• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ag-NaTaO3-RGO復(fù)合物的合成及其改進的光催化制氫性能

    2018-02-01 06:56:26何慧娟鐘梓俊譚紹早黃浪歡
    無機化學(xué)學(xué)報 2018年2期
    關(guān)鍵詞:張斌制氫光催化

    何慧娟 張 斌 鐘梓俊 譚紹早 黃浪歡

    (暨南大學(xué)化學(xué)系,廣州 510632)

    0 Introduction

    In recent decades,energy deficiency and environment pollution has been becoming severe issues and challenges for humanity.Because of its environmental benignity,recyclability,hydrogen energy has been considered as one of the most promising replacement energy resources and photocatalytic water splitting over photocatalysts to generate hydrogen has attracted intensive interest[1-5].Therefore,the research of new highly active photocatalysts that could make full use of solar energy by transforming it to hydrogen energy has become a research focus in photocatalysis field.Due to their excellent photocatalytic properties,Alkali tantalite has attracted considerable attention in photocatalytic applications[6-9].In particular,Perovskite NaTaO3exhibited fairly high activity for splitting of pure waterbecause ofitsappropriate bandgap.However,the efficiency of NaTaO3was far from satisfaction due to its inherent high recombination rate of photogenerated electron-hole pairs.So far,various strategies to improve the photocatalytic activity of NaTaO3have been developed,including deposition of noble metal[10-11], doping with metal ion[12-14],and coupling with semiconductor materials[15-16],etc.Among these strategies,coupling NaTaO3with other materials to form a composite photocatalyst has been proved to be an effective way for improving the photoconversion efficiency[17].

    Graphene,a single layer of graphite,shows many intriguing electronic and optoelectronic properties and has been regarded as ideal 2D supports for making various functional composite materials[18-20].In particular,graphene is widely recognized to serve as an electron collector and transporter to efficiently hinder electron-hole recombination and lengthen the lifetime of the photo-generated charge carriers from semiconductor[21-23].Coupling graphene with photocatalyst for enhancing their photocatalytic performance has been paid extensive attention.For instance,Zhu et al.[24]recently demonstrated that ZnS nanoparticles exhibited a high photocatalytic H2-production activity by combining with graphene.Hou et al.[25]reported thatnitrogen-doped graphene could improve the photoelectrochemical and photocatalytic activity of graphitic carbon nitride (g-C3N4)nanosheet.On the other hand,coupling with novel metal nanoparticles Ag also has been proven as a promising method to improve the photocatalytic activity of semiconductor[26].For example,Yu et al.[27]reported that Ag-TiO2nanocomposites exhibit excellent performance in photocatalytic degradation of dyes under the UV illumination since silver particles could act as electron traps aiding electron-hole separation.According to their report,when the concentration of AgNO3increased to 0.03 mol·L-1,the photocatalytic activity of Ag-TiO2composite significantly increased and was 6.3 times higher than that of TiO2thin films.

    However,to the best of our knowledge,so far there is no report on coupling NaTaO3with Ag and RGO atthesametime.Herein,wereportthe preparation and characterization of Ag-NaTaO3-RGO composite through a three-step method for the first time.Such architecture provides improved separation rate of photo-generated electron-hole pairs.As a result,the composite is anticipated to exhibit enhanced photocatalytic activity under UV irradiation.

    1 Experimental

    1.1 Preparation of Ag-NaTaO3-RGO composite

    All chemicals were analytical grade and were used without further purification.Deionized water (DI)was used in all experiments.Graphene oxide was prepared from natural graphite powders through the modified Hummers′method[28].NaTaO3were synthesized by the hydrothermal method based on our previous work with modifications[29].Typically,Ta2O5(0.442 0 g),CH3COONa·3H2O (0.544 0 g),NaOH(0.120 0 g)and DI water (30 mL)were added into a beaker (100 mL)and stirred for 2 h then transferred to a 50 mL Teflon-lined stainless steel autoclave.Finally,the autoclave was maintained at 180 ℃ for 24 h and then allowed to cool to room temperature naturally.After filtering,washing,and drying,the NaTaO3samples were obtained.

    A typical synthesis of Ag-NaTaO3-RGO composite was described as follows:GO (0.015 0 g)and DI water(30 mL)were added into a beaker (100 mL)and sonicated for 30 min,a homogenous GO solution was obtained.Then,2.000 0 g polyvinylpyrrolidone (PVP)was added into the GO water solution and heated in 60℃water bath with vigorous stirring till the PVP being completely dissolved.After that 0.500 0 g NaTaO3was added to the above aqueous solution and stirred for 2 h.Then,the suspension was heated in 60℃water bath for 24 h while maintaining vigorous stirring after added calculated amount of AgNO3(3 mL).The obtained Ag-NaTaO3-RGO composites were then washed by distilled water to get rid of residual PVP.Finally,the Ag-NaTaO3-RGO composites were freeze-dried at-50℃for 24 h.A series of Ag-NaTaO3-RGO photocatalysts were prepared by changing the concentration of AgNO3(0.1,0.2,0.4,0.6 mol·L-1,respectively)and marked as e.g.0.2Ag-NaTaO3-RGO.

    1.2 Characterizations

    X-ray powder diffraction (XRD)patterns were taken on a X-ray diffractometer(MSAL-XRDⅡ)using a Cu Kα radiation (λ=0.154 056 nm)at a scan rate of 8°·min-1(40 kV,20 mA,2θ=10°~80°).Transmission electron microscopy (TEM)and high-resolution transmission electron microscopy (HRTEM)images were obtained using a PHILIPS TECNAI-10 microscope.Field emission scanning electron microscopy(FESEM)investigations were taken on a Zeiss Ultra 55 field scanning electron microscope atan accelerating voltage of 15 kV,the fracture surface of sample was coated with a thin layer of gold before analysis.The UV-Vis diffuse reflection spectra (DRS) were determined byaShimadzu UV-2501PC UV-Vis spectrophotometer,equipped with an integration sphere attachment for their diffuse reflectance in the range of 200~800 nm.BaSO4was used as the standard in all measurements.Photoluminescence (PL)emission spectra were recorded using a Hitachi F-4500.The excitation wavelength was 250 nm.

    1.3 Evaluation of photocatalytic activity

    The photocatalytic performance of the obtained samples were evaluated by photocatalytic water splitting hydrogen-evolution under UV irradiation and carried out in a photocatalytic reaction system(CELHX300,Beijing Chinese Education Au-Light Co.,Ltd.).For photocatalytic hydrogen production,0.1 g catalyst was well dispersed into deionized water(20 mL)placed in the photocatalytic reaction system,then 80 mL Na2S (0.1 mol·L-1)and Na2SO3(0.04 mol·L-1)aqueous solution was added into the suspension as sacrificial agent.After purge the whole system with N2for 30 min,the suspension was illuminated under a 280 W Hg-lamp (λ>250 nm)continuously and kept stirring.The obtained gas was quantitative analyzed by online analysis with a gas chromatograph (GC9800,Shanghai Kechuang Technology Co.,Ltd.).

    2 Results and discussion

    2.1 XRD analysis

    The XRD patterns of NaTaO3,Ag-NaTaO3,NaTaO3-RGO and Ag-NaTaO3-RGO with different Ag content were shown in Fig.1.As shown,the X-ray diffraction patterns of NaTaO3-RGO coincide well with that of pure NaTaO3.The peaks at 2θ of 22.85°,32.55°,40.23°,46.67°,52.58°and 58.40°are well assigned to the (020),(200),(022),(202),(222)and (123)crystal planes of cubic NaTaO3,respectively.Noticeably,the peaks for RGO are not observed in the diffraction patterns of NaTaO3-RGO and Ag-NaTaO3-RGO composites,which may be due to the low amount and relatively low diffraction intensity of RGO.However,the presence of RGO could be discerned by SEM and TEM,as discussed later.Moreover,the XRD patterns of Ag-NaTaO3-RGO with different Ag content are similar and no signal about silver can be detected.This may be due to the fact that the Ag nanoparticles were dispersedly loaded on the surface of the NaTaO3and RGO.

    Fig.1 XRD patterns of NaTaO3,Ag-NaTaO3,NaTaO3-RGO and Ag-NaTaO3-RGO with different Ag content

    2.2 XPS analysis

    To further probe the chemical structure of the asprepared samples,the XPS measurementswere conducted.In Fig.2a,the XPS survey spectrum of 0.2Ag-NaTaO3-RGO display the presence of C,N,O,Na,Ag and Ta elements.As shown in Fig.2b,the C1s spectrum of 0.2Ag-NaTaO3-RGO could be deconvoluted into two peaks.The peak at 284.78 and 288.29 eV could be attributed to the C-C and oxygen functional groups C-OH.This indicates that most of GO has been reduced to RGO.Two peaks in Fig.2c centered at 367.6 and 373.8 eV could be attributed to Ag3d5/2and Ag3d3/2,respectively.And the Ta4f peak for 0.2Ag-NaTaO3-RGO was shown in Fig.2d,with the value of about 26.1 eV,confirming that Ta exists mainly in the Ta5+chemical state on the sample surface.

    Fig.2 XPS spectra of 0.2Ag-NaTaO3-RGO:(a)Survey,(b)C1s,(c)Ag3d,and (d)Ta4f

    2.3 Microtopography analysis

    Fig.3a is the SEM image of 0.2Ag-NaTaO3-RGO.As shown,the layered structure of the stacked RGO sheets can be clearly seen.The NaTaO3particles and the Ag nanoparticles are well distributed on RGO nanosheets.The average size of NaTaO3and Ag nanoparticles are about 50~100 nm and 10 nm,respectively.Obviously,the average size of NaTaO3is much bigger than that of Ag,which is consistent with the result of TEM.Fig.3b and Fig.3c showed the TEM imagesofNaTaO3-RGO and 0.2Ag-NaTaO3-RGO composite.As shown in Fig.3b,the light-gray thin RGO sheets are observed,and NaTaO3particles are uniformly distributed on the graphene nanosheets.Fig.3c furtherrevealsthata large numberofAg nanoparticles spread uniformly and densely on the surface of graphene,which is consistent with the observation from SEM image.The HRTEM image in Fig.3d reveals the well-defined lattice fringes of NaTaO3and Ag nanoparticle with the spacings of 0.388 and 0.234 nm,corresponding to the (100)and(111)planes of NaTaO3and Ag,respectively.

    Fig.3 (a)SEM image of 0.2Ag-NaTaO3-RGO,(b)TEM image of NaTaO3-RGO,(c)TEM image of 0.2Ag-NaTaO3-RGO,(d)HRTEM image of 0.2Ag-NaTaO3-RGO

    2.4 Spectra analyses

    Fig.4 exhibitsthe UV-Visdiffuse reflection spectra of NaTaO3,Ag-NaTaO3,NaTaO3-RGO and Ag-NaTaO3-RGO with different Ag content.The absorption edge of NaTaO3is at around 300 nm and which indicates thatNaTaO3hardly has photoresponse property under visible light,which is due to the intrinsic large band gap.Compared with pure NaTaO3,a red-shift of the absorption edge is observed for the NaTaO3-RGO composite,which may be attributed to the bonding effect between GO and NaTaO3.Moreover RGO loading enhances its light absorption over the entire range of wavelength,this is a typical behavior of graphene as previously reported[30].Obviously,with the increase of Ag content,the absorption intensity of Ag-NaTaO3-RGO composites over visible light region increases.Such enhanced absorption in the visible light region may be attributed to the surface plasmon resonance (SPR)effect of Ag nanoparticles[11,31].However,the influence of Ag nanoparticles on the band gap of NaTaO3is almost negligible.So the increase of the visible light absorbance is not the main factor for the improvement of the photocatalytic activity.

    Fig.4 UV-Vis DRS spectra of NaTaO3,Ag-NaTaO3,NaTaO3-RGO and Ag-NaTaO3-RGOwith different Ag content

    PL is an effective strategy to characterize the separation and recombination rates of charge carriers of a photocatalyst.As shown in Fig.5,the PL spectra of NaTaO3exhibit a strong emission peaks centered at around 400 nm,while Ag-NaTaO3and NaTaO3-RGO exhibit a weak fluorescence emission spectrum peak,implying that the photogenerated electrons and holes have better separation in Ag-NaTaO3and NaTaO3-RGO composites.This result reveals that Ag and RGO play an important role in suppressing the recombination of the photogenerated carriers,which efficiently prevented the recombination of electrons and holes.In the case of 0.2Ag-NaTaO3-RGO,the photoluminescence intensity of peak at 400 nm further reduced.The results further indicat that the effect of Ag nanoparticles is quite similar to that of RGO,namely Ag can obviously enhance the separation of electrons and holes[10].

    Fig.5 PL results of the NaTaO3,Ag-NaTaO3,NaTaO3-RGO and 0.2Ag-NaTaO3-RGO composites

    2.5 Photocatalytic activity analysis

    The photocatalytic activities of the samples were evaluated by photocatalytic water splitting hydrogenevolution in a Na2S/Na2SO3aqueous solution under UV irradiation.As shown in Fig.6,the hydrogen production rate of NaTaO3is about 70 μmol·h-1.The obvious increased of hydrogen production rate over Ag-NaTaO3and NaTaO3-RGO (around 200.4 and 267.4 μmol·h-1)was observed.Obviously,all the Ag-NaTaO3-RGO composites have much higher hydrogen production rate under the identical conditions.Among all the Ag-NaTaO3-RGO samples,the as-prepared 0.2Ag-NaTaO3-RGO exhibits the highest H2production rate (395 μmol·h-1)which is around 5.64,1.97 and 1.48 times higher than that of pure NaTaO3,Ag-NaTaO3and NaTaO3-RGO.We expect that the following factors may be responsible for the much greater photocatalytic activities of 0.2Ag-NaTaO3-RGO composites:(i)the efficient separation of electron-hole pairs originated from the excellent electron transfer property of graphene. (ii)the further improvement of electron-hole separation rate due to Ag nanoparticle acted as electron traps. (iii)the enhancement of light absorption over the entire range of wavelengths with the introduction of graphene[32-33].In conclusion,graphene and Ag nanoparticles play very important roles for the improvement of photocatalytic activity of Ag-NaTaO3-RGO composite.

    Fig.6 Photocatalytic H2production curve over various samples

    Fig.7 Illustration for effects of RGO and Ag particles on the photocatalytic activity of Ag-NaTaO3-RGO composite under UVvisible light irradiation

    From all experimental results mentioned above,a possible reaction mechanism was tentatively illustrated in Fig.7.Under ultraviolet illumination,the VB electrons of NaTaO3are excited to the CB,creating holes in the VB.The holes react with H2O to form O2,and the photogenerated electrons in the CB of NaTaO3transferr to graphene sheets since the redox potential of graphene/graphene-is lower than that of the CB of NaTaO3.During the process,graphene can greatly enhance separation rate of electron-hole pairs due to its excellent electron transfer property,and Ag nanoparticle can further improve the electron-hole separation rate because it can act as electron traps.As a result,the Ag-NaTaO3-RGO composites enhance photocatalytic H2production activity as the recombination of photo-generated electron-hole pairs can be suppressed effectively due to the introduction of graphene and Ag nanoparticles.

    3 Conclusions

    In summary,we have rationally designed a ternary composite photocatalysts consisting of Ag,RGO and NaTaO3.InthisuniqueternaryAg-NaTaO3-RGO composite,RGO promotes the electron transfer from the CB of NaTaO3to graphene and simultaneously enhances the light absorption over the entire range of wavelengths.At the same time,Ag nanoparticles act as electron traps which can further improve the separation of electron-hole pairs.As a result,Ag-NaTaO3-RGO enhancesphotocatalytic activity for water splitting hydrogen-evolution.This endeavor paves the way to build reliable triple-composites photocatalysts for photocatalysis applications.

    [1]Wang X,Maeda K,Thomas A,et al.Nat.Mater.,2009,8(1):76-80

    [2]Ou H H,Lin L H,Zheng Y,et al.Adv.Mater.,2017,29(22):1700008

    [3]Yu J G,Qi L F,Jaroniec M.J.Phys.Chem.C,2010,114(30):13118-13125

    [4]Liu J,Liu Y,Liu N Y,et al.Science,2015,347(6225):970-974

    [5]Godin R,Wang Y,Zwijnenburg M A,et al.J.Am.Chem.Soc.,2017,139(14):5216-5224

    [6]Kato H,Kudo A.J.Phys.Chem.B,2001,105(19):4285-4292

    [7]Li X,Zang J L.J.Phys.Chem.C,2009,113(45):19411-19418

    [8]G?mpel D,Tahir M N,Panth?fer M,et al.J.Mater.Chem.A,2014,2(21):8033-8040

    [9]ZHANG Wei(章薇),TAN Guo-Qiang(談國強),XIA Ao(夏傲),et al.J.Chin.Ceram Soc.(硅酸鹽學(xué)報),2011,39(11):1724-1728

    [10]Xu D,Chen M,Song S,et al.CrystEngComm.,2014,16(7):1384-1388

    [11]Xu D B,Yang S B,Jin Y,et al.Langmuir,2015,31(35):9694-9699

    [12]Kato H,Asakura K,Kudo A.J.Am.Chem.Soc.,2003,125(10):3082-3089

    [13]Kudo A,Niishiro R,Iwase A,et al.Chem.Phys.,2007,339(1/2/3):104-110

    [14]CUI Hua-Nan(崔華楠),SHI Jian-Ying(石建英),LIU Hong(劉鴻).Chin.J.Catal.(催化學(xué)報),2015,36(7):969-974

    [15]Deng Y Y,Chen Y J,Chen B G,et al.J.Alloys Compd.,2013,559:116-122

    [16]Reddy K H,Martha S,Parida K M.RSC Adv.,2012,2(25):9423-9436

    [17]Meyer T,Priebe J B,da Silva R O,et al.Chem.Mater.,2014,26(16):4705-4711

    [18]Geim A K.Science,2009,324(5934):1530-1534

    [19]Bai X J,Sun C P,Liu D,et al.Appl.Catal.,B,2017,204:11-20

    [20]Stankovich S,Dikin D A,Dommett G H,et al.Nature,2006,442(7100):282-286

    [21]Li B X,Liu T X,Wang Y F,et al.J.Colloid Interface Sci.,2012,377(1):114-121

    [22]Li Q,Guo B D,Yu J G,et al.J.Am.Chem.Soc.,2011,133(28):10878-10884

    [23]LI Juan(李娟),ZHAO An-Ting(趙安婷),SHAO Jiao-Jing(邵姣婧),et al.Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2017,33(7):1231-1235

    [24]Zhu B L,Lin B Z,Zhou Y,et al.J.Mater.Chem.A,2014,2(11):3819-3827

    [25]Hou Y,Wen Z H,Cui S M,et al.Adv.Mater.,2013,25(43):6291-6297

    [26]LI Xiao-Fen(李曉芬),CHEN Meng-Ying(陳夢瑩),LIANG Shi-Jing(梁詩景),et al.Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2016,32(11):1987-1994

    [27]Yu J G,Xiong J F,Cheng B,et al.Appl.Catal.,B,2005,60(3/4):211-221

    [28]William S,Hummers J R,Offeman R E.J.Am.Chem.Soc.,1958,80(6):1339-1339

    [29]HUANG Lang-Huan (黃 浪歡),CHAN Qi-Zhong (產(chǎn) 啟 中),ZHANG Bing (張斌),et al.Chin.J.Catal.(催化學(xué)報),2011,32(11):1822-1830

    [30]Xiang Q J,Yu J G,Jaroniec M.J.Am.Chem.Soc.,2012,134(15):6575-6578

    [31]Xu D B,Liu K L,Shi W D,et al.Ceram.Int.,2015,41(3):4444-4451

    [32]Xiang Q J,Yu J G,Jaroniec M.Chem.Soc.Rev.,2012,41(2):782-796

    [33]Hermann J M,Tahiri H,Ait-Ichou Y,et al.Appl.Catal.,B,1997,13(3/4):219-228

    猜你喜歡
    張斌制氫光催化
    夕陽家園
    金秋(2022年10期)2022-11-25 16:28:12
    一路有你都是歌
    《花之戀》
    Monolithic all- fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber?
    單分散TiO2/SrTiO3亞微米球的制備及其光催化性能
    BiOBr1-xIx的制備及光催化降解孔雀石綠
    制氫工藝技術(shù)比較
    可見光光催化降解在有機污染防治中的應(yīng)用
    高活性Al-LiBH4-Bi鋁基復(fù)合制氫材料
    Nd/ZnO制備及其光催化性能研究
    人人妻人人看人人澡| 亚洲第一欧美日韩一区二区三区| 久久久国产成人免费| 一级av片app| 久久久精品大字幕| 午夜日韩欧美国产| 999久久久精品免费观看国产| 亚洲欧美日韩无卡精品| 国产蜜桃级精品一区二区三区| 亚洲自偷自拍三级| 99久久无色码亚洲精品果冻| 久久性视频一级片| 美女 人体艺术 gogo| 欧美日韩福利视频一区二区| 日本在线视频免费播放| 99久久99久久久精品蜜桃| 免费av不卡在线播放| 国产乱人伦免费视频| 成人高潮视频无遮挡免费网站| 欧美日本视频| 毛片一级片免费看久久久久 | 午夜精品在线福利| 在线看三级毛片| 久久国产精品人妻蜜桃| 99久久成人亚洲精品观看| 亚洲精品乱码久久久v下载方式| 激情在线观看视频在线高清| 激情在线观看视频在线高清| 亚洲国产高清在线一区二区三| 中文亚洲av片在线观看爽| 国产探花极品一区二区| 噜噜噜噜噜久久久久久91| 最近视频中文字幕2019在线8| 日韩中字成人| 一进一出抽搐gif免费好疼| 日韩成人在线观看一区二区三区| 婷婷六月久久综合丁香| 麻豆久久精品国产亚洲av| 我要看日韩黄色一级片| 有码 亚洲区| 亚洲无线在线观看| 黄片小视频在线播放| 97人妻精品一区二区三区麻豆| 国内揄拍国产精品人妻在线| 国产国拍精品亚洲av在线观看| 亚洲精品亚洲一区二区| 91久久精品国产一区二区成人| 狠狠狠狠99中文字幕| 亚洲精华国产精华精| 久久九九热精品免费| 亚洲国产色片| 欧美中文日本在线观看视频| 久久久久性生活片| 欧美另类亚洲清纯唯美| 欧美成人免费av一区二区三区| 人妻久久中文字幕网| 99久国产av精品| av女优亚洲男人天堂| 男女下面进入的视频免费午夜| 一级av片app| 国产精品一区二区免费欧美| www.熟女人妻精品国产| 亚洲,欧美,日韩| 三级国产精品欧美在线观看| 精品人妻视频免费看| 日韩中字成人| 琪琪午夜伦伦电影理论片6080| 女同久久另类99精品国产91| 97碰自拍视频| 国产一区二区在线av高清观看| 极品教师在线免费播放| 深爱激情五月婷婷| 九九久久精品国产亚洲av麻豆| 久久99热6这里只有精品| 黄色日韩在线| 欧美日韩黄片免| 欧美+亚洲+日韩+国产| 99久久精品一区二区三区| 久久天躁狠狠躁夜夜2o2o| 亚洲精华国产精华精| 日韩亚洲欧美综合| 免费搜索国产男女视频| 男插女下体视频免费在线播放| 欧美性感艳星| 18禁在线播放成人免费| 一边摸一边抽搐一进一小说| 国产亚洲精品久久久com| 十八禁网站免费在线| 丰满的人妻完整版| 岛国在线免费视频观看| 欧美成狂野欧美在线观看| 非洲黑人性xxxx精品又粗又长| 两个人视频免费观看高清| 男人的好看免费观看在线视频| 国产中年淑女户外野战色| 又爽又黄a免费视频| netflix在线观看网站| 亚洲人成网站在线播放欧美日韩| 日本黄大片高清| 婷婷精品国产亚洲av在线| 日本 av在线| 精品乱码久久久久久99久播| 亚洲内射少妇av| 亚洲av免费高清在线观看| 久久6这里有精品| 亚洲成av人片免费观看| 亚洲人与动物交配视频| 狠狠狠狠99中文字幕| 最后的刺客免费高清国语| 99热6这里只有精品| 精品欧美国产一区二区三| 欧美黄色淫秽网站| 女人被狂操c到高潮| 精品久久久久久久久久免费视频| 亚洲国产精品合色在线| 又紧又爽又黄一区二区| 成人国产综合亚洲| 免费av不卡在线播放| 国产精品久久久久久久电影| 美女大奶头视频| 久久99热这里只有精品18| 亚洲狠狠婷婷综合久久图片| 极品教师在线免费播放| 欧美xxxx黑人xx丫x性爽| 99热6这里只有精品| 亚洲不卡免费看| 国产色婷婷99| 赤兔流量卡办理| 欧美日韩国产亚洲二区| 国产精品一区二区性色av| av天堂在线播放| 亚洲激情在线av| 露出奶头的视频| 日韩欧美精品免费久久 | 免费在线观看成人毛片| 十八禁人妻一区二区| 亚洲欧美激情综合另类| 天堂影院成人在线观看| 亚洲一区二区三区不卡视频| 欧美最新免费一区二区三区 | 色吧在线观看| 99国产综合亚洲精品| 麻豆国产av国片精品| 国产日本99.免费观看| 蜜桃亚洲精品一区二区三区| 亚洲精品乱码久久久v下载方式| 又爽又黄a免费视频| 国产亚洲精品av在线| 久久国产精品影院| 人妻制服诱惑在线中文字幕| aaaaa片日本免费| 国产精品亚洲av一区麻豆| 又爽又黄a免费视频| 国产午夜精品论理片| 网址你懂的国产日韩在线| 亚洲成人免费电影在线观看| 久久精品国产亚洲av香蕉五月| 亚洲五月天丁香| 亚洲男人的天堂狠狠| 在线观看舔阴道视频| 又紧又爽又黄一区二区| 永久网站在线| www.999成人在线观看| 嫩草影视91久久| 国产爱豆传媒在线观看| 久久婷婷人人爽人人干人人爱| 国产亚洲精品久久久久久毛片| 人妻丰满熟妇av一区二区三区| 亚洲午夜理论影院| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 制服丝袜大香蕉在线| 亚洲精品粉嫩美女一区| 亚洲色图av天堂| 少妇的逼水好多| 麻豆国产av国片精品| 午夜激情欧美在线| 国产亚洲av嫩草精品影院| 一个人观看的视频www高清免费观看| 免费高清视频大片| 最近最新免费中文字幕在线| 午夜福利在线观看吧| 色精品久久人妻99蜜桃| 亚州av有码| 久久性视频一级片| 最新在线观看一区二区三区| 国产伦在线观看视频一区| 好男人电影高清在线观看| h日本视频在线播放| ponron亚洲| 亚洲精品日韩av片在线观看| 国产精品久久久久久亚洲av鲁大| 九九在线视频观看精品| eeuss影院久久| 51午夜福利影视在线观看| 欧美成人一区二区免费高清观看| 国内毛片毛片毛片毛片毛片| 有码 亚洲区| 亚洲成av人片免费观看| 高清在线国产一区| 亚洲最大成人中文| 国产精品久久久久久精品电影| 国产亚洲欧美在线一区二区| 免费在线观看亚洲国产| 国内精品久久久久精免费| 看十八女毛片水多多多| 国产免费一级a男人的天堂| 亚洲国产高清在线一区二区三| 欧美高清成人免费视频www| 欧美绝顶高潮抽搐喷水| 欧美日韩综合久久久久久 | 免费在线观看日本一区| av天堂中文字幕网| 久久精品人妻少妇| 搡老妇女老女人老熟妇| 久久草成人影院| 淫妇啪啪啪对白视频| 欧美午夜高清在线| 乱人视频在线观看| 99在线视频只有这里精品首页| 亚洲精品乱码久久久v下载方式| 国产精品99久久久久久久久| 成人毛片a级毛片在线播放| 国产精品女同一区二区软件 | 在线免费观看的www视频| or卡值多少钱| 久久久久性生活片| 少妇熟女aⅴ在线视频| 久久久久久久久大av| 亚洲精华国产精华精| 亚洲美女搞黄在线观看 | 亚州av有码| 精品一区二区三区视频在线| 亚洲午夜理论影院| 好男人电影高清在线观看| 听说在线观看完整版免费高清| 免费在线观看成人毛片| 黄色配什么色好看| 久久中文看片网| 午夜老司机福利剧场| 午夜久久久久精精品| 久久香蕉精品热| 亚洲18禁久久av| 亚洲欧美日韩高清专用| 一级黄片播放器| 美女xxoo啪啪120秒动态图 | 久久久久免费精品人妻一区二区| 国产三级在线视频| 少妇裸体淫交视频免费看高清| 久9热在线精品视频| 级片在线观看| 搡老熟女国产l中国老女人| 精品久久久久久久久久免费视频| 亚洲经典国产精华液单 | 美女高潮的动态| 亚洲精品乱码久久久v下载方式| 在线播放国产精品三级| 老司机深夜福利视频在线观看| 久久热精品热| 亚洲av中文字字幕乱码综合| 91久久精品电影网| 国产真实伦视频高清在线观看 | 麻豆成人av在线观看| av欧美777| 欧美成人一区二区免费高清观看| 欧美极品一区二区三区四区| 国产白丝娇喘喷水9色精品| 久久精品国产亚洲av涩爱 | 亚洲精品亚洲一区二区| 国产精品自产拍在线观看55亚洲| 国产视频内射| 97超视频在线观看视频| 免费人成在线观看视频色| 欧美乱色亚洲激情| 深夜a级毛片| 丰满的人妻完整版| 国模一区二区三区四区视频| 午夜福利视频1000在线观看| 久久精品久久久久久噜噜老黄 | 日韩欧美国产一区二区入口| 国产国拍精品亚洲av在线观看| a在线观看视频网站| 成人鲁丝片一二三区免费| 精品99又大又爽又粗少妇毛片 | 波野结衣二区三区在线| ponron亚洲| 国产一区二区在线观看日韩| 他把我摸到了高潮在线观看| 91久久精品国产一区二区成人| 中文字幕高清在线视频| 夜夜看夜夜爽夜夜摸| 国产一区二区三区在线臀色熟女| 禁无遮挡网站| 久久久久精品国产欧美久久久| 亚洲经典国产精华液单 | 国产成人av教育| 精品久久久久久久久久久久久| 在线观看舔阴道视频| 国产精品一区二区三区四区免费观看 | 成人av一区二区三区在线看| 国产一区二区三区在线臀色熟女| 日韩欧美在线二视频| 久久国产精品影院| 成人av一区二区三区在线看| 噜噜噜噜噜久久久久久91| 亚洲第一欧美日韩一区二区三区| 波野结衣二区三区在线| 亚洲人成网站在线播放欧美日韩| 国产一区二区激情短视频| 久久精品综合一区二区三区| 此物有八面人人有两片| 国产不卡一卡二| 久久久久久大精品| www.熟女人妻精品国产| 精品一区二区三区视频在线观看免费| 日本免费a在线| 亚洲欧美日韩高清在线视频| 午夜福利18| 国产亚洲精品久久久com| 亚洲va日本ⅴa欧美va伊人久久| 在线免费观看的www视频| 熟女人妻精品中文字幕| 在线a可以看的网站| 欧美一区二区国产精品久久精品| 国产人妻一区二区三区在| 成人精品一区二区免费| av福利片在线观看| 一区二区三区高清视频在线| 日韩欧美一区二区三区在线观看| 国产欧美日韩一区二区精品| 搡老熟女国产l中国老女人| 国产国拍精品亚洲av在线观看| 久久国产精品人妻蜜桃| 日韩欧美三级三区| 国内精品久久久久精免费| 精品乱码久久久久久99久播| 亚洲av成人精品一区久久| 宅男免费午夜| 国产aⅴ精品一区二区三区波| 久久久成人免费电影| 免费黄网站久久成人精品 | 狂野欧美白嫩少妇大欣赏| 悠悠久久av| 亚洲欧美日韩高清专用| 国产精品综合久久久久久久免费| 可以在线观看的亚洲视频| 一区二区三区高清视频在线| 欧美xxxx性猛交bbbb| 日韩免费av在线播放| av女优亚洲男人天堂| 精品一区二区三区人妻视频| 精品熟女少妇八av免费久了| 男人舔奶头视频| 欧美xxxx性猛交bbbb| 国产乱人视频| 免费在线观看亚洲国产| 亚洲成人精品中文字幕电影| 亚洲第一欧美日韩一区二区三区| 在线观看一区二区三区| 内地一区二区视频在线| 欧美午夜高清在线| 成人美女网站在线观看视频| 色哟哟·www| 成人欧美大片| 九九热线精品视视频播放| 午夜视频国产福利| 舔av片在线| 91九色精品人成在线观看| 欧美性猛交╳xxx乱大交人| 在线免费观看的www视频| 在线看三级毛片| 久久欧美精品欧美久久欧美| 午夜激情福利司机影院| 无遮挡黄片免费观看| 美女高潮的动态| 男人舔奶头视频| 久久久久性生活片| 亚洲国产精品sss在线观看| 免费看日本二区| 18禁黄网站禁片免费观看直播| 99久国产av精品| 国产不卡一卡二| 日韩欧美在线二视频| 黄色女人牲交| 男女那种视频在线观看| 精品久久久久久久久av| 免费av观看视频| 欧美性感艳星| 国产成+人综合+亚洲专区| 国产成年人精品一区二区| 级片在线观看| 婷婷六月久久综合丁香| 精品一区二区三区视频在线| 国产精品98久久久久久宅男小说| 超碰av人人做人人爽久久| 天堂av国产一区二区熟女人妻| 亚洲中文字幕日韩| 欧美日韩乱码在线| 成年免费大片在线观看| 亚洲经典国产精华液单 | 黄色丝袜av网址大全| 中文字幕人成人乱码亚洲影| 国产淫片久久久久久久久 | 国内揄拍国产精品人妻在线| 国产亚洲精品久久久com| 老司机深夜福利视频在线观看| a级毛片a级免费在线| av黄色大香蕉| 波多野结衣高清无吗| 国产精品野战在线观看| av在线观看视频网站免费| 午夜免费激情av| 国产熟女xx| 国产av不卡久久| 国产69精品久久久久777片| 欧美乱妇无乱码| 国产黄片美女视频| 69人妻影院| 观看免费一级毛片| 久久精品国产自在天天线| 国产精品美女特级片免费视频播放器| 欧美区成人在线视频| 亚洲自偷自拍三级| 中出人妻视频一区二区| 亚洲成av人片免费观看| 国产精品自产拍在线观看55亚洲| 国产精品永久免费网站| 人人妻,人人澡人人爽秒播| 午夜福利免费观看在线| 国产成人福利小说| av在线观看视频网站免费| 深夜精品福利| 两个人视频免费观看高清| 成人无遮挡网站| av女优亚洲男人天堂| 欧美精品啪啪一区二区三区| 亚洲,欧美精品.| 97超级碰碰碰精品色视频在线观看| 9191精品国产免费久久| 日本 av在线| 最后的刺客免费高清国语| 嫩草影院新地址| 日韩大尺度精品在线看网址| 国产精品免费一区二区三区在线| 日韩欧美在线二视频| 国产一区二区在线观看日韩| 蜜桃亚洲精品一区二区三区| 欧美日本亚洲视频在线播放| 51国产日韩欧美| 悠悠久久av| 最近在线观看免费完整版| 免费在线观看影片大全网站| 亚洲欧美日韩高清专用| 欧美日韩黄片免| a在线观看视频网站| 啦啦啦韩国在线观看视频| 国产亚洲精品综合一区在线观看| 亚洲av成人不卡在线观看播放网| 脱女人内裤的视频| 久久精品久久久久久噜噜老黄 | 91午夜精品亚洲一区二区三区 | 波多野结衣高清作品| 在线观看午夜福利视频| 两性午夜刺激爽爽歪歪视频在线观看| 琪琪午夜伦伦电影理论片6080| 久久伊人香网站| 国产真实伦视频高清在线观看 | 国产国拍精品亚洲av在线观看| 国产大屁股一区二区在线视频| 亚洲精品一卡2卡三卡4卡5卡| 99国产极品粉嫩在线观看| 国产麻豆成人av免费视频| 麻豆久久精品国产亚洲av| 在线观看美女被高潮喷水网站 | 老熟妇乱子伦视频在线观看| 丰满的人妻完整版| 国产单亲对白刺激| 久久国产乱子伦精品免费另类| 精品无人区乱码1区二区| 久久精品人妻少妇| 久久九九热精品免费| 看十八女毛片水多多多| 村上凉子中文字幕在线| 欧美zozozo另类| 熟妇人妻久久中文字幕3abv| 九九热线精品视视频播放| 国产成人a区在线观看| 亚洲乱码一区二区免费版| 麻豆国产av国片精品| 网址你懂的国产日韩在线| 久久久久久久精品吃奶| 欧美激情国产日韩精品一区| 麻豆国产97在线/欧美| 又爽又黄a免费视频| 婷婷色综合大香蕉| 特大巨黑吊av在线直播| ponron亚洲| 99国产综合亚洲精品| 精品久久久久久久久久久久久| 亚洲真实伦在线观看| 两人在一起打扑克的视频| 动漫黄色视频在线观看| 亚洲精品久久国产高清桃花| av在线老鸭窝| 国产私拍福利视频在线观看| 高潮久久久久久久久久久不卡| 亚洲熟妇中文字幕五十中出| 91狼人影院| 国产一区二区激情短视频| 亚洲精品456在线播放app | 国产精品自产拍在线观看55亚洲| 国产熟女xx| 性色avwww在线观看| 亚洲av中文字字幕乱码综合| 亚洲av美国av| av专区在线播放| 自拍偷自拍亚洲精品老妇| 亚洲av成人av| 国产精品亚洲av一区麻豆| 久久国产乱子伦精品免费另类| 日韩欧美免费精品| 成人高潮视频无遮挡免费网站| 欧美午夜高清在线| 一个人免费在线观看的高清视频| 禁无遮挡网站| av在线蜜桃| 欧美日韩乱码在线| 亚洲人成网站在线播| 日韩成人在线观看一区二区三区| 亚洲一区高清亚洲精品| 国产不卡一卡二| 在线播放国产精品三级| www.999成人在线观看| 别揉我奶头~嗯~啊~动态视频| 一个人看视频在线观看www免费| 成人午夜高清在线视频| 人妻丰满熟妇av一区二区三区| eeuss影院久久| 亚洲aⅴ乱码一区二区在线播放| 婷婷亚洲欧美| 色哟哟·www| 国产熟女xx| 色播亚洲综合网| 亚洲成av人片在线播放无| 欧美日韩乱码在线| 久久久久久久久中文| 丰满乱子伦码专区| 波多野结衣巨乳人妻| 麻豆国产97在线/欧美| 国产大屁股一区二区在线视频| 日韩欧美三级三区| 亚洲在线自拍视频| 久久久久久久久大av| 国产黄色小视频在线观看| 狂野欧美白嫩少妇大欣赏| 1000部很黄的大片| 一本一本综合久久| 黄色配什么色好看| 身体一侧抽搐| 可以在线观看的亚洲视频| 1000部很黄的大片| 国产淫片久久久久久久久 | 午夜福利在线在线| 亚洲欧美清纯卡通| 黄色日韩在线| 一个人观看的视频www高清免费观看| 小说图片视频综合网站| 亚洲av免费高清在线观看| 大型黄色视频在线免费观看| 久久天躁狠狠躁夜夜2o2o| 亚洲中文字幕一区二区三区有码在线看| 狠狠狠狠99中文字幕| 最近最新中文字幕大全电影3| 琪琪午夜伦伦电影理论片6080| av天堂中文字幕网| 最新在线观看一区二区三区| 日韩人妻高清精品专区| 别揉我奶头 嗯啊视频| 国产精品精品国产色婷婷| 国产极品精品免费视频能看的| 日本黄色片子视频| 国产av不卡久久| 亚洲精品一卡2卡三卡4卡5卡| 99热这里只有是精品在线观看 | 99久久99久久久精品蜜桃| 性色avwww在线观看| 97人妻精品一区二区三区麻豆| av专区在线播放| 丝袜美腿在线中文| 婷婷精品国产亚洲av在线| 精品久久久久久久久久免费视频| 欧美成人性av电影在线观看| 又粗又爽又猛毛片免费看| 国产 一区 欧美 日韩| 俄罗斯特黄特色一大片| 身体一侧抽搐| 欧美国产日韩亚洲一区| 乱人视频在线观看| 两个人的视频大全免费| 别揉我奶头 嗯啊视频| 欧美性猛交╳xxx乱大交人| 三级国产精品欧美在线观看| 久久精品国产99精品国产亚洲性色| 国产黄a三级三级三级人| 日日摸夜夜添夜夜添av毛片 | 69av精品久久久久久| 精品无人区乱码1区二区| 国产av在哪里看| aaaaa片日本免费| www日本黄色视频网| 尤物成人国产欧美一区二区三区| 亚洲精品色激情综合| 赤兔流量卡办理| 日日干狠狠操夜夜爽| 九九在线视频观看精品| 51国产日韩欧美|