又粗又爽又猛毛片免费看| 99在线视频只有这里精品首页| 三级男女做爰猛烈吃奶摸视频| 99国产精品一区二区蜜桃av| 亚洲国产精品合色在线| av视频在线观看入口| 熟妇人妻久久中文字幕3abv| 少妇裸体淫交视频免费看高清| 97超碰精品成人国产| 国产av不卡久久| videos熟女内射| 亚洲av成人精品一二三区| 极品教师在线视频| 日本午夜av视频| 青春草国产在线视频| 男女啪啪激烈高潮av片| 熟女人妻精品中文字幕| 精品人妻偷拍中文字幕| 精品人妻熟女av久视频| 日韩精品青青久久久久久| 能在线免费观看的黄片| 天天躁夜夜躁狠狠久久av| 国产老妇伦熟女老妇高清| 免费观看在线日韩| 中文乱码字字幕精品一区二区三区 | 日本免费一区二区三区高清不卡| 麻豆成人午夜福利视频| ponron亚洲| 亚洲国产精品成人久久小说| 男女啪啪激烈高潮av片| 国产精品国产三级国产专区5o | 一卡2卡三卡四卡精品乱码亚洲| 97人妻精品一区二区三区麻豆| 免费看av在线观看网站| 亚洲自拍偷在线| 麻豆精品久久久久久蜜桃| 久久精品人妻少妇| 中文字幕精品亚洲无线码一区| 91久久精品电影网| 乱系列少妇在线播放| 日韩欧美 国产精品| 日本欧美国产在线视频| 亚洲中文字幕一区二区三区有码在线看| 一区二区三区免费毛片| av.在线天堂| 插阴视频在线观看视频| 身体一侧抽搐| 久久久国产成人免费| av.在线天堂| 2021少妇久久久久久久久久久| 国产熟女欧美一区二区| 中文乱码字字幕精品一区二区三区 | 亚洲精品久久久久久婷婷小说 | 国产精品一区二区性色av| 免费观看的影片在线观看| 午夜福利在线观看免费完整高清在| 2021少妇久久久久久久久久久| 日本黄大片高清| 好男人在线观看高清免费视频| 亚洲第一区二区三区不卡| 99久国产av精品国产电影| 我的老师免费观看完整版| 欧美色视频一区免费| 国产免费一级a男人的天堂| 国产淫片久久久久久久久| 国产爱豆传媒在线观看| 免费在线观看成人毛片| 中文欧美无线码| 免费看av在线观看网站| 久久精品夜夜夜夜夜久久蜜豆| 国产精品久久电影中文字幕| 美女国产视频在线观看| 日本一本二区三区精品| 久久人人爽人人爽人人片va| 欧美变态另类bdsm刘玥| 国产精品精品国产色婷婷| 久久久久免费精品人妻一区二区| 嫩草影院新地址| www.av在线官网国产| 欧美zozozo另类| 国产黄片美女视频| 2021少妇久久久久久久久久久| 人妻夜夜爽99麻豆av| 亚洲国产精品成人久久小说| 国产亚洲5aaaaa淫片| 国产精品伦人一区二区| 婷婷六月久久综合丁香| 亚洲在线观看片| 国产av不卡久久| 看黄色毛片网站| 免费大片18禁| 99久久九九国产精品国产免费| 一区二区三区免费毛片| 两个人的视频大全免费| 麻豆精品久久久久久蜜桃| 亚洲成人中文字幕在线播放| 免费黄色在线免费观看| 夫妻性生交免费视频一级片| 观看美女的网站| 成人欧美大片| 久久久久久久久中文| 国产高潮美女av| 国产精品久久久久久av不卡| 欧美高清成人免费视频www| 国产精品,欧美在线| 国产精品伦人一区二区| 色网站视频免费| 欧美一区二区国产精品久久精品| 亚洲国产精品久久男人天堂| 久久欧美精品欧美久久欧美| 最近手机中文字幕大全| 岛国毛片在线播放| 18禁在线播放成人免费| 欧美潮喷喷水| 国产精品国产三级国产av玫瑰| 国产精品久久电影中文字幕| 亚洲欧美日韩无卡精品| 亚洲欧美一区二区三区国产| 高清午夜精品一区二区三区| 91精品伊人久久大香线蕉| 日韩国内少妇激情av| 国产精品精品国产色婷婷| 少妇的逼水好多| 长腿黑丝高跟| 亚洲人成网站高清观看| 九九久久精品国产亚洲av麻豆| 嘟嘟电影网在线观看| 亚洲精品久久久久久婷婷小说 | 晚上一个人看的免费电影| 91午夜精品亚洲一区二区三区| 国产麻豆成人av免费视频| 国产真实伦视频高清在线观看| 亚洲久久久久久中文字幕| 爱豆传媒免费全集在线观看| 中文资源天堂在线| 好男人视频免费观看在线| 91久久精品电影网| 国产单亲对白刺激| 色吧在线观看| 午夜免费男女啪啪视频观看| 永久网站在线| 桃色一区二区三区在线观看| 热99在线观看视频| 免费人成在线观看视频色| 少妇裸体淫交视频免费看高清| 三级男女做爰猛烈吃奶摸视频| 简卡轻食公司| 精华霜和精华液先用哪个| av黄色大香蕉| 九九热线精品视视频播放| 九草在线视频观看| 久久久久网色| 五月伊人婷婷丁香| 精品久久久噜噜| 欧美性猛交╳xxx乱大交人| h日本视频在线播放| 国产老妇伦熟女老妇高清| 国产一区二区三区av在线| 中文在线观看免费www的网站| 国产亚洲午夜精品一区二区久久 | 97超碰精品成人国产| 国产精品久久久久久av不卡| 久久热精品热| 内地一区二区视频在线| 国产av不卡久久| 日本熟妇午夜| 国产片特级美女逼逼视频| 久久国产乱子免费精品| 久久久精品大字幕| 欧美一区二区亚洲| 美女脱内裤让男人舔精品视频| 日本欧美国产在线视频| 三级国产精品欧美在线观看| 日韩欧美精品免费久久| 亚洲经典国产精华液单| 久久午夜福利片| 精品国产露脸久久av麻豆 | 男女边吃奶边做爰视频| 美女被艹到高潮喷水动态| 天堂√8在线中文| 天堂网av新在线| 亚洲熟妇中文字幕五十中出| 日本一本二区三区精品| 最近最新中文字幕免费大全7| 天堂影院成人在线观看| 美女国产视频在线观看| 乱码一卡2卡4卡精品| 久久久久久久久久黄片| 成人美女网站在线观看视频| 国产亚洲91精品色在线| 久久久精品大字幕| 99在线人妻在线中文字幕| 亚洲三级黄色毛片| 精品久久国产蜜桃| 亚洲人成网站在线观看播放| 男女国产视频网站| 中文资源天堂在线| 国产高清有码在线观看视频| 99久久九九国产精品国产免费| 天天躁日日操中文字幕| 色网站视频免费| 亚洲四区av| 天天躁夜夜躁狠狠久久av| 国产精品一二三区在线看| 欧美日韩在线观看h| 亚洲av不卡在线观看| 亚洲美女视频黄频| 观看免费一级毛片| av免费在线看不卡| 一级毛片aaaaaa免费看小| 最近视频中文字幕2019在线8| 国产精品国产高清国产av| 亚洲成人久久爱视频| 精品国产三级普通话版| 亚洲人成网站在线观看播放| 日韩欧美精品免费久久| 日韩欧美精品v在线| 国产日韩欧美在线精品| 日本爱情动作片www.在线观看| 两个人的视频大全免费| 亚洲国产成人一精品久久久| 精品久久国产蜜桃| 在线a可以看的网站| 99热全是精品| 日韩三级伦理在线观看| 黄色配什么色好看| 麻豆成人午夜福利视频| 国产伦精品一区二区三区视频9| 国产精品电影一区二区三区| 91久久精品国产一区二区成人| 中文天堂在线官网| 九九爱精品视频在线观看| 欧美一区二区国产精品久久精品| 小说图片视频综合网站| 又爽又黄无遮挡网站| av免费在线看不卡| 高清视频免费观看一区二区 | 日本三级黄在线观看| 狂野欧美激情性xxxx在线观看| 最近中文字幕2019免费版| 麻豆精品久久久久久蜜桃| 国产精品人妻久久久影院| 国产精品一区二区三区四区免费观看| 热99re8久久精品国产| 精品久久久久久电影网 | 18禁在线无遮挡免费观看视频| 免费看a级黄色片| 天堂网av新在线| 男女视频在线观看网站免费| 国产三级中文精品| 丝袜喷水一区| 免费观看性生交大片5| 国产成人精品久久久久久| 欧美成人精品欧美一级黄| 成年女人永久免费观看视频| 熟女电影av网| 简卡轻食公司| 我的女老师完整版在线观看| 伊人久久精品亚洲午夜| 久久精品夜色国产| 日韩大片免费观看网站 | a级毛片免费高清观看在线播放| .国产精品久久| 婷婷色av中文字幕| 床上黄色一级片| 精品国产露脸久久av麻豆 | 亚洲av成人精品一区久久| 69人妻影院| 日本免费一区二区三区高清不卡| 国产亚洲av片在线观看秒播厂 | 亚洲va在线va天堂va国产| 国产 一区精品| 久久这里有精品视频免费|