• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-mode diagnosis of a gas turbine engine using an adaptive neuro-fuzzy system

    2018-02-02 08:09:48HoumanHANACHIJieLIUChristopherMECHEFSKE
    CHINESE JOURNAL OF AERONAUTICS 2018年1期

    Houman HANACHI,Jie LIU,Christopher MECHEFSKE

    aNational Research Base of Intelligent Manufacturing Service,Chongqing Technology and Business University,Chongqing 400067,China

    bDepartment of Mechanical and Materials Engineering,Queen’s University,Kingston,ON K7L 3N6,Canada

    cDepartment of Mechanical and Aerospace Engineering,Carleton University,Ottawa,ON K1S 5B6,Canada

    1.Introduction

    Components of Gas Turbine Engines(GTEs)operate in harsh environments that create different degradation mechanisms in the parts.The degradation mechanisms lead to growth of faults in various modes and result in deviation of the performance from that of the brand-new condition.In the compressor section,erosion of the blades and vanes and the fouling phenomena lead to loss of the isentropic efficiency and decrease of the massflow capacity,given the shaft speed and the pressure ratio.1In the turbine section,however,the massflow capacity would increase,while the isentropic efficiency declines with degradation for a given pressure ratio and shaft speed.2,3It is a common practice to utilize the symptoms of the isentropic efficiency’s decline and the mass flow capacity’s change to quantify the degradation level in both compressors and turbines.4,5Degradation of the parts moves the operating match point of GTE subsystems away from the optimal criteria and results in deviation of gas path parameters from those of a healthy condition.At the same time,it leads to loss of the thermal efficiency and extra fuel consumption at the system level.6Deterioration of the GTE performance is not necessarily rooted in part degradation.When the ambient condition changes or the GTE is operated at off-design control settings,e.g.,partial load,the performance of the GTE will deteriorate.Such deteriorations automatically reverse when the operating conditions return to on-design conditions.7It is critical for a GTE diagnosis system to separate the deterioration causes and to isolate those attributable to degradation of the components but not off-design control settings.

    Condition-based health management strategies tend to extract real-time health-related information from systems so that the required maintenance actions can be taken at the right time for the right part(s).GTE measurements of gas-path parameters contain valuable information on the health conditions of the parts;however,the number of operating parameters recorded with a GTE performance monitoring system is limited by the cost,maintenance,and other technical reasons.In many conventional GTEs used for power generation,measurements are limited to a few parameters such as power,shaft speed,EGT,and fuelflow.As a result,extraction of information from data analysis becomes challenging.At the same time,small variations of the measurements due to component faults can be masked by signal noise,if the measurement noise is relatively high.This calls for competent health monitoring and diagnostic techniques that manage to extract health information from limited measurements contaminated with noise.

    Nomenclature Symbols ANFIS adaptive neuro-fuzzy inference system ANN artificial neural network APU auxiliary power unit D(·) diagnostic model e diagnostic error EGT exhaust gas temperature GTE gas turbine engine G(˙s)measurement model N shaft speed NRMSE normalized root mean squared error P pressure PW power R linear fuzzy rules s measurement signal SNR signal to noise ratio T temperature u control input v ambient condition W massflow w weight of fuzzy rules x health state y performance parameter η isentropic efficiency ρ degradation symptom σ standard deviation of noise φ relative humidity Subscripts A actual value am ambient C compressor F fuel i inlet M measured parameter o outlet T turbine

    There are two main approaches for fault diagnostics:system identification and pattern recognition.8In system identifi-cation where a measurement model for a system is required,the objective is to update internal fault-related parameters of the system model so that model outputs become consistent with measurements.It requires a reliable measurement model for the system that establishes functional relationships between internal health parameters and measurements.9Pattern recognition is a practical computational approach that can be applied effectively if an accurate measurement model is not available.Variations of the internal health parameters of gas turbines create distinct clusters in the multi-dimensional space of measurable operating data.The task of pattern recognition is to classify those clusters and attribute them to the corresponding faults.10Fig.1 shows the process of GTE fault detection through pattern recognition in a multi-dimensional measurement data space,wherexrepresents the health condition of the system andy,uandvrefer to the performance parameters,control inputs and ambient conditions respectively.The dimensions are limited in this case to three for improved visualization.This is an effective approach for fault detection and isolation in GTEs with a limited number of measurable parameters.Mathematically,pattern recognition algorithms are mapping functions,which need a training process to set their internal parameters.After the training process,upon receiving a new set of measurements,the classification function maps the inputs to the corresponding classes of faults.Various classification techniques including fuzzy-logic,11–13probabilistic networks,14,15artificial neural networks,16,17support vector machines,18stochastic neuro-fuzzy inference systems,19and statistical-based approaches20have been utilized for GTE diagnosis by pattern recognition.In a comparative study,Bettocchi et al.showed that under measurement uncertainty,an ANFIS structure could lead to superior diagnostic results compared to those obtainable from Artificial Neural Networks(ANNs).21Despite significant research work,for most conven-tional GTEs where the number of GTE measurements is limited,it is a challenge to extract accurate diagnostic results,and it is critical to identify parameters that can improve diagnostic results if measured and utilized in the diagnostic algorithm.

    To address the stated problem,in this work,an Adaptive Neuro-Fuzzy Inference System(ANFIS)-based diagnostic scheme is structured to receive GTE measurement signals and map the results to a degradation symptom space per the following procedure.An ANFIS framework for pattern recognition on GTE degradation is developed in Section 2.In Section 3,gas-path parameters of a single-shaft GTE are generated under different ambient conditions,control settings,and signal to noise ratios using a high-fidelity GTE model for training and testing the framework.The performance of the diagnostic framework with diverse combinations of measurable parameters and noise levels is verified in Section 4,and a conclusive discussion on the results is presented at the end.

    Fig.1 Classification of measurement sets [y,u,v]linto clusters of different health states xj.

    2.A data-driven model for GTE degradation estimation

    For a GTE,the set of real-time performance parametersyis dependent on the control inputu,the ambient conditionv,and the health state of the partsxas follows:

    whereGis the measurement model of the GTE.A fault detection algorithm shouldfind the health statex,so that the observed performance parametersyMbecome consistent with prediction;x|G(x,u,v)=yM,which is the answer to the inverse measurement model with respect toxas

    Accurate measurement models require complete information about properties and performances of GTE parts,yet creating inverse models adds to the complexity of the problem.If sufficient data,from a GTE experiencing degradation with a known health state,are available,a trainable data-driven model can be utilized for mapping the measured data into the known health state.With high-dimensionality of the input data,numerical models such as multi-variate polynomial regression,artificial neural networks,and ANFIS frameworks have been practiced by researchers.22–24For this mapping problem,an ANFIS framework is employed for two main reasons:the degree of functionfitting can be controlled within the membership functions with respect to sensitivity to each input,and it shows a high repeatability for parameter setting when trained on a set of training data,as opposed to an ANN.25,26

    ANFIS frameworks were introduced by Jang in the 1990s.27Unlike the conventional fuzzy systems that require expert knowledge in a design process,an ANFIS makes use of adaptive capability of the neural network to adjust the parameters of a fuzzy model to optimallyfit the training data.

    Given that sufficient data become available on GTE performance at ambient conditionvand control settinguunder a known state of healthxj,an ANFIS framework can be developed with the following procedure,as shown in Fig.2.

    (1)Afirst-order Sugeno model is employed for the fuzzy inference process.

    (2)In thefirst layer,the set of inputs comprises the available measurements on (y,u,v)at a given instance.

    (3)The last layer includes the magnitude of the jthdegradation symptom as the health state xj,associated with the measurement data in thefirst layer.

    (4)Generalized bell-shaped membership functions are utilized in the second layer.The number of membership functions is a design parameter for the ANFIS structure,and the optimum number can be evaluated when practicing the model.Fig.1 shows two membership functions for each input.

    Fig.2 ANFIS framework to estimate the j th degradation symptom,given measurements on performance,control,and ambient condition.

    (5)In the third layer,the linear fuzzy rules corresponding to all possible combinations of the membership functions are situated.

    (6)The fourth layer includes weights of the rules,found from multiplication of the results of the membership functions.

    (7)In thefifth layer,the summation of layer three,weighted with layer four,is calculated.

    Once the framework is structured,the training data set is introduced to the model,so that the parameters of the membership functions and the fuzzy rules in the second and third layers are adjusted.After the training process,the model can be used for degradation estimation by feeding measurement data as inputs.

    3.Performance data for a GTE experiencing degradation

    The performance of a GTE deteriorates with degradation of the components.As explained in the Introduction,degradation of GTE components in the compressor and turbine sections are quantitatively represented by two metrics corresponding to their dominant symptoms,i.e.,decline of the isentropic effi-ciency ρηand change of the flow capacity ρW,4,5as follows:

    whereWCAand ηCAare the actual mass flow and isentropic efficiency of the compressor,respectively,whereasWCand ηCare the expected values at the same operating condition for the healthy compressor.Considering the increase of the massflow capacity for turbines experiencing degradation,turbine degradation symptoms are defined as:

    Loss of the isentropic efficiency in the compressor has been reported between 0.5%to 0.8%against a 1%decrease in the massflow capacity.28,29In the turbine section,however,loss of the isentropic efficiency and change of the massflow capacity depend on the dominant fault mode in the parts,i.e.,increase of the tip clearance,surface roughness,and profile loss.2,30A ratio between the two symptoms is not definite in either case,and a competent diagnostic system should be able to detect them independently.

    To acquire performance data under diverse operating conditions from a GTE with multiple fault modes,a high-fidelity GTE model is utilized to simulate performance data for a single-shaft GTE.The GTE model was developed and verified as a reliable virtual tool through past research work by the authors.31Table 1 includes the input and output parameters of the GTE model,as formulated in Eq.(1).

    Design information on the single-shaft GTE,including numerical tables for the compressor and turbine maps,are utilized for performance simulation.For the health state,degradation with three intensity levels of 0%(healthy),2%(mild),and 4%(severe)are considered at each degradation symptom.GTE performance is simulated at six power levels and three ambient temperatures for each health state,as shown in Table 2.As a result,performance parameters are available at 1458 operating scenarios,i.e.,combinations of health state,ambient conditions,and control settings.Fig.3 shows the resulting performance parameters with different operating scenarios forTam=15°C.

    GTE measurable parameters,i.e.,ambient condition,control setting,and performance parameters,include measurement noise.The noise level depends on various factors within the GTE system and the surrounding environment.To verify the developed diagnostic framework,zero mean Gaussian noise ε~N(0,σ2)from a 30 dB to 80 dB Signal to Noise Ratio(SNR)is introduced to the GTE measurements,where σ is the standard deviation of the noise for a measurement signalsover the operating scenariosjas follows:

    Table 1 Measurable parameters and health state.

    Table 2 Assumptions for GTE operating scenarios.

    Fig.3 GTE performance parameters at different health states and power levels.

    4.Diagnostic results of the framework

    The developed framework should estimate the health state of the GTE based on Eq.(2).Considering the variable parameters of the system as inputs for diagnosis,i.e.,v= [Tam],u= [PW],andy= [WF,EGT,TCo,PCo,TTi,WT,...],the diagnostic modelDtakes the following functional form:

    Under a known health state,the GTE model solves for gaspath parameters,once the ambient condition,shaft speed,and power are determined.32From the mathematical prospective,if any of the degradation symptoms is unknown,then many gaspath parameters are required,so that an enough number of equations become available to determine the system.As a result,at least four performance parameters are needed in Eq.(6)to determine the severity level of four degradation symptoms.In practice,the number of parameters measured in conventional GTEs is limited due to economic and technical reasons,and diagnostic techniques are expected to work using the limited readings from a GTE.Among the performance parameters,WFand EGT are always measured by the GTE operating system.The compressor discharge temperatureTCoand pressurePCoare also available in most of modern GTEs.

    4.1.Diagnosis with determined and undetermined faulty sections

    When studying the short-term degradation of a GTE,the dominant growing fault modes correspond to the compressor section.The long-term degradation of the GTE can be observed by monitoring the performance,right after the compressor wash,when the effects of compressor fouling are removed.As a general case,both short-term and long-term degradations do occur concurrently.To verify the performance of the diagnostic framework in each condition,the following three degradation conditions are considered for running.

    (1)Compressor degradation,i.e.,ρWTand ρηTare constant.

    (2)Turbine degradation,i.e., ρWCand ρηCare constant.

    (3)A combination of compressor and turbine degradations.

    With performance parametersWF,EGT,TCoandPCoas input signals of the diagnostic framework,Fig.4 shows the diagnostic results for a combination of compressor and turbine degradations trained and run with non-noisy signals.The results are shown for 81 health states at constant power and constant ambient temperature.It can be seen that the diagnostic framework successfully detects and estimates the degradation level for all degradation symptoms.

    To compare the diagnostic performances in three degradation conditions,i.e.,compressor,turbine,and combined degradations,we obtain the normalized root mean square error(NRMSE)of the results as metrics of the errors33as follows:

    whereeijis the estimation error for the degradation symptomxi∈ {ρWC,ρηC,ρWT,ρηT} on a particular scenarioj,ranging onnpopulation.

    Fig.4 Diagnostic results of combined degradation at Tam=15°C and PW=2.0 MW.

    Fig.5 compares the diagnostic errors in the three aforementioned degradation conditions.When the degradation is exclusive to one section,i.e.,the compressor or the turbine,diagnostic errors are tangibly smaller than that of the combined degradation.Taking ρWCsymptom for instance,the diagnostic error is 0.013 when the degradations are limited to the compressor,whereas the error reaches 0.081 if the degradations are to be estimated in both the compressor and the turbine,which is still fairly acceptable.

    Fig.5 Diagnostic errors with exclusive compressor degradation,exclusive turbine degradation,and combined degradation.

    4.2.Enhancement of the measurement data set

    Gas path parameters are highly correlated and measurement signals are noisy.It is expected that more measurements on gas-path parameters would lead to better diagnostic results due to redundancy.34To investigate the effects of additional performance parameters on diagnostic accuracy,measurements of the exhaust massflowWTand the turbine inlet temperatureTTiare added to the sets of input parameters respectively,and diagnostic frameworks are structured and trained with three different sets of performance parameters:

    Diagnostic results for Cases 2 and 3 for selected operating scenarios are shown in Fig.6,comparable with the results of Case 1 in Fig.4.A slight improvement in the results of Cases 2 and 3 is visually observable.

    Diagnostic errors of the three cases based on Eq.(7)are presented in Fig.7.For Cases 2 and 3,whereWTandTTiare respectively added to the input parameters,the diagnostic errors decrease,with respect to Case 1.We can generally conclude that estimation accuracy increases when further measurementsfrom GTE performanceparametersbecome available.Further discussion on the effects of measured parameters on degradation estimation accuracy is provided in Section 4.3.

    4.3.Effect of the measurement noise

    Despite the advancements in electronics and signal processing,measurement noise cannot be entirely eliminated from a signal.When training a diagnostics classifier on noisy data,the parameters of the fuzzy model typically will not adjust optimally,and after training,using noisy test data would result in further errors in the results.In this section,we investigate the robustness of the developed framework to significant measurement noise.

    From Section 3,GTE operating data are available at different noise levels.By training and running the diagnostic framework on operating data with different SNR levels,i.e.,from 30 dB to 80 dB,diagnostic errors are calculated with Eq.(7)as plotted in Fig.8.As expected,diagnostic errors decline with improvement of the SNR in all three cases.To fully investigate the effect of measurement redundancy on improving the diagnostic performance,the differences of errors for Cases 2 and 3 with respect to Case 1 are calculated and shown in Fig.9.

    With regard to the obtained results in Figs.8 and 9,the following conclusions can be suggested:

    (1)Diagnostic errors decline with improvement of the SNR in all three cases on four degradation symptoms,as observed in Fig.8.

    (2)When signals are highly noisy,i.e.,SNR=30 dB,additional measurements on either WTor TTido not improve the diagnostic performance.It should be noted that performance parameters are highly dependent on degradation symptoms.When themeasured parameters include high levels of noise,the classifier finds the corresponding degradation symptoms matching the noisy signals,and that naturally leads to erroneous results.

    Fig.6 Diagnostic results with different sets of performance parameters at Tam=15°C and PW=2.0 MW.

    (3)Degradation symptoms of ρηCand ρηTcan be effectively identified by the four parameters WF,EGT,TCoand PCo,as in Case 1.As shown in Fig.9,diagnostic accuracy for the mentioned symptoms does not practically improve when additional measurements on WTand TTiare added to the inputs in Cases 2 and 3.

    (4)Using the turbine massflow WTin Case 2 improves the diagnostic results on the massflow variation symptoms in both the compressor and turbine sections,especially from 35 to 60 SNR dB,where the diagnostic error improves over 10%for ρWCand 5%for ρWT,as shown in Fig.9.

    (5)Using the turbine inlet temperature TTiresults in a small improvement on diagnosis of the massflow variation symptoms ρWCand ρWT,but barely reaches 5%,as shown in Fig.9,in Case 3.

    Fig.7 Diagnostic errors with different sets of performance parameters.

    Fig.8 Effect of measurement noise on diagnostic error.

    5.Conclusions

    In this work,a fault diagnostic framework has been proposed and developed for GTEs based on an adaptive neuro-fuzzy inference system.The framework receives operating parameters available from a GTE to estimate degradation symptoms in the compressor and turbine sections.The dominant degradation symptoms,i.e.,variation of the massflow capacity and isentropic efficiency decline in both sections,are quantitatively defined and utilized for this purpose.To verify the performance of the diagnostic framework on GTE data,gaspath parameters were generated by a high-fidelity GTE model under various operating scenarios,i.e.,diverse combinations of degradation symptoms (ρWC,ρηC,ρWT,ρηT)at healthy,mild,and sever levels,ambient conditions (Tam,Pam,φam),and controlsettings (PW,N).Four gas-path parameters,i.e.,WF,EGT,TCoandPCoavailable with most of GTEs,were separated for training the diagnostic framework.

    Atfirst,to verify the diagnostic performance of the framework using the aforementioned gas-path parameters,three degradation conditions,i.e.,exclusive compressor degradation,exclusive turbine degradation,and a combination of both degradations,were considered.By training and running the diagnostic framework,the results show that it can effectively detect and estimate the degradation symptoms in all conditions;however,the estimation accuracy would be higher if the faulty section is known beforehand.

    To improve diagnostic accuracy for the combined degradation condition,redundant information from gas-path parameters,i.e.,WTandTTi,were added to the diagnostic framework inputs respectively.The preliminary results show that additional gas-path data improve the diagnostic performance and result in a more accurate degradation estimation when mea-surement signals are virtually noiseless.For fault diagnostics with noisy gas-path signals,the results show that usingWTmeasurements improves the results on massflow capacity variation symptoms in both the compressor and the turbine,whereasTTimeasurements have a smaller effect for improving the diagnostic results.

    Fig.9 Improvement of diagnostic errors in Cases 2 and 3,compared to error of Case 1.

    The study clearly supports the concept of the developed ANFIS-based diagnostic framework for real-time fault detection and degradation estimation for GTE faults using limited gas-path data.The study also provides metrics for diagnostic uncertainty when measurement signals are noisy at different SNR levels.The strength of the developed framework is in separating and estimating multi-mode faults while degradation symptoms are randomly combined.In real conditions,degradation symptoms in GTE subsystems grow gradually with a slow pace and they are interdependent,e.g.,a massflow capacity decrease and an isentropic efficiency decline of the compressor are correlated.In the next step of the research,knowledge of the dependency and the growth rates of fault symptoms will be utilized on real GTE operating data with gradual degradation,to extend and verify the performance of the developed diagnosticframework on pseudo-continuousdegradation conditions.

    Acknowledgements

    Thisprojectwasfinanciallyco-supported by Fond de Recherche Nature et Technologies(FRQNT)from the Quebec government in Canada,the Natural Sciences and Engineering Research Council(NSERC)of Canada,and Life Prediction Technologies Inc.(LPTi)in Ottawa,Canada.

    1.Diakunchak IS.Performance deterioration in industrial gas turbines.J Eng Gas Turbines Power1992;114(2):161–8.

    2.Granovskiy A,Kostege M,Lomakin N.Parametrical investigation of turbine stages with open tip clearance for the purpose of stage efficiency increase.Proceedings of ASME turbo expo 2010 conference;2010 June 14–18.Glasgow,UK.New York:ASME;2010.p.1425–32.

    3.Matsuda H,Otomo F,Kawagishi H,Inomata A,Niizeki Y,Sasaki T.Influence of surface roughness on turbine nozzle profile loss and secondary loss.Proceedings of ASME turbo expo 2006 conference;2006 May 8–11.Barcelona,Spain.New York:ASME;2006.p.781–8.

    4.Panov V.Auto-tuning of real-time dynamic gas turbine models.Proceedings of ASME turbo expo 2014 conference;2014 June 16–20;Du¨sseldorf,Germany.New York:ASME;2014.

    5.Hanachi H,Liu J,Banerjee A,Chen Y.Sequential state estimation of nonlinear/non-Gaussian systems with stochastic input for turbinedegradation estimation.MechSystSignalProcess2016;72–73:32–45.

    6.Kurz R,Brun K,Wollie M.Degradation effects on industrial gas turbines.J Eng Gas Turbines Power2009;131(6):62401.

    7.Petek J,Hamilton P.Performance monitoring for gas turbines.J Orbit2005;25(1):65–8.

    8.Loboda I.Gas turbine diagnostics,performance and robustness of gas turbines.[Internet].[cited 2017 Nov.9];Available from:https://www.intechopen.com/books/efficiency-performance-androbustness-of-gas-turbines/gas-turbine-diagnostics.

    9.Loboda I.Gas turbine condition monitoring and diagnostics,gas turbines.[Internet].[cited 2017 Nov.9];Available from:https://www.intechopen.com/books/gas-turbines/gas-turbine-conditionmonitoring-and-diagnostics.

    10.Mohri M,Rostamizadeh A,Talwalkar A.Foundations of machine learning.Cambridge:MIT Press;2012.

    11.Ganguli R,Verma R,Roy N.Soft computing application for gas path fault isolation.Proceedings of ASME turbo expo 2004 conference;2004 June 14–17;Vienna,Austria.New York:ASME;2004.p.499–508.

    12.Marinai L,Singh R.A fuzzy logic approach to gas path diagnostics in aero-engines.Computational intelligence in fault diagnosis.London:Springer;2006.p.37–79.

    13.Mohammadi E,Montazeri-Gh M.A fuzzy-based gas turbine fault detection and identification system for full and part-load performance deterioration.Aerosp Sci Technol2015;46:82–93.

    14.Aretakis N,Roumeliotis I,Alexiou A,Romesis C,Mathioudakis K.Turbofan engine health assessment fromflight data.J Eng Gas Turbines Power2014;137(4):41203.

    15.Mathioudakis K,Romessis C.Probabilistic neural networks for validation of on-board jet engine data.Proc Inst Mech Eng Part G J Aerosp Eng2004;218(1):59–72.

    16.Joly R,Ogaji S,Singh R,Probert S.Gas-turbine diagnostics using artificial neural-networks for a high bypass ratio military turbofan engine.Appl Energy2004;78(4):397–418.

    17.Loboda I,Feldshteyn Y,Ponomaryov V.Neural networks for gas turbine fault identification:multilayer perceptron or radial basis network?Int J Turbo Jet-Engines2012;29(1):37–48.

    18.Vieira FM,de Oliveira BC,Nascimento CL,Fitzgibbon KT.Health monitoring using support vector classification on an auxiliary power unit.IEEE aerospace conference;2009 March 7–14;Big Sky,MT,USA.Piscataway(NJ):IEEE Press;2009.p.1–7.

    19.Ghiocel D,Altmann J.Critical modeling issues for prediction of turbine performance degradation:use of a stochastic-neuro-fuzzy inference system.Proceedings of 42th AIAA/ASME/ASCE/AHS/ASC structures,structural dynamics and materials conference and exhibit;2001 April 16–19;Seattle,WA,USA.Reston:AIAA;2001.

    20.Panov V.Gas turbine performance diagnostics and fault isolation based on multidimensional complex health vector space.Proceedings of 11th European conference on turbomachineryfluid dynamics&thermodynamics;2015 March 23–27;Madrid,Spain.

    21.Bettocchi R,Pinelli M,Spina PR,Venturini M.Artificial Intelligence for the diagnostics of gas turbines-part II:neurofuzzy approach.J Eng Gas Turbines Power2007;129(3):720–9.

    22.Loboda I,Feldshteyn Y.Polynomials and neural networks for gas turbine monitoring:a comparative study.Proceedings of ASME turbo expo 2010 conference;2010 June 14–18;Glasgow,UK.New York:ASME;2010.p.417–27.

    23.Salahshoor K,Khoshro MS,Kordestani M.Fault detection and diagnosis of an industrial steam turbine using a distributed configuration of adaptive neuro-fuzzy inference systems.Simul Model Pract Theory2011;19(5):1280–93.

    24.Cavarzere A,Venturini M.Application of forecasting methodologies to predict gas turbine behavior over time.J Eng Gas Turbines Power2012;134(1):12401.

    25.Cohen ME,Hudson DL.Comparative approaches to medical reasoning.In:Comparative approaches to medical research,vol.3.Singapore:World Scientific;1995.

    26.Hanachi H,Liu J,Banerjee A,Chen Y.Effects of humidity condensation on the trend of gas turbine performance deterioration.J Eng Gas Turbines Power2015;137(12):122605.

    27.Jang JSR.ANFIS:adaptive-network-based fuzzy inference system.IEEE Trans Syst Man Cybern1993;23(3):665–85.

    28.Tarabrin AP,Schurovsky VA,Bodrov AI,Stalder J-P.Influence of axial compressor fouling on gas turbine unit performance based on different schemes and with different initial parameters.Proceedings of ASME international gas turbine and aeroengine congress and exhibition;1998 June 2–5;Stockholm,Sweden.New York:ASME;1998.p.V004T11A006.

    29.Melino F,Morini M,Peretto A,Pinelli M,Ruggero SP.Compressor fouling modeling:relationship between computational roughness and gas turbine operation time.J Eng Gas Turbines Power2012;134(5):52401.

    30.Montis M,Niehuis R,Fiala A.Aerodynamic measurements on a low pressure turbine cascade with different levels of distributed roughness.Proceedings of ASME turbo expo 2011 conference;2011 June 6–10;Vancouver,BC,Canada.New York:ASME;2011.p.457–67.

    31.Hanachi H,Liu J,Banerjee A,Chen Y.Effects of the intake air humidity on the gas turbine performance monitoring.Proceedingsof the ASME turbo expo 2015 conference;2015 June 15–19;Montreal,QC,Canada,New York:ASME;2015.p.V006T05A018.

    32.Hanachi H,Liu J,Banerjee A,Chen Y,Koul A.A physics-based modeling approach for performance monitoring in gas turbine engines.IEEE Trans Reliab2015;64(1):197–205.

    33.Hyndman RJ,Koehler AB.Another look at measures of forecast accuracy.Int J Forecast2006;22(4):679–88.

    34.Zedda M,Singh R.Gas turbine engine and sensor fault diagnosis using optimization techniques.JPropulsPower2002;18(5):1019–25.

    日韩精品青青久久久久久| 亚洲色图av天堂| 国产精品免费一区二区三区在线| 法律面前人人平等表现在哪些方面| 村上凉子中文字幕在线| 成年人黄色毛片网站| 老司机在亚洲福利影院| 91在线精品国自产拍蜜月 | 观看美女的网站| 老司机深夜福利视频在线观看| 免费大片18禁| 亚洲无线观看免费| 我要搜黄色片| 国内精品一区二区在线观看| 两个人视频免费观看高清| 久久久久免费精品人妻一区二区| a级毛片a级免费在线| 精品久久久久久久人妻蜜臀av| 久久精品国产清高在天天线| 最近最新中文字幕大全电影3| 亚洲18禁久久av| 久久国产精品人妻蜜桃| 色吧在线观看| 精品一区二区三区av网在线观看| 免费高清视频大片| 亚洲av中文字字幕乱码综合| 日韩大尺度精品在线看网址| 亚洲va日本ⅴa欧美va伊人久久| 成年女人看的毛片在线观看| 99re在线观看精品视频| 亚洲精品美女久久av网站| 999久久久国产精品视频| bbb黄色大片| 神马国产精品三级电影在线观看| 亚洲成a人片在线一区二区| 成人三级黄色视频| 亚洲男人的天堂狠狠| 宅男免费午夜| 一级毛片女人18水好多| 成人特级av手机在线观看| 亚洲专区字幕在线| 亚洲av熟女| 国产精品亚洲一级av第二区| 又大又爽又粗| 1000部很黄的大片| 亚洲人成伊人成综合网2020| 欧美av亚洲av综合av国产av| 国产激情久久老熟女| 嫩草影视91久久| 高清毛片免费观看视频网站| 黄色 视频免费看| 99久久精品国产亚洲精品| 国产精品免费一区二区三区在线| 变态另类丝袜制服| 午夜福利在线观看吧| 叶爱在线成人免费视频播放| 国产蜜桃级精品一区二区三区| 亚洲一区二区三区色噜噜| 国产伦在线观看视频一区| 日韩高清综合在线| 在线视频色国产色| 亚洲在线自拍视频| 国产伦人伦偷精品视频| 亚洲成人免费电影在线观看| 国产成人av教育| 国产主播在线观看一区二区| 精品国内亚洲2022精品成人| 日韩欧美免费精品| 全区人妻精品视频| 成人特级黄色片久久久久久久| 老熟妇乱子伦视频在线观看| 免费一级毛片在线播放高清视频| 精品久久久久久成人av| 黄色片一级片一级黄色片| 午夜福利在线观看吧| 免费人成视频x8x8入口观看| 国产精品久久久久久亚洲av鲁大| 久久久久精品国产欧美久久久| 亚洲av电影在线进入| 国产精品1区2区在线观看.| 午夜激情欧美在线| 久久99热这里只有精品18| 亚洲中文日韩欧美视频| 亚洲精华国产精华精| 亚洲av成人不卡在线观看播放网| 亚洲avbb在线观看| 久久久国产精品麻豆| 一二三四在线观看免费中文在| 18禁黄网站禁片午夜丰满| 他把我摸到了高潮在线观看| 中文资源天堂在线| 久久久久九九精品影院| 丁香欧美五月| 国产欧美日韩精品一区二区| 国产精品久久久久久人妻精品电影| 欧美一区二区精品小视频在线| 欧美极品一区二区三区四区| 九色成人免费人妻av| 三级男女做爰猛烈吃奶摸视频| aaaaa片日本免费| 亚洲av免费在线观看| 757午夜福利合集在线观看| 在线观看日韩欧美| 国产精品久久久久久精品电影| 亚洲一区二区三区不卡视频| 后天国语完整版免费观看| 亚洲片人在线观看| netflix在线观看网站| 十八禁人妻一区二区| 丁香欧美五月| 中文字幕av在线有码专区| 日本一二三区视频观看| avwww免费| 久久精品亚洲精品国产色婷小说| 俺也久久电影网| 久久亚洲精品不卡| 亚洲国产日韩欧美精品在线观看 | 国产精品,欧美在线| 欧美日韩瑟瑟在线播放| 久久久久性生活片| 亚洲精品粉嫩美女一区| 亚洲中文字幕日韩| 国产久久久一区二区三区| 国产伦人伦偷精品视频| 99国产极品粉嫩在线观看| 一个人看的www免费观看视频| 国产美女午夜福利| 97超视频在线观看视频| 又黄又爽又免费观看的视频| 非洲黑人性xxxx精品又粗又长| 国产精品一区二区三区四区久久| 在线观看66精品国产| 人妻久久中文字幕网| 91av网站免费观看| 日韩欧美国产一区二区入口| 亚洲 欧美一区二区三区| 给我免费播放毛片高清在线观看| 精品国产三级普通话版| 亚洲va日本ⅴa欧美va伊人久久| av片东京热男人的天堂| 国产一区二区激情短视频| 亚洲午夜精品一区,二区,三区| cao死你这个sao货| 欧美绝顶高潮抽搐喷水| xxxwww97欧美| 成在线人永久免费视频| 国产精品久久久久久亚洲av鲁大| 国产激情欧美一区二区| 国产淫片久久久久久久久 | 亚洲熟妇中文字幕五十中出| 日本黄色视频三级网站网址| 高清在线国产一区| 色精品久久人妻99蜜桃| 亚洲美女视频黄频| 亚洲av五月六月丁香网| 99久久99久久久精品蜜桃| 亚洲人成网站在线播放欧美日韩| 黑人巨大精品欧美一区二区mp4| 国内精品一区二区在线观看| 国产精品99久久久久久久久| 又黄又粗又硬又大视频| 老司机深夜福利视频在线观看| 老司机午夜福利在线观看视频| 欧美激情在线99| 国产高清激情床上av| 黄色成人免费大全| 日韩欧美国产在线观看| 男插女下体视频免费在线播放| 国产精品,欧美在线| 精品国产亚洲在线| 可以在线观看毛片的网站| 可以在线观看的亚洲视频| 免费看美女性在线毛片视频| 99热6这里只有精品| 免费在线观看视频国产中文字幕亚洲| 久久久国产欧美日韩av| 国产伦人伦偷精品视频| 亚洲精品456在线播放app | 美女免费视频网站| 亚洲欧美日韩卡通动漫| 欧美丝袜亚洲另类 | 麻豆成人av在线观看| 国产高清视频在线观看网站| 好男人在线观看高清免费视频| 最近最新中文字幕大全电影3| 老司机在亚洲福利影院| 精品电影一区二区在线| 亚洲无线在线观看| xxxwww97欧美| 美女被艹到高潮喷水动态| 99热这里只有是精品50| 中文亚洲av片在线观看爽| 搡老岳熟女国产| 久久久久久久午夜电影| 国产精华一区二区三区| 黄色丝袜av网址大全| 757午夜福利合集在线观看| 五月伊人婷婷丁香| 少妇裸体淫交视频免费看高清| 青草久久国产| 亚洲天堂国产精品一区在线| 亚洲中文字幕一区二区三区有码在线看 | 日本成人三级电影网站| 亚洲av成人av| 在线看三级毛片| 日韩国内少妇激情av| 草草在线视频免费看| 男女之事视频高清在线观看| 人妻久久中文字幕网| 亚洲无线观看免费| 日韩成人在线观看一区二区三区| 成人午夜高清在线视频| 国产人伦9x9x在线观看| 亚洲一区二区三区不卡视频| 丁香欧美五月| 男插女下体视频免费在线播放| 美女被艹到高潮喷水动态| ponron亚洲| 久久99热这里只有精品18| 亚洲 欧美一区二区三区| 又紧又爽又黄一区二区| 国产精品免费一区二区三区在线| 99热6这里只有精品| 亚洲va日本ⅴa欧美va伊人久久| 在线永久观看黄色视频| 毛片女人毛片| 天堂av国产一区二区熟女人妻| 亚洲美女黄片视频| 国产精品 国内视频| 亚洲欧美精品综合久久99| 一二三四在线观看免费中文在| 久久中文看片网| 1024手机看黄色片| 高清在线国产一区| 熟女电影av网| 亚洲av美国av| 久久久色成人| 久久国产精品人妻蜜桃| 亚洲中文字幕一区二区三区有码在线看 | 天天躁日日操中文字幕| 蜜桃久久精品国产亚洲av| 两性午夜刺激爽爽歪歪视频在线观看| 婷婷六月久久综合丁香| 亚洲成av人片免费观看| 国产精品亚洲美女久久久| 国产精品国产高清国产av| 天堂动漫精品| 欧美日韩福利视频一区二区| 国产精品亚洲美女久久久| 亚洲国产精品999在线| 免费观看的影片在线观看| 国产熟女xx| 国产又色又爽无遮挡免费看| 丝袜人妻中文字幕| 一级毛片精品| 欧美日本亚洲视频在线播放| 性色av乱码一区二区三区2| 欧美日韩亚洲国产一区二区在线观看| 在线a可以看的网站| 国产亚洲欧美在线一区二区| 欧美3d第一页| 成人国产综合亚洲| 国产av不卡久久| 精品久久蜜臀av无| 免费av不卡在线播放| 麻豆国产97在线/欧美| 首页视频小说图片口味搜索| 亚洲欧美精品综合一区二区三区| 村上凉子中文字幕在线| 午夜福利在线观看吧| 中文字幕久久专区| 欧美在线黄色| 麻豆国产97在线/欧美| 欧美中文日本在线观看视频| 婷婷精品国产亚洲av| 亚洲av成人av| 欧美丝袜亚洲另类 | 老熟妇仑乱视频hdxx| 99国产极品粉嫩在线观看| 俺也久久电影网| 久久国产精品人妻蜜桃| 日韩成人在线观看一区二区三区| 毛片女人毛片| 国产伦一二天堂av在线观看| 99热只有精品国产| 免费在线观看成人毛片| 三级男女做爰猛烈吃奶摸视频| 国产一区二区激情短视频| 好男人在线观看高清免费视频| 麻豆一二三区av精品| 男女做爰动态图高潮gif福利片| 青草久久国产| 国产亚洲精品av在线| 五月伊人婷婷丁香| 日本一二三区视频观看| 欧美日韩国产亚洲二区| 丰满的人妻完整版| 久久久久九九精品影院| 国产在线精品亚洲第一网站| 波多野结衣高清无吗| 制服丝袜大香蕉在线| 国产精品久久电影中文字幕| 国产精品国产高清国产av| 18禁黄网站禁片免费观看直播| 亚洲精华国产精华精| 香蕉国产在线看| 看免费av毛片| 国产精品久久久久久亚洲av鲁大| 日日干狠狠操夜夜爽| 成熟少妇高潮喷水视频| 熟女电影av网| 国产欧美日韩精品亚洲av| 18禁黄网站禁片午夜丰满| 亚洲自偷自拍图片 自拍| 亚洲中文字幕一区二区三区有码在线看 | 十八禁网站免费在线| 午夜激情福利司机影院| 超碰成人久久| 免费av毛片视频| 久久这里只有精品19| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品美女久久av网站| 狂野欧美白嫩少妇大欣赏| 香蕉久久夜色| 亚洲片人在线观看| 一个人观看的视频www高清免费观看 | 脱女人内裤的视频| 午夜免费成人在线视频| 国产精品 国内视频| 免费一级毛片在线播放高清视频| 色在线成人网| 黄片大片在线免费观看| 在线国产一区二区在线| 久久亚洲精品不卡| 最近在线观看免费完整版| 一个人看视频在线观看www免费 | 亚洲狠狠婷婷综合久久图片| 美女扒开内裤让男人捅视频| 成人av一区二区三区在线看| 免费观看人在逋| 久久久精品大字幕| 国产成人系列免费观看| 久久性视频一级片| 欧美日本视频| 国产欧美日韩一区二区三| 久99久视频精品免费| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产色片| 久久久久久九九精品二区国产| 欧美成狂野欧美在线观看| 日本黄色视频三级网站网址| 真人一进一出gif抽搐免费| 午夜福利在线观看免费完整高清在 | 久久精品国产清高在天天线| 久久国产乱子伦精品免费另类| 一进一出抽搐动态| 波多野结衣高清无吗| 中文字幕精品亚洲无线码一区| 91字幕亚洲| 桃红色精品国产亚洲av| 日本黄色视频三级网站网址| 亚洲欧美日韩高清专用| 精品电影一区二区在线| 久久这里只有精品19| 日韩欧美国产一区二区入口| 最新在线观看一区二区三区| 日韩欧美精品v在线| av片东京热男人的天堂| 一级a爱片免费观看的视频| www国产在线视频色| 美女大奶头视频| 亚洲欧美精品综合久久99| 五月伊人婷婷丁香| 欧美成人免费av一区二区三区| 丁香欧美五月| 欧美中文综合在线视频| 精品国产美女av久久久久小说| 丰满人妻熟妇乱又伦精品不卡| 久久亚洲精品不卡| 最新美女视频免费是黄的| 在线免费观看的www视频| 亚洲av成人精品一区久久| 免费电影在线观看免费观看| 精品久久久久久久久久免费视频| 日韩三级视频一区二区三区| 亚洲成av人片在线播放无| 国产一区二区三区在线臀色熟女| 欧美乱码精品一区二区三区| 一个人免费在线观看电影 | 男人的好看免费观看在线视频| 在线观看免费视频日本深夜| 1024手机看黄色片| 欧美又色又爽又黄视频| 精品久久蜜臀av无| 久久婷婷人人爽人人干人人爱| 国产高清videossex| 久久天堂一区二区三区四区| 免费观看精品视频网站| 色综合站精品国产| 国产精品99久久久久久久久| 母亲3免费完整高清在线观看| 国产精品98久久久久久宅男小说| 午夜免费激情av| 亚洲电影在线观看av| 1024手机看黄色片| 99国产极品粉嫩在线观看| 亚洲一区高清亚洲精品| 一区福利在线观看| 男女那种视频在线观看| 麻豆国产97在线/欧美| 色综合婷婷激情| 我要搜黄色片| 国语自产精品视频在线第100页| 这个男人来自地球电影免费观看| 亚洲中文字幕一区二区三区有码在线看 | 国产乱人伦免费视频| 在线观看午夜福利视频| 日韩欧美 国产精品| 99热6这里只有精品| 日韩成人在线观看一区二区三区| 亚洲精品乱码久久久v下载方式 | 听说在线观看完整版免费高清| 日本三级黄在线观看| 亚洲人成网站在线播放欧美日韩| 99国产极品粉嫩在线观看| 母亲3免费完整高清在线观看| 亚洲一区二区三区不卡视频| 免费电影在线观看免费观看| 成人亚洲精品av一区二区| 日韩欧美精品v在线| 校园春色视频在线观看| 久久中文看片网| 国产精品电影一区二区三区| 极品教师在线免费播放| 国产乱人伦免费视频| 黄片大片在线免费观看| 嫩草影视91久久| x7x7x7水蜜桃| 啦啦啦免费观看视频1| 法律面前人人平等表现在哪些方面| 91麻豆精品激情在线观看国产| 一级毛片女人18水好多| 偷拍熟女少妇极品色| 成人高潮视频无遮挡免费网站| a级毛片在线看网站| 欧美三级亚洲精品| 一进一出抽搐动态| 欧美在线黄色| 国产在线精品亚洲第一网站| 国产一区二区三区在线臀色熟女| 欧美精品啪啪一区二区三区| 日韩高清综合在线| 国产精品综合久久久久久久免费| 久久精品国产99精品国产亚洲性色| 久久这里只有精品中国| 中文字幕久久专区| 欧美日韩乱码在线| 亚洲熟女毛片儿| 国产美女午夜福利| 国产真人三级小视频在线观看| 日韩欧美国产在线观看| 国产一区二区在线av高清观看| 国产伦在线观看视频一区| 免费搜索国产男女视频| 免费在线观看影片大全网站| xxxwww97欧美| 国产精品久久久久久精品电影| 精品国内亚洲2022精品成人| 午夜亚洲福利在线播放| 黑人巨大精品欧美一区二区mp4| 成人av在线播放网站| 久久国产乱子伦精品免费另类| 国内久久婷婷六月综合欲色啪| 久久精品影院6| 一本综合久久免费| 18禁裸乳无遮挡免费网站照片| 男人舔女人的私密视频| 国产成人欧美在线观看| 亚洲激情在线av| 国产精品野战在线观看| 国产精品女同一区二区软件 | 听说在线观看完整版免费高清| 亚洲午夜精品一区,二区,三区| 毛片女人毛片| 色在线成人网| 最近最新中文字幕大全电影3| 亚洲无线在线观看| 国产毛片a区久久久久| 久久九九热精品免费| 婷婷精品国产亚洲av在线| 成人三级做爰电影| 亚洲熟妇中文字幕五十中出| 熟妇人妻久久中文字幕3abv| 丝袜人妻中文字幕| 亚洲精品在线观看二区| 在线播放国产精品三级| 综合色av麻豆| 黄色成人免费大全| 在线观看免费午夜福利视频| 午夜福利欧美成人| 人妻丰满熟妇av一区二区三区| 综合色av麻豆| 变态另类成人亚洲欧美熟女| 可以在线观看的亚洲视频| 美女午夜性视频免费| 夜夜躁狠狠躁天天躁| 少妇裸体淫交视频免费看高清| 精品不卡国产一区二区三区| 在线观看免费午夜福利视频| 亚洲国产看品久久| 成人欧美大片| 亚洲av熟女| 午夜福利在线观看免费完整高清在 | 久久久久久大精品| 免费av不卡在线播放| 国产麻豆成人av免费视频| av欧美777| 国产av麻豆久久久久久久| 成人午夜高清在线视频| 12—13女人毛片做爰片一| 久久精品国产99精品国产亚洲性色| 亚洲,欧美精品.| 国产午夜精品论理片| 午夜免费激情av| 国产野战对白在线观看| 国产在线精品亚洲第一网站| 午夜亚洲福利在线播放| 999精品在线视频| 国产v大片淫在线免费观看| www.999成人在线观看| 韩国av一区二区三区四区| 性色avwww在线观看| 免费看a级黄色片| 久久人妻av系列| 天天添夜夜摸| 中文亚洲av片在线观看爽| 成年免费大片在线观看| 亚洲精品色激情综合| 一个人看视频在线观看www免费 | 操出白浆在线播放| 久久这里只有精品中国| 在线国产一区二区在线| 18禁裸乳无遮挡免费网站照片| 最好的美女福利视频网| 最新美女视频免费是黄的| 日韩欧美免费精品| 午夜福利在线观看免费完整高清在 | 黄色视频,在线免费观看| 久久香蕉精品热| x7x7x7水蜜桃| 黄色女人牲交| 好看av亚洲va欧美ⅴa在| 国产精华一区二区三区| 美女免费视频网站| 精品国内亚洲2022精品成人| 免费搜索国产男女视频| 午夜福利在线在线| 两个人看的免费小视频| 搡老妇女老女人老熟妇| 12—13女人毛片做爰片一| 蜜桃久久精品国产亚洲av| 午夜福利免费观看在线| 全区人妻精品视频| 99久国产av精品| 久久精品影院6| 国产黄片美女视频| 97超级碰碰碰精品色视频在线观看| 国内揄拍国产精品人妻在线| 亚洲av中文字字幕乱码综合| 久久久久国内视频| 国产野战对白在线观看| 啦啦啦观看免费观看视频高清| 精品免费久久久久久久清纯| 国内少妇人妻偷人精品xxx网站 | 亚洲无线在线观看| 全区人妻精品视频| 婷婷丁香在线五月| 成人特级av手机在线观看| 99视频精品全部免费 在线 | 欧美黑人欧美精品刺激| 免费看光身美女| 给我免费播放毛片高清在线观看| 国产一区在线观看成人免费| 国产1区2区3区精品| 亚洲国产欧美一区二区综合| 最好的美女福利视频网| 中文字幕久久专区| 国产精品久久久久久人妻精品电影| 亚洲 欧美 日韩 在线 免费| 三级毛片av免费| 草草在线视频免费看| 好看av亚洲va欧美ⅴa在| 给我免费播放毛片高清在线观看| 国产精品久久久久久亚洲av鲁大| 一卡2卡三卡四卡精品乱码亚洲| 日本精品一区二区三区蜜桃| 757午夜福利合集在线观看| 无人区码免费观看不卡| avwww免费| 黑人操中国人逼视频| 给我免费播放毛片高清在线观看| 最新中文字幕久久久久 | 亚洲精品国产精品久久久不卡| 亚洲欧美精品综合一区二区三区| 亚洲一区高清亚洲精品| 国产一区二区在线av高清观看| 九九在线视频观看精品| 亚洲第一欧美日韩一区二区三区| 麻豆国产97在线/欧美| 午夜两性在线视频| 婷婷丁香在线五月| 亚洲狠狠婷婷综合久久图片| 我的老师免费观看完整版| 国产av一区在线观看免费| 搡老妇女老女人老熟妇|