• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reduction rules-based search algorithm for opportunistic replacement strategy of multiple life-limited parts

    2018-02-02 08:09:51XuyunFUShishengZHONG
    CHINESE JOURNAL OF AERONAUTICS 2018年1期

    Xuyun FU,Shisheng ZHONG

    Department of Mechanical Engineering,Harbin Institute of Technology at Weihai,Weihai 264209,China

    1.Introduction

    Much equipment must be continuously maintained under certain maintenance policies to ensure the safety and reliability.This especially applies to aircraft engines,nuclear power plants and other complex equipment whose failure may result in disastrous consequences.Every year,equipment operators invest many human resources and materials in equipment maintenance.For example,Air China spends over 300 million USD($)on aircraft engine maintenance every year.Therefore,equipment maintenance has attracted the attention of both the industrial circle and the academic circle.

    Many equipment maintenance problems can be abstractly deemed as optimization problems,and one of the important problems is Opportunistic Maintenance(OM).1–4Preventive Maintenance(PM)and Corrective Maintenance(CM)are two widely used maintenance policies.PM is regularly performed on equipment to lessen its likelihood of failing.CM is performed after failure occurrence.OM means the combination of PM and CM.Every equipment halt for failure occurrence or other reasons is deemed as an ‘opportunity’,and even if there is no PM activity planned to be carried out at this time,some PM activities may be shifted to this earlier moment.OM can effectively reduce the number of maintenance occasions,thus reducing the cost for disassembling and assembling equipment.5Many results from the study of OM have been achieved in multiple aspects such as modelling,algorithms and engineering applications.6–11

    As a variant of the OM problem,the opportunistic replacement of multiple Life-Limited Parts(LLPs)is a problem widely existing in industry.LLPs are components with mandatory replacement limits,which are also called ‘life limits’.The life limits are often specified in the maintenance manual by equipment manufacturers,and equipment operators must abide by the life limits.When the operation time reaches its life limit,an LLP must be replaced no matter what its true technical status is;if not,the equipment will not be allowed to operate according to relevant regulations.In order to ensure that the LLP life does not exceed its life limit,equipment operators must accurately record all the LLP data.To a piece of equipment with multiple LLPs,if LLPs are replaced in advance,life wastage of LLPs will be caused;if all LLPs are not replaced until their life limits are reached,the number of maintenance occasions will be significantly increased.12How to balance the number of maintenance occasions and the wastage of LLPs is the goal of the opportunistic replacement of multiple LLPs.

    George et al.were thefirst to come up with the opportunistic replacement of multiple LLPs.13,14They studied the opportunistic replacement of two LLPs atfirst.When an LLP needs to be replaced,it is checked whether the residual life of the other LLP is lower than a certain threshold.If yes,the other LLP also needs to be replaced;if not,the other LLP will not be replaced.The solution to this threshold is given.The strategy for the opportunistic replacement of two LLPs also applies to the opportunistic replacement of multiple LLPs.The same threshold is used for all LLPs.This replacement strategy cannot guarantee to identify the optimal solution for the opportunistic replacement of multiple LLPs. Epstein and Wilamowsky further proposed the solution to the optimal replacement strategy involving the least calculation for the opportunistic replacement of two LLPs.15Dickman et al.studied the opportunistic replacement of multiple LLPs through the nonlinear 0–1 integer programming model and the linear mixed integer programming model,16pointed out that the solving difficulty under the finite time horizon is higher than that under the infinite time horizon,and studied the integer programming model of the opportunistic replacement of two LLPs under the finite time horizon.17Andre′asson expanded the model,studied the opportunistic replacement of multiple LLPs under thefinite time horizon,builded the dynamic programming model and the linear integer programming model,studied the convex hull of the feasible solution under the linear integer programming model,and pointed out that the convex hull is generally full-dimensional.18Almgren et al.further theoretically proved that the opportunistic replacement of multiple LLPs is an NP-hard problem and proposed an acquisition method of a new class of facets.19For cost monotones with time,another constraint is added:the equipment is maintained only when the replacement of at least one LLP is necessary.This constraint can reduce the time consumed to obtain the optimal solution.When maintenance occasions arefixed,the problem is solved through a greedy algorithm.

    The study in this article is based on problems encountered in aircraft engine maintenance.LLP cost is an important part of aircraft engine maintenance cost.Both maintenance occasions in the whole life cycle and LLPs replaced in each maintenance affect the total LLP cost in the whole life cycle of aircraft engines.How tofind the optimal replacement strategy is a difficulty in aircraft engine maintenance.Obviously,this is a problem about the opportunistic replacement of multiple LLPs.According to the literature review,no quick and effective method has been applied to such engineering applications so far.

    This article starts from the problem solution space,analyzes the conditions of the feasible solution and optimal solution,suggests the reduction rules for the problem solution space,and proposes a quick search algorithm for the opportunistic replacement strategy of multiple LLPs.This search algorithm can identify one or several optimal solutions.

    The remaining part of this article is organized as follows:first,the opportunistic replacement of multiple LLPs is formally described,the solution space is analyzed,and the solution space reduction rules and the search algorithm process are proposed;then,a numerical experiment of the algorithm is carried out using randomly generated problems;finally,a practical application case is given.

    2.Problem description

    Consideration is given to the opportunistic replacement problem with the equipment total lifeTtandn(n≥2)LLPs.The disassembling and assembling cost involved in the replacement of LLPs iscb,which is independent of the number of replaced LLPs.Each LLP is denoted asAi(i=1,2,...,n),its life limit is denoted asti,lim,and its cost is denoted asci.The equipment operation time is denoted asT,and the operation time ofAiis denoted asti.With the increase inT,tiincreases accordingly.Whenti=ti,lim,Aimust be replaced,and the incurred cost iscb+ci.After the replacement ofAi,tireturns to zero and begins to accumulate again.To reduce the number of maintenance occasions in the whole life cycle,certain LLPs may be replaced in advance when others are replaced,i.e.,there exists an ‘opportunity’,so that the disassembling and assembling cost is reduced but some lives of LLPs are wasted.The number of maintenance occasions inTtis denoted asm,and each maintenance occasion is denoted asTj(j=1,2,...,m).m,Tjand the LLPs replaced in each maintenance all influence the total LLP costCin the whole life cycle.The aim of this article is to determine the optimal opportunistic replacement strategy of LLPs,i.e.,determinem,T1,T2,...,Tmand the LLPs replaced in each maintenance,so thatCis the lowest.

    The opportunistic replacement of multiple LLPs can be expressed as

    where s=[m,T1,T2,...,Tj,...,Tm,e1,1,e1,2,...,ei,j,...,en,m]is the decision variable vector;ei,jmeans whetherAiis replaced in thejth maintenance(1 for replacement and 0 for nonreplacement);the calculation ofti(T)is shown in Eq.(2);Ω={s=[m,T1,T2,...,Tj,...,Tm,e1,1,e1,2,...,ei,j,...,en,m]|m∈ N∩[0,Tt],Tj∈ N∩[0,Tt),ei,j∈{0,1}}is the solution space,and N is the natural number set.

    whereT0=0,ti(T0)is the initial operation time ofAi.

    3.Search algorithm

    3.1.Analysis of solution space

    The opportunistic replacement of LLPs is a combinatorial optimization problem.It is not difficult to obtain the solution space scale of this problem according to the definition domain of decision variables,as shown in Eq.(3).

    As can be seen,the solution space scale of this problem is large,and the main influencing factors are the numbernof LLPs and the total lifeTtof equipment.Even if the total life of equipment and the number of LLPs are not large,it is still impossible to obtain the optimal solutions through the complete traversal of solution space.

    Equipment maintenance follows a natural time sequence,and thus the solution space can be naturally denoted as a tree,as shown in Fig.1.The root nodeN0means the initial state(T=0),the child nodes ofN0mean thefirst maintenance,the child nodes ofN11,N21,etc.mean the second maintenance,and so on.Each node of the tree except the root node means the corresponding maintenance.The decision variables contained in each node corresponding to thejth maintenance areTjandei,j(i=1,2,...,n).mcorresponds to the length of the path fromN0to the leaf node.The path fromN0to any leaf node corresponds to a solution to the problem.

    Therefore,the search algorithm may be used to solve the problem.To improve the search efficiency,the solution space can be reduced in the following aspects:(A)to only traverse feasible solutions;(B)to only traverse the values of the decision variables which may lead to optimal solutions in the traversal of the child nodes of nodes;(C)the timely termination of the search of the nonoptimal solutions.As a result,the reduction rules for the solution space are studied next in four aspects:solution feasibility,determination of the replacement of LLPs,determination of the maintenance occasion and solution optimality.

    3.2.Reduction rule for feasibility

    It is not difficult to obtain the following reduction rule for feasibility based on the constraints in Eq.(1).

    Reduction rule for feasibility:Consider the opportunistic replacement problem of multiple LLPs and its solution space tree.Nj-1is any node of the solution space tree.IfNj-1has a child nodeNj,thenTj-1<Tj≤Tj-1+min(ti,lim-ti(Tj-1)|i=1,2,...,n).Further,ifti,lim-ti(Tj-1)-(Tj-Tj-1)=0,thenei,j=1.

    The reduction rule for feasibility covers the range of values of the decision variableTjand the sufficient condition ofei,j=1.

    The following two lemmas can also be easily proven based on the constraints in Eq.(1).

    Fig.1 Solution space tree.

    Lemma 1.Consider two LLPsAiandA′iof the same type.If there existsTaso thatti(Ta)≥t′i(Ta),wheretiis the operation time ofAiandt′iis the operation time ofA′i,then all the feasible replacement strategies forAiapply toA′iwhenT>Ta.

    Lemma 2 is about two feasible solutions:at some operation time of the equipment,if the operation time of all LLPs corresponding to one feasible solution is longer than that corresponding to the other feasible solution,then the replacement strategies corresponding to this feasible solution after this operation time also apply to the other feasible solution.

    3.3.Reduction rules for replacement of LLPs

    The proof of Reduction rule 1 for replacement of LLPs is given in Appendix A.

    According to Reduction rule 1 for replacement of LLPs,when equipment is sent for maintenance,determining replaced LLPs in ascending order of each LLP’s residual life can guarantee to reach the optimal solution,and the traversal of all the possible combinations of LLPs is unnecessary.

    The proof of Reduction rule 2 for replacement of LLPs is given in Appendix B.

    Fig.3 presents Reduction rule 2 for replacement of LLPs.As shown in Fig.3,in Scenario 1,A3is replaced atTj;in Scenario2,A3isreplacedatTj+1;whenT=Tj+1+1,ti(T)≥t′i(T)(i=1,2,3);Scenario 2 is not worse than Scenario 1.

    According to Reduction rule 2 for replacement of LLPs,when equipment is sent for maintenance,the LLPs which have reached their life limits must be replaced;in addition,if another LLP needs to be replaced,its residual life should be shorter than the life limits of the LLPs already replaced this time.It is unnecessary to replace the LLPs whose residual lives are longer than the life limits of the replaced LLPs.

    3.4.Reduction rule for maintenance occasion

    Reduction rule for maintenance occasion:Consider the opportunistic replacement problem of multiple LLPs and its solution space tree.Njis any node of the solution space tree.Ifti,lim-ti(Tj-1)- (Tj-Tj-1)> 0(i=1,2,...,n),then there must exist a feasible solution not includingNjthat is not inferior to the feasible solutions includingNj.

    Reduction rule for maintenance occasion is similar to Proposition 3 of Almgren et al.19Its proof can also refer to Proposition 3’s proof.

    Fig.2 Reduction rule 1 for replacement of LLPs.

    Fig.3 Reduction rule 2 for replacement of LLPs.

    Fig.4 Reduction rule for maintenance occasion.

    Fig.4 presents reduction rule for maintenance occasion.As shown in Fig.4,in Scenario 1,A1,A2andA3are replaced atTj;in Scenario 2,A1,A2andA3are replaced atTj′;whenT=Tj′+1,ti(T)≥t′i(T)(i=1,2,3);Scenario 2 is not worse than Scenario 1.

    According to reduction rule for maintenance occasion,the optimal solution can be determinately traversed if and only if there exists an LLP reaching its life limit when equipment is sent for maintenance.In other words,for the child nodeNjofNj-1,lettingTj=Tj-1+min(ti,lim-ti(Tj-1)|i=1,2,...,n)can guarantee to traverse the optimal solution,and the traversal of (Tj-1,Tj-1+min(ti,lim-ti(Tj-1)|i=1,2,...,n)]is unnecessary.

    3.5.Reduction rules for optimality

    SupposeNais a node of the solution space tree,but not a leaf node.The estimated lower-bound valueCe(Na)of the objective function of all the solutions containingNacan be calculated with

    Reduction rule 1 for optimality:Consider the opportunistic replacement problem of multiple LLPs and its solution space tree.The best value of the objective function of all the traversed solutions is denoted asCmin.Nais a node of the solution space tree,but not a leaf node.IfCe(Na)>Cmin,then the solution containingNacannot be the optimal solution.

    Reduction rule 1 for optimality is evident.

    According to Reduction rule 1 for optimality,once it is found that the estimated lower-bound value of the objective function of all the solutions containing the current node exceeds the best value of the objective function of all the traversed solutions in the search process,the search of the path containing the current node will be terminated.

    The proof of Reduction rule 2 for optimality is given in Appendix C.

    According to Reduction rule 2 for optimality,in the search process of child nodes of a node,if the replaced LLPs of each child node are determined in ascending order of the residual lives,and it is found that the estimated lower-bound value of the objective function of all the solutions containing the current child node exceeds the best value of the objective function of all the traversed solutions,the search of the child nodes of the node will be terminated.

    3.6.Search algorithm process

    The reduction rule for feasibility,the two reduction rules for the replacement of LLPs and the reduction rule for maintenance occasion can be deemed as the generation rules of nodes on the solution space tree,and the two reduction rules for optimality can be deemed as the search termination rules.Based on the above reduction rules,a search algorithm for the opportunistic replacement strategy of multiple LLPs is proposed.

    Step 1.Initialize the optimal valueCmin,the optimal leaf node setSmin,the live node listSLand the root nodeN0.Cminis initially set as a large number,Smin=?,SL=?,T0=0.

    Step 2.Judge whethermin(ti,lim-ti(T0)i=1,2,...,n|

    )≥Tt.If true,Cmin=0,Smin=?,and terminate the search;otherwise,addN0toSL.

    Step 3.TraverseSLin the reserve sequence of the adding of nodes.IfSL=?,terminate the search;otherwise,extract the last node ofSLand designate it as the current nodeNc.

    Step 4.A setSRis formed for the residual lives of the LLPs ofNc.The total number of elements inSRisK;obviously,K≤n.TraverseSRin ascending order of residual lives.Initializek=1,and denote thekth residual life astk,R.

    Step 5.Denote the minimum life limit of all the LLPs whose residual lives are shorter than or equal totk,RinNcastc,lim.Judge whethertk,R≥tc,lim.If true,return to Step 3;otherwise,generate thekth child nodeNc,kofNc.The maintenance occasion ofNc,kisTc+1=Tc+min(ti,lim-ti(Tc)|i=1,2,...,n),and the replaced LLPs are those whose residual lives are shorter than or equal totk,R.

    Step 6.Judge whetherTc+1+min(ti,lim-ti(Tc+1)|i=1,2,...,n.)≥Tt.If true,updateCminandSmin,and return to Step 3;otherwise,proceed to the next step.

    Step 7.Judge whetherCe(Nc,k)>Cmin.If true,return to Step 3;otherwise,proceed to the next step.

    Step 8.AddNc,ktoSL,k=k+1.Ifk≤K,return to Step 5;otherwise,return to Step 3.

    4.Numerical experiment

    The following numerical experiment is carried out in order to verify the algorithm.

    The algorithm is used to solve randomly generated problems for the opportunistic replacement of multiple LLPs.The algorithm is achieved by Java.Ttis 25000,30000,35000,40000,45000,50000,55000 and 60000 respectively,andnis 5,6,7,8,9,10,11 and 12 respectively.20 problems are randomly generated for each group of(Tt,n),wherecb~U(100000,300000),ti,lim~U(15000,30000),ci~U(30000,300000),andti(0)~U(0,ti,lim).The numerical experiment is conducted on an ordinary computer(CPU:Intel Core(TM)i7,memory:4 GB).The timetconsumed for solving each problem,the total numbercnof searched nodes,the total numberccof terminated nodes and the total numberclof searched leaf nodes are respectively recorded.The results are shown in Table 1.tavg,cn,avg,cc,avgandcl,avgin Table 1 mean the average values oft,cn,ccandclrespectively.

    As can be seen from Table 1,tavg,cn,avg,cc,avgandcl,avggradually increase with the increase ofTtandn.

    The sumcf,avgofcc,avgandcl,avgmeans the number of searched feasible solutions(including those terminated in advance or those not terminated),reflecting the effectiveness of the node generation rules.Fig.5 shows the comparison betweenthenaturallogarithmvalueofcf,avgandthenaturallogarithmvalueoftheestimatedupperlimitcuofthesolutionspace scale in the search algorithm whenTt=40000 andTt=60000.ComparingEq.(5)with Eq.(3),wecanseethatcuismuchsmaller than the solution space scale of the problem.As can be seen from Fig.5,cf,avgis much lower thancu.We takeTt=60000 andn=12 as an example.The solution space scale of the problem is about e1159191andcuis about e119,butcf,avgis only about 127.9.Therefore,the node generation rules in the search algorithm are effective.pavg=cc,avg/(cc,avg+cl,avg)means the proportion of the number of terminated feasible solutions inthe number ofsearched feasible solutions,reflecting theeffectivenessoftheterminationrules.AscanbeseenfromFig.6,pavggradually increases with the gradual increase ofTtandn.WhenTt≥40000 orn≥7,pavgis above 0.75.WhenTt=60000 andn=12,pavgis 0.99995.Therefore,the termination rules in the search algorithm are effective.

    As can be seen from Table 1,whenTt≤55000 andn≤11,tavg≤37918 ms.WhenTt=60000andn=12,tavg=1046724 ms,i.e.about 17.4 min.WhenTtandncontinue to increase,tavgwill be several hours or longer based on the trend oftavg.This means that it is inadvisable to directly use the algorithm in the engineering applications with highTtandnif there is no strong computing power.

    5.Case

    Air China is one of the largest commercial airlines in China.We developed a system named‘Civil Aircraft Engine HealthManagement and Maintenance Decision Support System’for Air China in order to manage aircraft engine operation and maintenance data and to supply maintenance decision support.The main functions of the system include basic data management,operation and maintenance data management,condition monitoring,removal deadline prediction,maintenance plan optimization,maintenance workscope decision,cost and budget management,and maintenance effect evaluation.The system has been applied to Air China since 2010.20

    Table 1 Numerical experiment results.

    The aircraft engine is a typical repairable system with multiple LLPs,and the LLP replacement cost is a major part of the maintenance cost.CFM56-5B is taken as an example.CFM56-5B contains 20 LLPs,and the replacement of the whole set of LLPs costs about 2.6 million USD.When determining the maintenance workscope of an aircraft engine before a shop visit,engineers often have to consider which LLPs should be replaced.Normally engineers will set a maintenance objective according to their experience.The maintenance objective is total expectedflight cycles or hours after maintenance,and often is set to be the mean time between overhaul.If its current life plus the maintenance objective is less than or equal to its life limit,an LLP is considered to meet the maintenance objective.When it meets the maintenance objective,an LLP does not to be replaced.When it does not meet the maintenance objective,an LLP must be replaced.Because the system has recorded detailed data of all LLPs,to-be-replaced LLPs are easily determined.

    The LLP replacement strategy determined by the above method may lead to the high total LLP cost in the whole life cycle,and it is difficult for engineers to consider LLP replacement strategy comprehensively from the perspective of the whole life cycle.Therefore,we apply the proposed algorithm to determining LLP replacement strategy in Air China.A CFM56-5B engine is taken as an example.Table 2 is the LLP list of the engine.

    According to the historic maintenance data,the mean time between overhaul is about 12000 FCs andcbis about 160000 USD.We supposeTt=60000FCs.

    Firstly,we use the traditional method to determine LLP replacement strategy in the whole life cycle.Each maintenance occasion is when there exists an LLP reaching its life limit.The maintenance objective is 12000 FCs.The results are shown in Table 3.The number of maintenance occasions is 4,and the total LLP cost is 9740820 USD.

    Then,the algorithm proposed in this article is used to search the optimal opportunistic replacement strategy of LLPs in the whole life cycle.Two optimal solutions are obtained by this algorithm,and the optimal value is 7912360 USD,which is 1828460 USD less than the strategy determined by the traditional method.The number of maintenance occasions of these two optimal solutions is 5,and each maintenance occasion and the replaced LLP number in each maintenance are shown in Table 4.

    Fig.5 Natural logarithm value for number of searched feasible solutions(cf,avg)and estimated upper limit of solution space scale in search algorithm(cu).

    Fig.6 Proportion of number of terminated feasible solutions in number of searched feasible solutions.

    The time consumed by this algorithm is 9995 ms.In the numerical experiment,whenTt=60000 andn=12,the time consumed by this algorithm is about 17.4 min,104.7 times as much as the time consumed in this case.The main reason for this phenomenon is that many LLPs in this case have the same life limit.Although the LLPs with the same life limit have different initial operation time,once several of them are replaced at the same time,the replaced LLPs will have the same operation time.The LLPs with the same operation time and life limit can be deemed as an LLP group.As can be seen from Step 5 of this algorithm,the LLPs in such a group should be replaced at the same time or should remain nonreplaced at the same time.The existence of such LLP groups will significantly reduce the solution spacescalewhich needsto besearched in this algorithm.This characteristic can be found in various aircraft engines widely used nowadays.Therefore,this algorithm is applicable to the engineering applications concerning opportunistic replacement of multiple LLPs in aircraft engines.

    Table 2 LLP list for some CFM56-5B engine.

    Table 3 Results of traditional method.

    6.Conclusions

    A quick search algorithm for the opportunistic replacement strategy of multiple LLPs is proposed based on six reduction rules.According to these reduction rules,the search algorithm can identify one or several optimal solutions.

    The numerical experiment shows that these six reduction rules are effective,and the time consumed by the algorithm is less than 38 s if the total life of equipment is shorter than 55000 and the number of LLPs is less than 11.When the total life of equipment is longer than 60000 and the number of LLP is more than 12,the consumed time will be more than 17.4 min.

    For the opportunistic replacement of multiple LLPs in aircraft engines,we confirm that the algorithm consumes a short time,and it is applicable to the engineering applications concerning opportunistic replacement of multiple LLPs in aircraft engines.

    The maintenance occasions in the model is affected only by LLPs.In engineering applications,maintenance occasions are also affected by equipment performance degradation,component failure and other factors.Therefore,the next step is tostudy the optimization of equipment maintenance occasions based on multiple factors during the whole life cycle.

    Table 4 Optimal solutions.

    Acknowledgements

    This study is co-supported by the Key National Natural Science Foundation of China(No.U1533202),the Civil Aviation Administration of China(No.MHRD20150104)and the Fundamental Research Funds for the Central Universities(No.HIT.NSRIF.201704).

    Appendix A.Proof for Reduction rule 1 for replacement of LLPs

    WhenT>Tj+1,sincet′a(Tj+1)=0,t′a(Tj+1)≤ta(Tj+1).According to Lemma 1,t′a(T)<ta,lim.

    To sum up,s′is a feasible solution.According to Eq.(1),C(s′)≤C(s).It is thus proven.

    Appendix B.Proof for Reduction rule 2 for replacement of LLPs

    WhenT=Tj,ta,lim-t′a(Tj)=ta,lim-ta(Tj-1)- (Tj-Tj-1)can be obtained through Eq. (2). Substituteta,lim-ta(Tj-1)- (Tj-Tj-1)≥tb,liminto it,ta,lim-t′a(Tj)≥tb,lim> 0.Thus,t′a(Tj)<ta,lim.

    To sum up,s′is a feasible solution.According to Eq.(1),C(s′)≤C(s).It is thus proven.

    Appendix C.Proof for Reduction rule 2 for optimality

    ForNaandN′a,whenj≤a-1,ei,j=e′i,jandti(Tj)=t′

    Sincetc+1,lim>tc+1(Ta),Ce(N′a)-Ce(Na)≥ 0.It is thus proven.

    1.Dekker R.Applications of maintenance optimization models:A review and analysis.Reliab Eng Syst Saf1996;51(3):229–40.

    2.Nowakowski T,Werbin′ka S.On problems of multicomponent system maintenance modelling.Int J Autom Comput2009;6(4):364–78.

    3.Dekker R,Wildeman RE,Van der Duyn Schouten FA.A review of multi-component maintenance models with economic dependence.Math Methods Oper Res1997;45(3):411–35.

    4.Cho DI,Parlar M.A survey of maintenance models for multi-unit systems.Eur J Oper Res1991;51:1–23.

    5.Ab-Samat H,Kamaruddin S.Opportunistic Maintenance(OM)as a new advancement in maintenance approaches:A review.J Qual Maint Eng2014;20(2):98–121.

    6.Kececioglu D,Sun F-B.A general discrete-time dynamic programming model for the opportunistic replacement policy and its application to ball-bearing systems.Reliab Eng Syst Saf1995;47(3):175–85.

    7.Zhang XH,Zeng JC.A general modeling method for opportunistic maintenance modeling of multi-unit systems.Reliab Eng Syst Saf2015;140:176–90.

    8.Epstein S,Wilamowsky Y.A replacement schedule for multicomponent life-limited parts.Nav Res Logist Q1982;29(4):685–92.

    9.Fard N,Zheng XT.An approximate method for non-repairable systems based on oppurtunistic replacement policy.Reliab Eng Syst Saf1991;33(2):277–88.

    10.Hu JQ,Zhang LB.Risk based opportunistic maintenance model forcomplex mechanicalsystems.ExpSystAppl2014;41(6):3105–15.

    11.Bedford T,Dewan I,Meilijson I,Zitrou A.The signal model:A model for competing risks of opportunistic maintenance.Eur J Oper Res2011;214(3):665–73.

    12.Ghobbar AA,Cator E,Mayordomo AF.A decision support tool for strategic engine maintenance planning and life limited parts.Stjepandic′J,Rock G,Bil C,editors.Concurrent engineering approaches for sustainable product development in a multidisciplinary environment.London:Springer;2013.p.449–61.

    13.George LL,Lo YH.An opportunistic look-ahead replacement policy.J Soc Logist Eng1980;14(4):51–5.

    14.Day JA,George LL.Opportunistic replacement of fusion power system parts.Reliability and maintainability symposium;1982 Jan 22–24;Los Angeles,USA;1982.

    15.Epstein S,Wilamowsky Y.Opportunistic replacement in a deterministic environment.Comput Oper Res1985;12(3):311–22.

    16.Dickman B,Epstein S,Wilamowsky Y.A mixed integer linear programming formulation for multi-component deterministic opportunisticreplacement.JOperResSocIndia1991;28(3):165–75.

    17.Dickman B,Wilamowsky Y,Epstein S.Modeling deterministic opportunistic replacement as an integer programming problem.Am J Math Manage Sci1990;10(3–4):323–39.

    18.Andre′asson N.Optimization of opportunistic replacement activities in deterministic and stochastic multi-component systems[dissertation].Sweden:Chalmers University of Technology and Go¨teborg University;2004.p.29–93.

    19.Almgren T,Andre′asson N,Patriksson M,Stro¨mberg AB,Wojciechowski A,O¨nnheim M.The opportunistic replacement problem:theoretical analyses and numerical tests.Math Methods Oper Res2012;76(3):289–319.

    20.Fu XY,Zhong SS,Zhu JM.Civil aeroengine health management and maintenance decision support system:development and application.2013 Aug 12–14;Aviation technology,integration,and operations conference.Los Angeles,USA.Reston:AIAA;2013.p.12–4.

    久久精品国产亚洲av香蕉五月| 精品卡一卡二卡四卡免费| 精品不卡国产一区二区三区| 日韩欧美一区二区三区在线观看| 亚洲精品中文字幕一二三四区| 国产麻豆成人av免费视频| 久久国产精品人妻蜜桃| 精品国产亚洲在线| 欧美午夜高清在线| 国产精品久久视频播放| 91大片在线观看| 亚洲色图av天堂| 91字幕亚洲| 久久精品影院6| 嫁个100分男人电影在线观看| 亚洲国产中文字幕在线视频| 侵犯人妻中文字幕一二三四区| 欧美在线黄色| 日本 欧美在线| 校园春色视频在线观看| 一本大道久久a久久精品| 亚洲欧美激情在线| 一区二区日韩欧美中文字幕| av网站免费在线观看视频| 老司机午夜福利在线观看视频| 欧美日本视频| 涩涩av久久男人的天堂| 狠狠狠狠99中文字幕| 亚洲人成电影免费在线| 免费一级毛片在线播放高清视频 | 在线观看免费午夜福利视频| 成人精品一区二区免费| 女人高潮潮喷娇喘18禁视频| 亚洲人成77777在线视频| 69精品国产乱码久久久| 国产激情欧美一区二区| av天堂在线播放| 久久久国产精品麻豆| av福利片在线| 99精品在免费线老司机午夜| 久久久久亚洲av毛片大全| 一二三四社区在线视频社区8| 99riav亚洲国产免费| 丰满人妻熟妇乱又伦精品不卡| 亚洲av五月六月丁香网| 午夜免费观看网址| 国产亚洲av嫩草精品影院| 正在播放国产对白刺激| 亚洲国产欧美日韩在线播放| 亚洲av电影在线进入| 国产精品秋霞免费鲁丝片| 亚洲精品av麻豆狂野| 亚洲三区欧美一区| 99国产精品免费福利视频| 久久性视频一级片| 免费一级毛片在线播放高清视频 | 色av中文字幕| 亚洲三区欧美一区| 亚洲成av片中文字幕在线观看| 国产亚洲av嫩草精品影院| 久久久久久久久免费视频了| 男人舔女人的私密视频| 制服丝袜大香蕉在线| 成人国语在线视频| 老司机在亚洲福利影院| 少妇被粗大的猛进出69影院| tocl精华| 丁香六月欧美| 亚洲国产精品sss在线观看| 国产精品精品国产色婷婷| x7x7x7水蜜桃| 亚洲自偷自拍图片 自拍| 亚洲国产精品sss在线观看| 日日干狠狠操夜夜爽| 91麻豆av在线| 黄色成人免费大全| 一二三四社区在线视频社区8| 国产av又大| 怎么达到女性高潮| 午夜免费成人在线视频| cao死你这个sao货| 淫妇啪啪啪对白视频| 色哟哟哟哟哟哟| 99在线人妻在线中文字幕| 欧美日韩福利视频一区二区| 香蕉久久夜色| 久久狼人影院| 国产精品久久视频播放| 久久人妻av系列| 激情视频va一区二区三区| 国产精品二区激情视频| 免费在线观看亚洲国产| 不卡av一区二区三区| 日韩 欧美 亚洲 中文字幕| 色播亚洲综合网| 亚洲国产精品久久男人天堂| 不卡一级毛片| 成人免费观看视频高清| e午夜精品久久久久久久| 中文字幕精品免费在线观看视频| 少妇被粗大的猛进出69影院| 免费在线观看黄色视频的| 中文字幕高清在线视频| 男女下面进入的视频免费午夜 | 精品熟女少妇八av免费久了| 日韩国内少妇激情av| 国产真人三级小视频在线观看| 免费搜索国产男女视频| 国产精品一区二区免费欧美| 老熟妇仑乱视频hdxx| videosex国产| 午夜久久久在线观看| 女同久久另类99精品国产91| 91成年电影在线观看| 亚洲免费av在线视频| 亚洲最大成人中文| 精品乱码久久久久久99久播| 极品人妻少妇av视频| 国产伦一二天堂av在线观看| av欧美777| 99riav亚洲国产免费| 看免费av毛片| 搡老岳熟女国产| av超薄肉色丝袜交足视频| 制服人妻中文乱码| 天天躁夜夜躁狠狠躁躁| 亚洲黑人精品在线| 看免费av毛片| 日韩 欧美 亚洲 中文字幕| 欧美成人一区二区免费高清观看 | 中文字幕另类日韩欧美亚洲嫩草| 最近最新中文字幕大全电影3 | 日韩成人在线观看一区二区三区| 一边摸一边抽搐一进一小说| 波多野结衣巨乳人妻| 人人妻人人澡欧美一区二区 | 精品国产亚洲在线| 欧美激情高清一区二区三区| 午夜成年电影在线免费观看| 欧美+亚洲+日韩+国产| 国产伦人伦偷精品视频| 国产人伦9x9x在线观看| 免费在线观看影片大全网站| 久久中文字幕人妻熟女| 国内久久婷婷六月综合欲色啪| 国产午夜福利久久久久久| 国产三级黄色录像| 国产成人啪精品午夜网站| 亚洲国产高清在线一区二区三 | 欧美成人性av电影在线观看| 久久青草综合色| 男女午夜视频在线观看| 91国产中文字幕| 波多野结衣巨乳人妻| 免费少妇av软件| 亚洲精品久久国产高清桃花| 9191精品国产免费久久| 日韩欧美一区视频在线观看| bbb黄色大片| 超碰成人久久| 久久久水蜜桃国产精品网| 亚洲成a人片在线一区二区| 国产精品99久久99久久久不卡| 天堂动漫精品| 老司机福利观看| 天天躁狠狠躁夜夜躁狠狠躁| 一区二区三区精品91| 色综合婷婷激情| 国产不卡一卡二| 麻豆av在线久日| 国产99久久九九免费精品| 免费看a级黄色片| 亚洲精华国产精华精| 一级毛片女人18水好多| 日本 av在线| 两性夫妻黄色片| 91精品国产国语对白视频| 欧美av亚洲av综合av国产av| av福利片在线| 又紧又爽又黄一区二区| 欧美日韩中文字幕国产精品一区二区三区 | 啦啦啦韩国在线观看视频| 男女午夜视频在线观看| 大香蕉久久成人网| 又黄又爽又免费观看的视频| 色综合站精品国产| 亚洲avbb在线观看| 成人国产一区最新在线观看| 久久久久九九精品影院| 超碰成人久久| 91精品三级在线观看| www国产在线视频色| 日本黄色视频三级网站网址| 国产高清有码在线观看视频 | 香蕉国产在线看| netflix在线观看网站| 婷婷六月久久综合丁香| 国产欧美日韩综合在线一区二区| 亚洲人成网站在线播放欧美日韩| 色综合站精品国产| 国产精品一区二区在线不卡| 国产成人系列免费观看| 人人妻人人澡人人看| 免费无遮挡裸体视频| 老汉色av国产亚洲站长工具| 少妇的丰满在线观看| 国产一级毛片七仙女欲春2 | 精品午夜福利视频在线观看一区| 亚洲专区中文字幕在线| 亚洲人成电影观看| 757午夜福利合集在线观看| www.999成人在线观看| 欧美丝袜亚洲另类 | 国产精品秋霞免费鲁丝片| 国产精品一区二区精品视频观看| 欧美激情高清一区二区三区| 真人做人爱边吃奶动态| 美女高潮喷水抽搐中文字幕| 国产精品久久电影中文字幕| 涩涩av久久男人的天堂| 久久香蕉激情| 一边摸一边做爽爽视频免费| 亚洲黑人精品在线| 无限看片的www在线观看| 人人妻人人爽人人添夜夜欢视频| 欧美黄色淫秽网站| 久久久久久人人人人人| www.www免费av| 国产熟女xx| 在线免费观看的www视频| 女人精品久久久久毛片| 日韩免费av在线播放| 国产精品久久视频播放| 色婷婷久久久亚洲欧美| or卡值多少钱| 国产99久久九九免费精品| av在线播放免费不卡| 国产成人av教育| 久久国产精品影院| av视频在线观看入口| 国产精品电影一区二区三区| 欧美激情 高清一区二区三区| 国产单亲对白刺激| 丝袜在线中文字幕| 久久久久久久久久久久大奶| 久久午夜综合久久蜜桃| 国产av在哪里看| 久久精品成人免费网站| 日韩大尺度精品在线看网址 | 日本三级黄在线观看| 神马国产精品三级电影在线观看 | 久久久久久久精品吃奶| 欧美乱码精品一区二区三区| 亚洲av成人av| av天堂久久9| 亚洲欧美日韩无卡精品| 非洲黑人性xxxx精品又粗又长| 久久国产精品影院| 免费女性裸体啪啪无遮挡网站| 久久青草综合色| 国产av一区二区精品久久| 国产区一区二久久| 嫩草影视91久久| 十八禁人妻一区二区| 亚洲自偷自拍图片 自拍| 19禁男女啪啪无遮挡网站| 国产片内射在线| 亚洲国产精品999在线| 99在线视频只有这里精品首页| 欧美日韩精品网址| 少妇裸体淫交视频免费看高清 | 亚洲人成电影免费在线| 亚洲精品国产区一区二| 亚洲五月天丁香| 美国免费a级毛片| АⅤ资源中文在线天堂| 最近最新中文字幕大全电影3 | 老汉色av国产亚洲站长工具| 精品久久久久久久久久免费视频| 亚洲激情在线av| 91麻豆av在线| 97人妻精品一区二区三区麻豆 | 校园春色视频在线观看| 巨乳人妻的诱惑在线观看| 国产国语露脸激情在线看| 国产亚洲精品久久久久久毛片| 午夜亚洲福利在线播放| 成人精品一区二区免费| 美女高潮到喷水免费观看| 午夜久久久久精精品| 免费少妇av软件| 极品人妻少妇av视频| 12—13女人毛片做爰片一| 日韩高清综合在线| 国产精品免费视频内射| 亚洲精华国产精华精| 99国产精品一区二区三区| 亚洲中文av在线| 欧美久久黑人一区二区| 午夜免费观看网址| 国产av一区在线观看免费| 97人妻精品一区二区三区麻豆 | 日本在线视频免费播放| 日韩 欧美 亚洲 中文字幕| 97超级碰碰碰精品色视频在线观看| 久久婷婷成人综合色麻豆| 视频在线观看一区二区三区| av免费在线观看网站| 51午夜福利影视在线观看| 亚洲av成人一区二区三| 久久精品人人爽人人爽视色| 91精品国产国语对白视频| 中文字幕人妻丝袜一区二区| 国产精品一区二区免费欧美| 久久天堂一区二区三区四区| 日韩欧美国产在线观看| 国产主播在线观看一区二区| 亚洲国产精品久久男人天堂| 午夜福利一区二区在线看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品在线观看二区| 人妻丰满熟妇av一区二区三区| 久热这里只有精品99| www国产在线视频色| 日本五十路高清| 黄色片一级片一级黄色片| 亚洲三区欧美一区| 一区二区三区精品91| 在线观看66精品国产| 两个人视频免费观看高清| 一本综合久久免费| 午夜亚洲福利在线播放| 日韩国内少妇激情av| 国产精品日韩av在线免费观看 | 亚洲九九香蕉| 欧美乱码精品一区二区三区| 日韩欧美免费精品| 精品国产国语对白av| 琪琪午夜伦伦电影理论片6080| 人妻丰满熟妇av一区二区三区| 日韩欧美三级三区| 国产精品一区二区免费欧美| 日本精品一区二区三区蜜桃| 午夜免费鲁丝| 亚洲精品粉嫩美女一区| 一区二区三区国产精品乱码| 欧美日韩中文字幕国产精品一区二区三区 | 999精品在线视频| 91国产中文字幕| 夜夜看夜夜爽夜夜摸| 久久久久国内视频| 国产亚洲av高清不卡| 老鸭窝网址在线观看| 色老头精品视频在线观看| 一夜夜www| 免费在线观看视频国产中文字幕亚洲| 男女之事视频高清在线观看| 日韩精品中文字幕看吧| 亚洲国产欧美一区二区综合| 亚洲精品一卡2卡三卡4卡5卡| 母亲3免费完整高清在线观看| www日本在线高清视频| 久久人妻熟女aⅴ| 中文字幕精品免费在线观看视频| 高清黄色对白视频在线免费看| 亚洲一区二区三区不卡视频| 狠狠狠狠99中文字幕| 亚洲最大成人中文| 老鸭窝网址在线观看| 国产乱人伦免费视频| 啪啪无遮挡十八禁网站| 精品不卡国产一区二区三区| 欧美乱妇无乱码| 亚洲精品中文字幕在线视频| 免费在线观看黄色视频的| 日本免费一区二区三区高清不卡 | 日韩成人在线观看一区二区三区| 99久久综合精品五月天人人| 精品一品国产午夜福利视频| 亚洲精品国产色婷婷电影| 亚洲视频免费观看视频| 淫妇啪啪啪对白视频| 国产精品一区二区三区四区久久 | 欧美乱色亚洲激情| 男女下面插进去视频免费观看| 欧美日韩瑟瑟在线播放| 电影成人av| 黄色成人免费大全| 国产亚洲av嫩草精品影院| 亚洲中文字幕一区二区三区有码在线看 | 亚洲va日本ⅴa欧美va伊人久久| 18禁美女被吸乳视频| 欧美性长视频在线观看| 99国产精品一区二区蜜桃av| 变态另类成人亚洲欧美熟女 | 97碰自拍视频| 亚洲一区高清亚洲精品| 久久国产精品男人的天堂亚洲| 欧美一级毛片孕妇| 一区二区日韩欧美中文字幕| 9色porny在线观看| 亚洲中文av在线| 国产亚洲精品综合一区在线观看 | 国产精品日韩av在线免费观看 | 一级,二级,三级黄色视频| 黑人巨大精品欧美一区二区mp4| 99riav亚洲国产免费| 亚洲电影在线观看av| 成年人黄色毛片网站| 少妇粗大呻吟视频| 欧美色欧美亚洲另类二区 | 中文字幕最新亚洲高清| 久久精品影院6| 一级毛片高清免费大全| 亚洲狠狠婷婷综合久久图片| 不卡av一区二区三区| 啪啪无遮挡十八禁网站| 动漫黄色视频在线观看| 日韩有码中文字幕| 色在线成人网| 亚洲精品国产一区二区精华液| 少妇被粗大的猛进出69影院| 亚洲欧美日韩高清在线视频| videosex国产| 亚洲va日本ⅴa欧美va伊人久久| cao死你这个sao货| 一区二区三区激情视频| 国产国语露脸激情在线看| 最好的美女福利视频网| 欧美另类亚洲清纯唯美| 国产91精品成人一区二区三区| 高潮久久久久久久久久久不卡| 日韩三级视频一区二区三区| 一本综合久久免费| a级毛片在线看网站| 亚洲成人免费电影在线观看| 欧美日韩一级在线毛片| 99国产极品粉嫩在线观看| 国产单亲对白刺激| 国产精品久久久久久精品电影 | 999精品在线视频| 97人妻天天添夜夜摸| av网站免费在线观看视频| 午夜两性在线视频| 人人妻人人澡人人看| 欧美av亚洲av综合av国产av| 国产高清videossex| 中文字幕人妻丝袜一区二区| 国产亚洲精品综合一区在线观看 | or卡值多少钱| 美女国产高潮福利片在线看| 亚洲五月婷婷丁香| 波多野结衣高清无吗| 精品欧美一区二区三区在线| 亚洲成人国产一区在线观看| 久久国产亚洲av麻豆专区| 日韩欧美免费精品| 久久国产精品影院| 操出白浆在线播放| 美女大奶头视频| 国产成人啪精品午夜网站| 免费在线观看完整版高清| 久久国产亚洲av麻豆专区| 免费观看人在逋| 亚洲欧美精品综合一区二区三区| 后天国语完整版免费观看| 精品人妻1区二区| 美女扒开内裤让男人捅视频| 丰满的人妻完整版| 国产av一区在线观看免费| 精品人妻在线不人妻| 午夜久久久在线观看| 日韩 欧美 亚洲 中文字幕| 亚洲一区高清亚洲精品| 乱人伦中国视频| 在线观看日韩欧美| 亚洲 欧美 日韩 在线 免费| 久久天躁狠狠躁夜夜2o2o| 欧美精品啪啪一区二区三区| 香蕉丝袜av| 9191精品国产免费久久| 久久精品人人爽人人爽视色| 黄色毛片三级朝国网站| 国产精品一区二区三区四区久久 | 亚洲免费av在线视频| 黑人巨大精品欧美一区二区蜜桃| 可以在线观看的亚洲视频| 一进一出抽搐gif免费好疼| 好男人在线观看高清免费视频 | 欧美日本亚洲视频在线播放| 日本vs欧美在线观看视频| 人人妻,人人澡人人爽秒播| 黄色片一级片一级黄色片| 久久人人97超碰香蕉20202| 亚洲人成伊人成综合网2020| 一a级毛片在线观看| 亚洲在线自拍视频| 久久人妻福利社区极品人妻图片| 侵犯人妻中文字幕一二三四区| 可以在线观看的亚洲视频| 国产又爽黄色视频| 啦啦啦观看免费观看视频高清 | 亚洲五月色婷婷综合| 精品熟女少妇八av免费久了| 一级a爱片免费观看的视频| xxx96com| 精品国产乱码久久久久久男人| 黑人巨大精品欧美一区二区mp4| 18禁黄网站禁片午夜丰满| 久久狼人影院| 国产精品电影一区二区三区| 满18在线观看网站| 黄色 视频免费看| 久久久国产成人精品二区| 亚洲成人国产一区在线观看| 咕卡用的链子| 嫁个100分男人电影在线观看| 午夜免费成人在线视频| 国产人伦9x9x在线观看| 成在线人永久免费视频| 午夜激情av网站| 国产精品美女特级片免费视频播放器 | 中文字幕人妻熟女乱码| 人人妻人人澡欧美一区二区 | 露出奶头的视频| 老司机在亚洲福利影院| 18禁黄网站禁片午夜丰满| 精品一品国产午夜福利视频| 麻豆一二三区av精品| 大型av网站在线播放| 成人av一区二区三区在线看| 精品日产1卡2卡| 国产精品二区激情视频| 国产精品乱码一区二三区的特点 | 涩涩av久久男人的天堂| xxx96com| 亚洲av第一区精品v没综合| 精品一区二区三区视频在线观看免费| 桃色一区二区三区在线观看| 欧美黄色片欧美黄色片| 搞女人的毛片| 久9热在线精品视频| 欧美在线黄色| 久久 成人 亚洲| 日本 欧美在线| 久久欧美精品欧美久久欧美| 天堂影院成人在线观看| 日韩欧美免费精品| 身体一侧抽搐| 欧美另类亚洲清纯唯美| 成人免费观看视频高清| 变态另类成人亚洲欧美熟女 | 国产精品久久久久久精品电影 | 色在线成人网| 高潮久久久久久久久久久不卡| 欧美成人性av电影在线观看| 日本免费一区二区三区高清不卡 | 国产精品九九99| 午夜激情av网站| 国内精品久久久久久久电影| 久久天堂一区二区三区四区| 亚洲一区二区三区不卡视频| 精品欧美国产一区二区三| 国产真人三级小视频在线观看| 成人欧美大片| a级毛片在线看网站| 国产av在哪里看| 精品久久久久久久久久免费视频| 两个人视频免费观看高清| 欧美一区二区精品小视频在线| 亚洲国产精品久久男人天堂| 国产精品自产拍在线观看55亚洲| 午夜两性在线视频| 可以免费在线观看a视频的电影网站| 久久精品影院6| 国产乱人伦免费视频| 免费在线观看亚洲国产| 人人妻人人爽人人添夜夜欢视频| 日韩精品中文字幕看吧| 午夜老司机福利片| 久久精品国产清高在天天线| 老司机深夜福利视频在线观看| 好男人在线观看高清免费视频 | 在线观看午夜福利视频| 亚洲欧美日韩无卡精品| 99精品在免费线老司机午夜| 久久精品91无色码中文字幕| 久久国产乱子伦精品免费另类| 国产成人av激情在线播放| 人成视频在线观看免费观看| 人人妻,人人澡人人爽秒播| 久久久久久久久免费视频了| 亚洲aⅴ乱码一区二区在线播放 | 亚洲国产欧美日韩在线播放| svipshipincom国产片| 国内毛片毛片毛片毛片毛片| 99久久久亚洲精品蜜臀av| 亚洲国产精品久久男人天堂| 丝袜美腿诱惑在线| 身体一侧抽搐| 国内久久婷婷六月综合欲色啪| 欧美日韩亚洲综合一区二区三区_| 免费在线观看影片大全网站| 国产精品永久免费网站| 日韩欧美免费精品| 国产欧美日韩一区二区三区在线| 亚洲第一电影网av| 一夜夜www| 韩国精品一区二区三区| 久久人人爽av亚洲精品天堂| 69av精品久久久久久| 亚洲精品在线观看二区| 亚洲欧美日韩高清在线视频| 中亚洲国语对白在线视频| 亚洲国产精品sss在线观看|