• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    杯[4]芳烴修飾的釕ギ配合物的合成與性質(zhì)

    2018-02-01 06:55:59黃秋穎韓銀鋒鄭澤寶
    關(guān)鍵詞:工程系李靜化工學(xué)院

    黃秋穎 韓銀鋒 鄭澤寶*,

    (1河南工業(yè)職業(yè)技術(shù)學(xué)院化學(xué)工程系,南陽(yáng) 473009)

    (2泰山學(xué)院化學(xué)化工學(xué)院,泰安 271021)

    0 Introduction

    The pH responsive compounds have attracted tremendous interest in recent decades in many fields such as acid rain pollution,biological and chemical analyses,and environmental monitoring[1].Although many methods have been used for measuring pH value variations such as electrochemicalmethod,which is well established and known,it has disadvantages and limitations.For example,the signal can be influenced by electromagnetic fields and aggressive analytes[2].Among these methods,luminescence technology is one of the most important methods to achieve sensitive and rapid pH sensing due to the advantage of low background noise and high sensitivity[3-5].Moreover,the microscopic imaging technique could map the proton distribution within living cells[6-8].However, most conventional fluorescent dyes,especially commercialized probes,fail to provide longperiod tracking due to severe photobleaching[9-10].The pH-responsive rutheniumギ polypyridyl complexes can overcome above-mentioned shortcomings because their long emission lifetime,large Stokes shift and high photostability[11-13].Since the derivatives of imidazo[4,5-f][1,10]phenanthroline possess ionizable N-H protons,the optical properties of many rutheniumギpolypyridyl complexes can be finely tuned through protonation/deprotonation of these N-H protons,achieving intriguing pH and anions luminescence switching/sensing events[14-16].However,the luminescence change factors need to be further boosted and pH switching regions need further expansion. Further,some rutheniumギ polypyridylcomplexeshavebeen investigated for the applications of live cell staining in different cell compartments,such as nucleus[17],lysosomes[18],cytoplasm[19],and mitochondria[20-21].However,only a few examples of rutheniumギ polypyridyl complexes succeeded in live cell imaging with low cytotoxicity and good water solubility.Yet,the vast potential of rutheniumギpolypyridyl complexes as cell imaging probes still remains largely untapped.

    The functionalized calix[n]arenes have been found a significant feature that their ability to act as carriers through membranes or to be incorporated into channeling systems,with analytical and therapeutic applications[22-23].In the present study,by grafting calix[4]arene fragment to rutheniumギ polypyridyl complex,we synthesized a new calix[4]arene-based rutheniumギpolypyridyl complex of[Ru2(bpy)4(H2L)](ClO4)4(1)(bpy=2,2′-bipyridine and H2L=11,23-bis (2-imidazo[4,5-f]-1,10-phenanthroline)-25,27-dihydroxy-26,28-diethoxycarbonylpropyl-5,17-di-p-t-butyl-calix[4]arene),and found that this complex acted as a highly efficient pH-induced “off-on-off”luminescence switch,a “turn off”luminescence sensor for F-and OAc-as well as living HeLa cellularimaging agentwith minor cytotoxicity.

    1 Experimental

    1.1 Materials and measurements

    All of the reagents used for synthesis were obtained commercially,and were used without further purification.The tetrabutylammonium salts with relative anions (F-,Cl-,Br-,I-,OAc-,OH-,NO3-,ClO4-,HSO4-,and H2PO4-)were purchased from Aldrich.1,10-Phenanthroline-5,6-dione,11,23-diformyl-25,27-dihydroxy-26,28-diethoxycarbonylpropyl-5,17-di-p-t-butyl-calix[4]arene,and cis-Ru(bpy)2Cl2were prepared according to the literature procedures[24-26].The1H NMR spectrum and13C NMR spectrum were collected using a Bruker DRX-400 NMR spectrometer with DMSO-d6as the solvent.The elemental analyses were performed on a Vario EL elemental analyzer.The IR spectrum were recorded on a Nicolet 6700-IR spectrometer as KBr disks.The UV-Vis absorption spectra were recorded using a Shimadzu UV-2700 UV-Vis spectrophotometer.A high resolution mass spectrum was obtained using an API Q-star pulsar I/oMALDI/Qq-TOF mass spectrometer.Emission spectra were obtained on an F-7000 spectrofluorophotometer (Hitachi). The luminescence lifetime studies were conducted using a HORIBA Jobin Yvon Fluorolog-3 spectro-fluorometer fitted with a time-correlated single photon counting detector and a NanoLED pulsed laser diode excitation source (455 nm).

    1.2 Synthesis of H2L

    p-t-Butyl-calix[4]arene was acylated with ethyl-bromoacetate in the presence ofK2CO3to get compound 2 (Scheme 1)in 76%yield.Refluxing of compound 2 with hexamethylenetetramine (HMTA)in trifluoro-acetic acid (TFA)gave calix[4]arene diester dialdehyde 3 in 65%yield.H2L was synthesized by condensing of 3 (99 mg,0.12 mmol)and 1,10-phenanthroline-5,6-dione (55 mg,0.26 mmol)in glacial acetic acid (5.0 mL)at 120 ℃ for 8 h (Scheme 1).Upon cooling to room temperature,the reaction mixture was poured into 100 mL cold water under vigorous stirring.The solution was neutralized to pH 7.0 with concentrated aqueous ammonia.The crude productwasthen recrystallized twicefrom 95%ethanol.Yield:68%.IR (KBr pellet,cm-1):3 333(m),2 958(m),2 867(m),1 730(s),1 681(m),1 595(m),1 469 (s),1 442 (s),1 293 (m),1 180 (s),1 112(m),1 033(m),804(m),740(s);1H NMR (400 MHz,DMSO-d6):δ 13.39 (s,2H,N-H),9.74 (s,1H,O-H),9.64 (s,1H,O-H),9.01~9.04 (d-d,J=7.2 Hz,4H),8.91~8.93(d-d,J=6.4 Hz,4H),8.14 (d,J=6.0 Hz,4H),7.83~7.87 (m,4H),7.24 (d,J=6.0 Hz,4H),4.32 (d,J=12.8 Hz,4H),4.07~4.15 (m,8H),3.70 (d,J=12.8 Hz,4H),2.89 (t,J=7.2 Hz,4H),2.26~2.32 (m,4H),1.17~1.21(m,6H),1.10~1.13 (s-s-s,18H).ESI-MS (positive,DMF)[M+H]+:Calcd.m/z=1 201.55;Found m/z=1 201.53.

    Scheme 1 Synthetic route for 1

    1.3 Synthesis of[Ru2(bpy)4(H2L)](ClO4)4(1)

    Complex 1 wassynthesized by refluxing a solution of cis-Ru(bpy)2Cl2(53 mg,0.10 mmol)and H2L (60 mg,0.050 mmol)in 44 mL ethanol-DMF (10∶1,V/V)under nitrogen for 12 h.After the solution was cooled down to room temperature,the precipitate was removed by filtration.The filtrate was concentrated to about 4.0 mL by rotary evaporation,then purified by silica gel column chromatography using a solvent mixture of CH3CN-20%aqueous KNO3(7∶1,V/V)as the eluent.The eluent was evaporated to small volume and was then precipitated with saturated NaClO4aqueous solution.The resulting solid was then recrystallized by diffusion of diethyl ether into a concentrated acetonitrile solution of the complex to give 82 mg (Yield:33%)of the target product.Anal.Calcd.for C114H104Cl4N16O24Ru2(%):C:56.44;H:4.32;N:9.24.Found (%):C,56.18;H,4.28;N,9.27.IR(KBr pellet,cm-1):3 743 (m),2 952 (m),2 904(m),1 726 (s),1 602 (m),1 506 (s),1 446 (s),1 365(m),1 139(s),1 116(m),1 090(vs),809(m),767(s),627(s);1H NMR (400 MHz,DMSO-d6,F(xiàn)ig.S1a):δ 13.95 (s,2H,N-H),9.31 (s,2H,O-H),9.05~9.10 (d-d,J=8.0 Hz,4H,Hc),8.82~8.88 (d-d,J=8.0 Hz,8H,H3,3′),8.20~8.24 (m,8H,H4′,d),8.05~8.11 (m,8H,H4,a),7.84~7.96(m,4H,Hb),7.84 (d,J=5.2 Hz,4H,H6′),7.56~7.60 (m,8H,H6,e),7.25~7.33 (m,8H,H5,5′),4.34 (d,J=12.8 Hz,4H,Hf),4.11~4.16 (m,8H,Hh,k),3.72 (d,J=12.8 Hz,4H,Hg),2.91 (t,J=7.2 Hz,4H,Hj),2.32 (m,4H,Hi),1.20~1.23 (m,6H,Hl),1.09~1.06 (s-s-s,18H,-C(CH3)3);13C NMR (125 MHz,DMSO-d6,F(xiàn)ig.S1b):δ 173.09,157.17,157.00,155.55,153.40,151.83,150.00,145.49,144.98,138.19,137.33,132.85,129.23,128.33,127.57,126.55,125.89,124.87,121.51,121.13,74.85,60.46,34.62,31.52,31.41,30.44,25.51,14.56.ESI-MS (positive,CH3CN)[M-ClO4-]+:Calcd.m/z=2 326.64;Found,m/z=2 326.62,100%.

    1.4 Optical sensing studies

    UV-visible and emission spectrophotometric pH titrations of 1 were carried out in Britton-Robinson buffer (40 mmol·L-1H3PO4,40 mmol·L-1CH3COOH,40 mmol·L-1H3BO3)with 0.10 mol·L-1NaCl to keep constant ionic strength.The luminescence quantum yields were calculated by comparison with[Ru(bpy)3]2+(Φstd=0.028)in aerated aqueous solution at room temperature using Eq.(1)[27].

    The interaction of 1 with various anions was investigated in acetonitrile solutions.When the spectrofluorometric titrations were performed,the stock solution of 1 (1.0 mmol·L-1)was diluted to 10 μmol·L-1with acetonitrile.Microliter aliquots of the anions underinvestigation were then injected into the solution of 1 through a rubber septum in the cap.The solution of 1 was magnetically stirred for 1 min after each addition,and then was scanned again.This processwasrepeated untilthe changesin the emission and UV-Visabsorption spectrabecame insignificant.The excitation wavelength λexwas fixed to 454 nm for the emission measurements.

    The binding/equilibrium constants of the 1 with F-and OAc-were evaluated from the absorbance and emission titration experiments,and obtained using the Benesi-Hildebrand equations (2)and (3),respectively[28-29].

    where A0(I0)and A∞(I∞)are the absorbance (emission intensities)of the free and fully bound forms of 1,respectively,A (I)is the absorbance (emission intensity)of 1 in the presence of F-or OAc-,n represents the stoichiometry of binding of F-or OAc-to 1,K is the association constant of the binding of 1 to the F-or OAc-,and CGiis the concentration of F-or OAc-added.

    1.5 Cell culture and confocal luminescence cellular imaging

    The HeLa cell line was purchased from the Institute of Biochemistry and Cell Biology,Chinese Academy of Sciences,and grown in Dulbecco′s Modified Eagle′s medium (DMEM)(MediaTech,Herndon,VA)with 10%fetal bovine serum (FBS)(Hyclone,Logan,UT)at 37 ℃ and 5%CO2(V/V,the same below).Cells were plated on 18 mm glass coverslips and allowed to adhere for 24 h.Then these cells were incubated with 10 μmol·L-1of complex 1(PBS buffer,pH=7.2)for imaging experiments.Confocal luminescence imaging of cells was performed with a confocal fluorescence microscope equipped with a 60×oil-immersion objective lens (OLYMPUS FV1000 IX8),excitation at 455 nm was carried out with a semiconductor laser,and emission was collected at 560 to 660 nm.

    1.6 Cytotoxicity assay

    The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT)assay was used for measuring the in vitro cytotoxicity of probe 1.The HeLa cells growing in a 96-well cell-culture plate at 5×104cell per well and incubated at 37℃under 5%CO2for 24 h.Probe 1 (100 mL per well)at Lys content of 0~60 μmol·L-1were added to the wells of the treatment group,and diluted in DMEM at final concentration of 0.2%to the negative control group.The combined MTT/PBS solution was added to the 96-well assay plate,and incubated for 4 h.For measuring the absorbance value (OD570)of each well referenced at 690 nm,the enzyme-linked immunosorbent assay reader (infinite M200,Tecan,Austria)was used.The viability of cell growth was calculated by the following formula:Viability=(Asample/Acontrol)×100%.

    2 Results and discussion

    2.1 Synthesis and common optical properties

    Probe 1 was synthesized through the reaction of stoichiometric amounts of H2L and cis-Ru(bpy)2Cl2in N,N-dimethylformamide and ethanol,and was characterized using an assortment of spectroscopic techniques such as IR,1H NMR,13C NMR,ESI-MS,and elemental(C,H and N)analyses.In order to fully assign the proton signals,{1H-1H}COSY experiment was performed and the resulting spectrum for complex 1 is shown in Fig.S2.In the aliphatic region,the cross peaks are observed between Hf-Hg,Hh-Hi,Hi-Hjand Hk-Hlresonances.In the aromatic region,the cross peaks are observed between H3-H4,H4-H5,H5-H6,H3′-H4′,H4′-H5′,H5′-H6′,Ha-Hband Hb-Hcresonances.These cross peaks are most valuable for characterization of complex 1.The spectral assignmentsof complex 1 were made using the cross peaks listed above and by taking into consideration the usual ranges of the J values for 2,2′-bipyridine[30].The IR spectrum for solid 1 displays the characteristic vibrational modes of the polypyridyl ligands (bpy and H2L)and an intense band in the region 1 726 cm-1corresponding to the stretching frequency ofcarbonyl groups.The UV-Vis absorption spectra of 1 in CH3CN are shown in Fig.S3a.The low-energy absorptions between 400 and 500 nm are attributed to the1MLCT,d (Ru2+)→π* (L)transition;the higher-energy absorption attributed to intra-ligand1(π-π*)transitions (<340 nm).Excitation into any of these absorption bands in probe 1 results in a broad emission at 591 nm (Fig.S3b).

    2.2 Ground-and excited-state acid-base properties

    Fig.1 shows the UV-Vis absorption spectra of 1 as a function of pH value.It indicates that the complex undergoes two successive protonation/deprotonation processes over the pH value range of 0.50~11.50.Upon increasing pH value from 0.50 to 5.00(Fig.1a),the absorption intensities of the MLCT band at 464 nm were moderately decreased;H2L-based(322 nm)and bpy-based (286 nm)intraligand π→π*transition bands were obvious decreased.These spectral changes are attributed to the concurrent dissociation of the protons on the protonated imidazole groups.The successive increases in pH value from 5.00 to 11.50 induced the deprotonation of the neutral imidazole groups of the complex as evidenced by significantly decreases in the absorption intensities at 286 nm and moderate increases in the 334 nm band as well as the appearance of an isosbestic point at 326 nm (Fig.1b).Scheme 2 summarizes the abovementioned two successive protonation/deprotonation processes.The pKavalues of the two ground-state acid ionization were derived to be pKa1=1.47±0.01 and pKa2=9.03±0.02 by non-linear sigmoidal fit of the data list in the insets of Fig.1,which are reasonably fall within the corresponding pKaranges from 0.31 to 2.48 and 8.21 to 9.65 for previously reported acid ionization constant values of the analogous Ruギcomplexes[31-33].As shown in Fig.2,the emission spectra of 1 are sensitive to the pH value changes,and consisting of two separate excited-state protonation/deprotonation processes.Upon increasing pH value from 0.70 to 4.00 (Fig.2a),the emission intensities increased moderately by a factor of ~1.4 (IpH4.00/IpH0.70=1.4,ΦpH4.00/ΦpH0.70=0.038/0.020=1.9),and the emission maxima are blueshifted from 607 to 598 nm.The blue shift of the luminescence band on going from protonated imidazole to neutral imidazole groups is due to a destabilization of the MLCT level,which involves as the final state the H2L π*orbital,resulting in an increase of the energy gap between Ru2+(dπ)6and the π*orbital of H2L[34].Obviously,the spectral changes above are mainly contributed to the excited-state deprotonation of the imidazole ring on 1.In contrast,further raising pH value from 4.00 to 12.00 (Fig.2b),the probe 1 exhibited decreased luminescence to 1.8%of the original intensity,acting as a highly sensitive“on-off” switch with a luminescence intensity tenuation factor of 96 (IpH4.00/IpH12.00=96,ΦpH4.00/ΦpH12.00=0.038/0.000 46=82).Interestingly,there was a good linearity between emission intensity and pH value in the pH value range from 6.50 to 8.50 (Inset of Fig.2b).The regression equation was found to be I=1 270.1-129.0pH with a linear coefficient of 0.991 9,indicating that probe 1 could detect pH value quantificationally within a narrow nearly neutral pH value region.The above-mentioned emission changes are ascribed to the two excited-state protonation/deprotonation processes which involved the same protons as involved in the UV-Vis spectrophotometric titrations.Obviously,probe 1 behaves as a pH-induced“off-on-off” emission switch.To the best of our knowledge,complex 1 is one of the most sensitive pH-induced luminescence “off-on”switch among the imidazole-containing Ruギ polypyridylcomplexes(Table 1)[35-36].

    Fig.1 Changes of UV-Vis absorption spectra of 1 upon raising pH value from 0.50 to 5.00 (a)and from 5.00 to 11.50 (b)

    Scheme 2 Protonation-deprotonation processes of probe 1

    Fig.2 Changes of emission spectra of 1 upon raising pH value from 0.70 to 4.00 (a)and from 4.00 to 12.00 (b)

    Importantly,the pH value is also found to have a significanteffecton the excited-states emission lifetimes as shown in Fig.3.For a pH=1.00 buffer,the emission lifetime value of 1 was found to be (693.1±1.3)ns,the lifetimes were noticeably increased by about 1.36 times (τ=(944.4±1.8)ns)upon the pH value was raised to 4.00.In contrast,when pH value was further increased from 4.00 to 12.00 at which the complex occurred as a fully deprotonated species of 1,the lifetimes were reduced to (138.2±1.2)ns (Table 2).These results indicate that probe 1 acts as a lifetime-based pH value sensor,which has more advantages over intensity methods,since the need for repetitive correction is reduced.The values of the excited state acid ionization constant of probe 1,pKa*,were derived according to Eq.(4),which is related tothe lifetimes of both acidic species (τHB)and its conjugate base (τB)as well as the inflection point pHifrom the plot of emission intensity vs pH value[37]:

    Table 1 Comparison of pKaand pKa*values and luminescence on/off intensity ratios for ruthenium complex-based multi-state luminescence switchesa

    Fig.3 Luminescence decay curves of 1 at different pH values

    By using pH value at reflection point of Fig.3a inset,pHi=2.08 and lifetime values of τHB=693.1 ns at pH 1.00,τB=944.4 ns at pH 4.00,the pKa1*value was calculated to be 2.21 which is 0.74pKaunits greater than pKa1,indicating that the electron density on{[Ru2(bpy)2(H4L)]6+}*was higher in the excited state than in the ground state,and the excited electron was localized on[H4L]2+rather than bpy,which increased the basicity of[H4L]2+.Whereas by using pH value at reflection point of Fig.2b inset,pHi=7.83 and lifetime values of τHB=944.4 ns at pH 4.00,τB=138.2 ns at pH 12.00,the pKa2*value was derived to be 6.99,which is 2.04pKaunits lower than pKa2,indicating that the electron in excited{[Ru2(bpy)2(H4L)]4+}*was localized on bpy rather than on H2L,which usually would lead to comparable or decreased excited-state acidity with respect to the ground-state acidity.This behavior is in agreementwith manyimidazole-containing Ruギcomplexes we previously reported[31-33].

    Table 2 Luminescence lifetime of 1 in Britton-Roberson buffer at pH=1~12

    2.3 Anion sensing properties

    Sensing of the anions by probe 1 has been monitored by observing the spectral changes that occur in CH3CN solutions.As shown in Fig.4a,the UV-Vis absorption spectral remains practically unchanged upon addition of 10 equiv.of Cl-,Br-,,,,and I-ions to 10 μmol·L-1solutions of probe 1.On the other hand,following the addition of 10 equiv.of F-and OAc-,the MLCT band split in two broad bands centered at 426 and 463 nm,and a new band at 340 nm was formed.However,upon addition of theanion,the absorbance for the π-π*transition band at 290 nm and the MLCT band at 454 nm were significantly decreased,and the addition of excess of H2PO4-led to the precipitation of the resulting complex.The sensing of the receptor 1 for anions was also studied through emission spectral changes in CH3CN solutions.As can be seen from Fig.6b,the original emission bands at 591 nm for probe 1 was almost unchanged upon the addition of Cl-,Br-,NO3-,ClO4-,HSO4-,and I-to 10 μmol·L-1solutions of 1 because of the weaker interaction between them in solution.Upon the addition of an excess of F-,OAc-,and H2PO4-(up to 10 equiv.),the emissions for probe 1 are completely quenched except with

    To obtain quantitative insight into the anion binding properties of probe 1,the absorption and emission spectral responses of 1 in a CH3CN solution after successive additions of F-and OAc-were studied in detail as well,and the results are shown in Fig.5 and Fig.S4 in the SI.As shown in Fig.5a,successive additions of F-from 0 to 40 μmol·L-1resulted in evident decreases and increases for the absorption intensities of 1 at 454 and 340 nm,respectively.The UV-Vis spectral changes induced by successive additions of OAc-(Fig.S4a),were almost same as those addressed above for 1 with F-.As shown in Fig.5b and Fig.S4b,and their insets,the incremental additions of F-or OAc-to approximately 4.0 equiv.ofF-and 3.0 equiv.of OAc-resulted in evident reductions(about 98%)in the emission intensities of probe 1 with a 10 nm red shift in the emission maxima from 591 to 601 nm.OAc-and F-induced emission quenching of 1 is most likely due to the deprotonation of the imidazole moiety of complex 1 by F-and OAc-,which is propitious to an intramolecular photoinduced electron transfer from the deprotonated imidazo[4,5-f][1,10]phenanthroline moiety to the excited-state Ruギcenter,which results in emission quenching[38].This deprotonation process was also demonstrated by the fact that the UV-Vis and emission spectral changes caused by titration with tetrabutylammonium hydroxide(Fig.S5a and S5b in the SI)and OAc-were identical to each other.As the imidazole NH is deprotonated,the π*orbital of H2L ligand is less destabilized than the Ru2+(dπ)6metal-centered orbital in the excited state complex,resulting in a decrease of the energy gap between Ru2+(dπ)6and the π*orbital of H2L and bathochromic shifts in the emission maxima accordingly.In contrast,H2PO4-induced a different UV-Vis absorption and emission spectral changes of 1 in CH3CN (Fig.S6).Successive additions of H2PO4-until a final concentration of 10 μmol·L-1(1.0 equiv.)resulted in UV-Vis absorption spectral changes that seemly similar to,but with significantly weaker absorption intensities for the band at 340 and 454 nm(Fig.S6a)than those observed for probe 1 with OAc-and F-.On further addition of H2PO4-beyond 1.0 equiv,the absorbance for the π-π*transition and the MLCT bands were significantly decreased and finally give rise to the precipitation of the resulting complex.Moreover,upon the addition of 1.0 equiv.of H2PO4-,the emission intensities of 1 at 591 nm in neat CH3CN were slightly enhanced along with a 3 nm red shift from 591 to 594 nm (Fig.S6b).Upon further additions of H2PO4-,the emission intensities were moderately decreased and finally the precipitation of the resulting complex were generated.The stoichiometries of 1to F-and OAc-were determined from Job plots (Fig.S7)to be 1∶2 and 1∶1.Using Eq.(2)and (3),the values of the binding/equilibrium constant K for 1 with F-and OAcwere determined by emission spectroscopy to be 5.4×109L2·mol-2and 3.9×104L·mol-1(Fig.S8).And the association constant,K,calculated from UV-Vis titrations are 3.8×109L2·mol-2and 3.7×104L·mol-1,which are consistent with the result obtained from fluorescence titrations.It is noted that the K values for 1 with F-and OAc-are of the same order of magnitude as those previously reported luminescence sensor for F-and OAc-[39-41].

    Fig.4 Changes in UV-Vis absorption spectra (a)and emission spectra (b)of 1 in CH3CN upon addition of 10 equiv.anions

    Fig.6 Time-resolved luminescence decay profiles of 1 in acetonitrile in the presence of 0,0.6,1.5 and 3.0 equiv.of OAc-

    The interaction of 1 with F-and OAc-was also investigated using the time-resolved luminescence technique.The time-resolved luminescentdecay profiles of 1 as a function of the F-and OAc-concentrations are shown in Fig.6.The free probe 1 in acetonitrile at room temperature exhibited singleexponentialluminescence decay with lifetime of(151.3±0.14)ns.In the presence of 0.6,1.5 and 3.0 equiv.of OAc-,the decays in luminescence intensities were still fitted to the single-exponential model with shortened lifetimes of (107.6±0.19),(66.43±0.61)and(27.89±0.37)ns,respectively.In the presence of 3.0 equiv.of F-,the luminescent lifetimes were decreased to (28.2±0.34)ns.These results are in full agreement with the steady-state luminescence measurements,making 1 also a lifetime-based sensor for F-and OAc-.

    Fig.7 Partial1H NMR (400 MHz)spectra of 1 (6.6 mmol·L-1)in DMSO-d6in the absence (a)and the presence of 1.0 (b)and 2.0 (c)equiv.of(Bu4N)OAc

    To shed light on the nature of the interactions between probe 1 and the anions,1H NMR spectral changes obtained upon the addition of OAc-and F-as tetrabutylammonium salts to the DMSO-d6solution of 1 (6.6×10-2mol·L-1)were selectively investigated.As shown in Fig.7,upon addition of 1.0 equiv.OAc-,the signal of N-H proton of the imidazole in 1 becomes invisible,and the signal of two hydroxyl protons in 1 broadened and upfield shift from δ 9.29 to 9.11,suggesting that there are strong interactions between the anions and-NH groups of the imidazole and the hydroxyl protons of calix[4]arene.Meanwhile,aromatic proton signals shift downfield or upfield upon the complexation of 1 with OAc-.As can be seen from Fig.7,upon the addition of 2.0 equiv of OAc-into 1 in DMSO-d6,the Haand Hbpeaks were shifted upfield by Δδ=-0.15 and-0.10,respectively.These shifts are attributed to the deprotonation of the imidazole-NH moiety by OAc-[39],which increases the electron density on the imidazo[4,5-f]-1,10-phenanthroline moiety on 1.The observed downfield shift of the Hd(Δδ=0.05)is attributed to the formation of a O-H…O hydrogen bond with OAc-.The similar behavior was also found for 1 with F-ions (Fig.S9).The upfield shift of the-OH signal is ascribed to the influence of the O-H…O type ofintramolecularhydrogen bondingby the formation of F-H…O or O-H…O intermolecular hydrogen bond.A plausible binding mode of complex 1 for the detection of F-and OAc-are proposed in Fig.S10.But with,the same titration was not successful because of the precipitation of the probe 1 on addition of excess.

    2.4 HeLa cell imaging and cytotoxicity

    In view of the excellent photophysical properties of the present Ruギ complex,it is propitious for potential applications in biological systems.Herein,the probe 1 was applied to image the HeLa cells by using confocal laser scanning microscopy (CLSM)as shown in Fig.8.After incubation of HeLa cells with 10 μmol·L-1of probe 1 in DMSO/PBS (1∶99,V/V,pH=7.0)for 20 min at 310 K,intense intracellular luminescence was observed upon 455 nm light excitation,as shown in Fig.8a.Bright field measurement after incubation with 1 (Fig.8b)confirmed that the cells were viable throughout the experiments.Overlays of the confocal luminescence and bright field images(Fig.8c) furtherdemonstrates thatthis probe is actually transported into the cellular interior rather than associating solely at the membrane surface as we recently reported for a Ruギ-Reガ heteropolynuclear complex[42].Cytotoxicity was also tested for probe 1 by an MTT assay against HeLa as depicted in Fig.S11.Upon incubation with 1 (10 μmol·L-1)for 24 h,only less than 4%of the HeLa cells died;even when the concentration of 1 was increased to 60 μmol·L-1,the cell viability still remained above 85%.This result showed that probe 1 is suitable for the cell image over a wide drug concentration range that will not destroy the cell being probed.

    Fig.8 Confocal luminescence (a),bright field (b),and overlay (c)image of living HeLa cells incubated with 1 in DMSO-PBS for 20 min at 310 K

    3 Conclusions

    In this work,a novel calix[4]arene-based rutheniumギ complex,denoted as 1,is synthesized and characterized.Probe 1 was evidenced by spectrophotometric pH titrations to be a sensitive pH-induced“off-on-off” luminescence switching probe with a maximum emission on-off ratio of 96 over a pH value range of 4.00~12.00.Interestingly,there was a good linearity between emission intensity and pH value in the physiological pH value region.The anion-interaction properties of 1 were also thoroughly investigated in CH3CN solution by absorption,emission,and1H NMR spectroscopic techniques. These analyses revealed that 1 acts as an efficient“turn off” emission sensor for F-and OAc-.Time-resolved photoluminescence decays were also measured for 1 to test its viability as a lifetime-based pH value switch and anions sensor.Importantly,the grafting functionalized calix[4]arene fragment to rutheniumギ polypyridyl complex makes 1 exhibit good HeLa cell imaging property with low cytotoxicity.In view of intriguing pH value and anions sensing properties of 1,it is interesting to explore the possibility of using complex 1 in bioimaging of pH value or anions.

    Supporting information is available at http://www.wjhxxb.cn

    [1]Han J,Burgess K.Chem.Rev.,2010,110:2709-2728

    [2]Belyustin A A.J.Solid State Electrochem.,2011,15:47-65

    [3]Xiong H,Wang W,Liang J,et al.Sens.Actuators B:Chem.,2017,239:988-992

    [4]Xu X Y,Yan B.Dalton Trans.,2016,45:7078-7084

    [5]Wang X D,Meier R J,Wolfbeis O S.Angew.Chem.Int.Ed.,2013,52:406-409

    [6]LI Jing(李靜),ZHU Cheng-Cheng(朱成成),HE Wei-Jiang(何衛(wèi) 江 ).Chinese J.Inorg.Chem.(無(wú) 機(jī) 化 學(xué) 學(xué) 報(bào) ),2013,29(12):2528-2534

    [7]Wang W J,Xia J M,F(xiàn)eng J,et al.J.Mater.Chem.B,2016,4:7130-7137

    [8]Fu Y,Zhang J,Wang H,et al.Dyes Pigm.,2016,133:372-379[9]Lee S,Chen X Y.ChemBioChem,2011,12:2120-2121

    [10]Derfus A M,Chan W C W,Bhatia S N.Adv.Mater.,2004,16:961-966

    [11]Grusenmeyer T A,Chen J,Jin Y H,et al.J.Am.Chem.Soc.,2012,134:7497-7506

    [12]Zhao Q,Li F Y,Huang C H.Chem.Soc.Rev.,2010,39:3007-3030

    [13]Ma Y,Liang H,Zeng Y,et al.Chem.Sci.,2016,7:3338-3346

    [14]Alreja P,Kaur N.RSC Adv.,2016,6:23169-23217

    [15]Chang K C,Sun S S,Odago M O,et al.Coord.Chem.Rev.,2015,284:111-123

    [16]Sharma H,Guadalupe H J,Narayanan J,et al.Anal.Methods,2013,5:3880-3887

    [17]Rajendiran V,Palaniandavar M,Periasamy V S,et al.J.Inorg.Biochem.,2010,104:217-220

    [18]Liu P,Wu B Y,Liu J,et al.Inorg.Chem.,2016,55:1412-1422

    [19]Xu W,Zuo J,Wang L,et al.Chem.Commun.,2014,50:2123-2125

    [20]Martin A,Byrne A,Burke C S,et al.J.Am.Chem.Soc.,2014,136:15300-15309

    [21]Xu L,Liu Y Y,Chen L M,et al.J.Inorg.Biochem.,2016,159:82-88

    [22]Joseph R,Rao C P.Chem.Rev.,2011,111:4658-4702

    [23]Nimse S B,Kim T.Chem.Soc.Rev.,2013,2:366-386

    [24]Wu J Z,Li L,Zeng T X,et al.Polyhedron,1997,16:103-107

    [25]Chawla H M,Pant N,Srivastava B,et al.Org.Lett.,2006,8:2237-2240

    [26]Sullivan B P,Salmon D J,Meyer T J.Inorg.Chem.,1978,17:3334-3341

    [27]Houten J V,Watts R J.J.Am.Chem.Soc.,1976,98:4853-4858

    [28]Li Q,Guo Y,Xu J,et al.J.Photochem.Photobiol.,B,2011,103:140-144

    [29]Huang W W,Lin H,Cai Z S,et al.Talanta,2010,81:967-971

    [30]Civitello E R,Dragovich P S,Karpisb T B,et al.Inorg.Chem.,1993,32:237-241

    [31]Zheng Z B,Kang S Y,Zhao Y,et al.Sens.Actuators B:Chem.,2015,221:614-624

    [32]Zheng Z B,Kang S Y,Yi X,et al.J.Inorg.Biochem.,2014,141:70-78

    [33]Zhao X L,Li Z S,Zheng Z B,et al.Dalton Trans.,2013,42:5764-5777

    [34]Lobello M G,F(xiàn)antacci S,Credi A,et al.Eur.J.Inorg.Chem.,2011:1605-1613

    [35]Cheng F,Tang N,Chen J,et al.Sens.Actuators B:Chem.,2012,171-172:102-109

    [36]Gao F,Chen X,Sun Q,et al.Inorg.Chem.Commun.,2012,16:25-27

    [37]Vos J G.Polyhedron,1992,11:2285-2299

    [38]Liu Y,Li Z,Zhang H Y,et al.Supramol.Chem.,2008,20:419-426

    [39]Zheng Z B,Duan Z M,Ma Y Y,et al.Inorg.Chem.,2013,52:2306-2316

    [40]Das S,Saha D,Bhaumik C,et al.Dalton Trans.,2010,39:4162-4169

    [41]Bhaumik C,Saha D,Das S,et al.Inorg.Chem.,2011,50:12586-12600

    [42]Zheng Z B,Wu Y Q,Wang K Z,et al.Dalton Trans.,2014,43:3273-3284

    猜你喜歡
    工程系李靜化工學(xué)院
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    愛(ài)在深秋
    新航空(2023年11期)2024-01-16 19:13:15
    春之舞
    新航空(2023年3期)2023-09-06 05:14:26
    “難忘”藏在哪里
    國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    電子信息工程系
    李靜 藏石欣賞
    寶藏(2017年6期)2017-07-20 10:01:01
    機(jī)電工程系簡(jiǎn)介
    穿行:服裝工程系畢業(yè)設(shè)計(jì)作品
    日本爱情动作片www.在线观看| 一级黄片播放器| 少妇人妻精品综合一区二区| 成年av动漫网址| 日本一本二区三区精品| 人人妻人人爽人人添夜夜欢视频 | 九九久久精品国产亚洲av麻豆| 在线观看一区二区三区| 丰满乱子伦码专区| 成人无遮挡网站| 中文乱码字字幕精品一区二区三区| 色视频www国产| 高清毛片免费看| 国产日韩欧美在线精品| 五月开心婷婷网| 午夜福利在线观看免费完整高清在| 国产亚洲5aaaaa淫片| 99热国产这里只有精品6| 蜜臀久久99精品久久宅男| 国产欧美亚洲国产| 日本免费在线观看一区| 中文欧美无线码| 看非洲黑人一级黄片| 精品午夜福利在线看| 一级毛片久久久久久久久女| 久久国内精品自在自线图片| 国产精品蜜桃在线观看| 少妇的逼水好多| 国产白丝娇喘喷水9色精品| 制服丝袜香蕉在线| 国产精品秋霞免费鲁丝片| 久久人人爽人人爽人人片va| 女人十人毛片免费观看3o分钟| 97热精品久久久久久| 人妻少妇偷人精品九色| 国产在线一区二区三区精| 美女视频免费永久观看网站| 精品一区二区三区视频在线| 亚洲欧美成人综合另类久久久| 亚洲天堂国产精品一区在线| 亚洲精品乱码久久久v下载方式| 亚洲国产成人一精品久久久| 蜜桃亚洲精品一区二区三区| 亚洲人与动物交配视频| 男插女下体视频免费在线播放| 一二三四中文在线观看免费高清| 一级二级三级毛片免费看| 超碰av人人做人人爽久久| 亚洲精品色激情综合| 日本色播在线视频| 亚洲av福利一区| 天美传媒精品一区二区| 午夜激情福利司机影院| 精品一区二区三卡| h日本视频在线播放| 亚洲av国产av综合av卡| 国产一区亚洲一区在线观看| av在线播放精品| 在线 av 中文字幕| 高清在线视频一区二区三区| av福利片在线观看| 少妇丰满av| 久久久精品94久久精品| 亚洲成人久久爱视频| 亚洲国产成人一精品久久久| 一个人看视频在线观看www免费| 1000部很黄的大片| 久久久久久伊人网av| 亚洲最大成人av| 久久午夜福利片| 秋霞在线观看毛片| 老女人水多毛片| 黄色配什么色好看| 看免费成人av毛片| 午夜日本视频在线| 91久久精品国产一区二区三区| 欧美成人一区二区免费高清观看| 国产69精品久久久久777片| 久久精品国产a三级三级三级| 波多野结衣巨乳人妻| 色综合色国产| 欧美精品一区二区大全| 国产成人精品婷婷| 国模一区二区三区四区视频| 极品少妇高潮喷水抽搐| 成人亚洲精品一区在线观看 | 国产精品人妻久久久久久| 国产av码专区亚洲av| 亚洲天堂av无毛| 色哟哟·www| 亚洲综合精品二区| 中文字幕亚洲精品专区| 欧美+日韩+精品| 交换朋友夫妻互换小说| 亚洲av男天堂| 王馨瑶露胸无遮挡在线观看| 国产精品蜜桃在线观看| 国产毛片a区久久久久| 久久99蜜桃精品久久| 久久久国产一区二区| 亚洲精品视频女| 久久久久精品久久久久真实原创| av在线播放精品| 久久99热6这里只有精品| 青春草视频在线免费观看| 亚洲经典国产精华液单| 婷婷色综合大香蕉| 一个人观看的视频www高清免费观看| 美女高潮的动态| 久久这里有精品视频免费| 美女脱内裤让男人舔精品视频| 亚洲熟女精品中文字幕| 国产伦精品一区二区三区视频9| 综合色丁香网| 麻豆精品久久久久久蜜桃| 成人综合一区亚洲| 寂寞人妻少妇视频99o| 搡女人真爽免费视频火全软件| 中文精品一卡2卡3卡4更新| 天天躁日日操中文字幕| 中文字幕亚洲精品专区| 亚洲色图av天堂| av播播在线观看一区| av一本久久久久| 啦啦啦啦在线视频资源| 麻豆成人av视频| 男女啪啪激烈高潮av片| 一级a做视频免费观看| 午夜福利视频1000在线观看| 中文字幕亚洲精品专区| 国产一区二区三区综合在线观看 | 成人亚洲精品av一区二区| 久久久久国产精品人妻一区二区| 免费黄色在线免费观看| 男插女下体视频免费在线播放| 日日摸夜夜添夜夜爱| 国产成人精品婷婷| 大码成人一级视频| 国产成人免费观看mmmm| 99久久中文字幕三级久久日本| 草草在线视频免费看| 精品久久久久久久久亚洲| 久久久久久久久大av| 日韩大片免费观看网站| 大片免费播放器 马上看| 大香蕉97超碰在线| 青春草国产在线视频| 成人欧美大片| 纵有疾风起免费观看全集完整版| 五月玫瑰六月丁香| 大片免费播放器 马上看| 亚洲精品国产av蜜桃| 赤兔流量卡办理| 久久久久国产网址| 3wmmmm亚洲av在线观看| 91精品伊人久久大香线蕉| 热re99久久精品国产66热6| 人妻 亚洲 视频| 国产女主播在线喷水免费视频网站| 我的女老师完整版在线观看| 国产成人a∨麻豆精品| 国产精品久久久久久精品古装| 免费av观看视频| 国产女主播在线喷水免费视频网站| 国产成人免费观看mmmm| 好男人在线观看高清免费视频| 观看免费一级毛片| 麻豆久久精品国产亚洲av| 国产男人的电影天堂91| 亚洲国产色片| www.av在线官网国产| 亚洲成人中文字幕在线播放| 97精品久久久久久久久久精品| 99热这里只有是精品在线观看| av在线亚洲专区| 日本色播在线视频| 国语对白做爰xxxⅹ性视频网站| 亚洲精品乱码久久久v下载方式| 亚洲色图av天堂| 少妇人妻 视频| 毛片一级片免费看久久久久| 熟妇人妻不卡中文字幕| 成年版毛片免费区| 日韩av在线免费看完整版不卡| 69人妻影院| 一级av片app| 亚洲欧美日韩东京热| 黄片无遮挡物在线观看| 久久午夜福利片| av在线老鸭窝| 天天躁夜夜躁狠狠久久av| 国产成年人精品一区二区| 国产片特级美女逼逼视频| 国产伦在线观看视频一区| 欧美日韩在线观看h| 青青草视频在线视频观看| 建设人人有责人人尽责人人享有的 | 免费观看a级毛片全部| 3wmmmm亚洲av在线观看| 美女内射精品一级片tv| 别揉我奶头 嗯啊视频| 你懂的网址亚洲精品在线观看| 草草在线视频免费看| 午夜老司机福利剧场| 97在线人人人人妻| 1000部很黄的大片| 国产av国产精品国产| 免费黄网站久久成人精品| 1000部很黄的大片| 欧美性猛交╳xxx乱大交人| 色视频www国产| 日本熟妇午夜| 国产欧美另类精品又又久久亚洲欧美| 亚洲人成网站在线播| 看十八女毛片水多多多| av免费在线看不卡| 乱系列少妇在线播放| 在线观看一区二区三区激情| 日韩av不卡免费在线播放| 久久ye,这里只有精品| 久久久久九九精品影院| 午夜精品一区二区三区免费看| 22中文网久久字幕| 天美传媒精品一区二区| 国产又色又爽无遮挡免| 又大又黄又爽视频免费| 国内精品宾馆在线| 日本熟妇午夜| 一级毛片 在线播放| 国产精品嫩草影院av在线观看| 一级爰片在线观看| 国内少妇人妻偷人精品xxx网站| 日韩强制内射视频| 晚上一个人看的免费电影| 亚洲成色77777| 国产成人91sexporn| 国产在视频线精品| 午夜精品一区二区三区免费看| 免费观看a级毛片全部| 亚洲国产最新在线播放| 国产伦精品一区二区三区四那| 日产精品乱码卡一卡2卡三| 超碰av人人做人人爽久久| 久久久久久久国产电影| 老司机影院毛片| 一级毛片电影观看| 亚洲精品一区蜜桃| 国内少妇人妻偷人精品xxx网站| 听说在线观看完整版免费高清| 特大巨黑吊av在线直播| 日韩人妻高清精品专区| 一二三四中文在线观看免费高清| 男人添女人高潮全过程视频| 免费高清在线观看视频在线观看| 精品久久久久久久久av| 欧美日韩视频高清一区二区三区二| 18禁裸乳无遮挡免费网站照片| 国产综合精华液| 毛片一级片免费看久久久久| 一二三四中文在线观看免费高清| 亚洲国产精品成人久久小说| 香蕉精品网在线| 国产精品麻豆人妻色哟哟久久| 成人高潮视频无遮挡免费网站| 亚洲精品aⅴ在线观看| 欧美三级亚洲精品| 精品熟女少妇av免费看| 日本午夜av视频| 国产亚洲午夜精品一区二区久久 | 日韩欧美一区视频在线观看 | 中文字幕亚洲精品专区| 大香蕉久久网| 一边亲一边摸免费视频| 蜜桃亚洲精品一区二区三区| 午夜福利在线观看免费完整高清在| 丰满乱子伦码专区| 高清毛片免费看| av在线蜜桃| 综合色av麻豆| 熟妇人妻不卡中文字幕| 两个人的视频大全免费| 嫩草影院精品99| 亚洲不卡免费看| 肉色欧美久久久久久久蜜桃 | 国产 一区 欧美 日韩| 久久久亚洲精品成人影院| 欧美日韩视频高清一区二区三区二| 国产在线一区二区三区精| 交换朋友夫妻互换小说| 国精品久久久久久国模美| 在线观看人妻少妇| 亚洲自拍偷在线| 狂野欧美白嫩少妇大欣赏| 免费看光身美女| 亚州av有码| 国产老妇伦熟女老妇高清| 亚洲经典国产精华液单| 欧美性感艳星| 大又大粗又爽又黄少妇毛片口| 汤姆久久久久久久影院中文字幕| 97热精品久久久久久| 国产又色又爽无遮挡免| 最近最新中文字幕免费大全7| 一区二区三区四区激情视频| 高清视频免费观看一区二区| 亚洲av免费在线观看| 色视频www国产| 网址你懂的国产日韩在线| 一级二级三级毛片免费看| 日日啪夜夜爽| 少妇人妻一区二区三区视频| 国内精品宾馆在线| 插逼视频在线观看| 18禁在线播放成人免费| 欧美97在线视频| 国产午夜精品久久久久久一区二区三区| videossex国产| 久久久精品免费免费高清| 亚洲精品成人久久久久久| 亚洲欧美清纯卡通| 国产亚洲av片在线观看秒播厂| 中文天堂在线官网| 国产免费视频播放在线视频| 欧美高清成人免费视频www| 少妇被粗大猛烈的视频| 熟女人妻精品中文字幕| 大又大粗又爽又黄少妇毛片口| 久久99精品国语久久久| 一区二区三区免费毛片| 91狼人影院| 各种免费的搞黄视频| 国产精品一二三区在线看| 免费av不卡在线播放| 男女边吃奶边做爰视频| 亚洲国产精品国产精品| av在线观看视频网站免费| 午夜福利视频精品| 高清毛片免费看| 永久免费av网站大全| 七月丁香在线播放| 国产69精品久久久久777片| 成年女人看的毛片在线观看| 久久97久久精品| 真实男女啪啪啪动态图| 午夜福利在线在线| 能在线免费看毛片的网站| 内地一区二区视频在线| 白带黄色成豆腐渣| 菩萨蛮人人尽说江南好唐韦庄| 少妇熟女欧美另类| 欧美区成人在线视频| 超碰av人人做人人爽久久| 最近最新中文字幕大全电影3| 只有这里有精品99| 免费观看的影片在线观看| 亚洲性久久影院| 亚洲国产欧美在线一区| 国产91av在线免费观看| 国产极品天堂在线| 一本久久精品| 亚洲最大成人中文| 久久久精品94久久精品| 观看免费一级毛片| 日韩伦理黄色片| 乱系列少妇在线播放| 成年版毛片免费区| 久久影院123| 丝袜喷水一区| 日本午夜av视频| 亚洲综合精品二区| 在线观看人妻少妇| 人妻 亚洲 视频| 另类亚洲欧美激情| 免费高清在线观看视频在线观看| 狂野欧美激情性xxxx在线观看| 美女cb高潮喷水在线观看| 国产一区有黄有色的免费视频| 国产av码专区亚洲av| 免费av毛片视频| 天天躁日日操中文字幕| 欧美3d第一页| 国产又色又爽无遮挡免| 人人妻人人澡人人爽人人夜夜| 精品一区二区免费观看| 丝袜美腿在线中文| 如何舔出高潮| 国产成人一区二区在线| 国产精品久久久久久精品电影| 欧美xxxx性猛交bbbb| 国产高清不卡午夜福利| 久久ye,这里只有精品| 在线观看人妻少妇| 少妇人妻一区二区三区视频| 国产精品嫩草影院av在线观看| 亚洲欧美日韩东京热| av在线老鸭窝| 国产黄频视频在线观看| 大香蕉97超碰在线| 欧美激情久久久久久爽电影| 国产国拍精品亚洲av在线观看| 嘟嘟电影网在线观看| 成人毛片a级毛片在线播放| 午夜日本视频在线| 自拍偷自拍亚洲精品老妇| 王馨瑶露胸无遮挡在线观看| 波多野结衣巨乳人妻| 尾随美女入室| 亚洲成人av在线免费| 日本wwww免费看| 亚洲aⅴ乱码一区二区在线播放| 韩国高清视频一区二区三区| 十八禁网站网址无遮挡 | 午夜日本视频在线| 中国国产av一级| 国产精品久久久久久久久免| 人人妻人人爽人人添夜夜欢视频 | 国产老妇女一区| 国产亚洲最大av| 国产精品不卡视频一区二区| 久久精品综合一区二区三区| 精品久久久噜噜| eeuss影院久久| 国产中年淑女户外野战色| 午夜福利高清视频| 最近手机中文字幕大全| 内射极品少妇av片p| 视频中文字幕在线观看| kizo精华| 日韩强制内射视频| 国产白丝娇喘喷水9色精品| 99久久中文字幕三级久久日本| av女优亚洲男人天堂| 成人亚洲精品一区在线观看 | 免费在线观看成人毛片| 国产有黄有色有爽视频| 久久影院123| 久热这里只有精品99| 国产精品国产三级国产av玫瑰| 亚洲精品国产av蜜桃| 亚洲真实伦在线观看| 一级黄片播放器| 国产成人freesex在线| 久久影院123| 午夜精品一区二区三区免费看| 久久久久久伊人网av| 国产免费一区二区三区四区乱码| 亚洲色图av天堂| 一区二区三区四区激情视频| 大香蕉久久网| 69av精品久久久久久| 国产伦在线观看视频一区| 精品一区在线观看国产| 国产在线男女| 97人妻精品一区二区三区麻豆| 18禁裸乳无遮挡免费网站照片| 成人一区二区视频在线观看| 亚洲天堂av无毛| 91精品伊人久久大香线蕉| 91狼人影院| 国产成人91sexporn| 亚洲国产精品成人久久小说| 日韩欧美精品免费久久| 亚洲av不卡在线观看| 午夜福利在线观看免费完整高清在| 精品一区在线观看国产| 欧美3d第一页| 最近中文字幕2019免费版| 高清日韩中文字幕在线| 少妇熟女欧美另类| 人人妻人人爽人人添夜夜欢视频 | 免费观看性生交大片5| 中文字幕久久专区| 丰满人妻一区二区三区视频av| 亚洲av不卡在线观看| 国产一区二区三区av在线| 久久精品国产亚洲网站| 久久精品人妻少妇| 最近2019中文字幕mv第一页| 国产午夜福利久久久久久| 最后的刺客免费高清国语| 成人亚洲精品一区在线观看 | 欧美激情久久久久久爽电影| 久久久久久久精品精品| 伦精品一区二区三区| 国产综合精华液| 91精品一卡2卡3卡4卡| 国国产精品蜜臀av免费| 青春草视频在线免费观看| 各种免费的搞黄视频| 久久久a久久爽久久v久久| 最新中文字幕久久久久| 香蕉精品网在线| 中文欧美无线码| a级毛色黄片| 网址你懂的国产日韩在线| 亚洲,一卡二卡三卡| 国产伦理片在线播放av一区| 国产精品人妻久久久影院| 亚洲在线观看片| 欧美精品国产亚洲| 又黄又爽又刺激的免费视频.| 一级毛片 在线播放| 久久久久久久久久久丰满| 亚洲精品日韩av片在线观看| 免费观看的影片在线观看| av在线蜜桃| 乱系列少妇在线播放| 久久热精品热| 性插视频无遮挡在线免费观看| 中文字幕久久专区| 亚洲内射少妇av| 亚洲精品国产av蜜桃| 日韩中字成人| 国产精品伦人一区二区| 26uuu在线亚洲综合色| 蜜桃久久精品国产亚洲av| 日韩精品有码人妻一区| 国产精品久久久久久久久免| av国产免费在线观看| 一本久久精品| 身体一侧抽搐| 亚洲av免费高清在线观看| 欧美精品人与动牲交sv欧美| 一本久久精品| av福利片在线观看| 午夜福利视频1000在线观看| 熟女电影av网| 国产亚洲最大av| 搞女人的毛片| 亚洲婷婷狠狠爱综合网| 九九在线视频观看精品| 亚洲,一卡二卡三卡| 小蜜桃在线观看免费完整版高清| 亚洲av一区综合| 精品熟女少妇av免费看| av在线app专区| 国产精品无大码| 欧美丝袜亚洲另类| av播播在线观看一区| av黄色大香蕉| 在线观看国产h片| 成人亚洲欧美一区二区av| 少妇熟女欧美另类| 最近最新中文字幕免费大全7| av在线亚洲专区| 国产亚洲av嫩草精品影院| 日韩欧美精品v在线| 丝袜喷水一区| 精品少妇久久久久久888优播| 国内精品美女久久久久久| 特大巨黑吊av在线直播| 国产精品三级大全| h日本视频在线播放| 国产精品一区www在线观看| 日韩不卡一区二区三区视频在线| 免费人成在线观看视频色| 国产av国产精品国产| 久久久久久九九精品二区国产| 欧美成人午夜免费资源| 精品一区在线观看国产| 国产av码专区亚洲av| 婷婷色av中文字幕| 高清av免费在线| 网址你懂的国产日韩在线| 亚洲精品成人av观看孕妇| 亚洲伊人久久精品综合| 91精品一卡2卡3卡4卡| 春色校园在线视频观看| 精华霜和精华液先用哪个| 欧美潮喷喷水| 一区二区三区免费毛片| 自拍偷自拍亚洲精品老妇| 国产日韩欧美在线精品| 69av精品久久久久久| 男人舔奶头视频| 国产日韩欧美亚洲二区| 日本av手机在线免费观看| 亚洲av日韩在线播放| 免费黄网站久久成人精品| 久久ye,这里只有精品| 日本免费在线观看一区| 特大巨黑吊av在线直播| 激情五月婷婷亚洲| 你懂的网址亚洲精品在线观看| 国产精品久久久久久久久免| 亚洲国产欧美人成| 插逼视频在线观看| 如何舔出高潮| 91久久精品国产一区二区三区| 国产熟女欧美一区二区| 晚上一个人看的免费电影| 欧美少妇被猛烈插入视频| 国产高清不卡午夜福利| 亚洲精品中文字幕在线视频 | 免费观看av网站的网址| 一级av片app| 97在线视频观看| 日本免费在线观看一区| 午夜精品国产一区二区电影 | 免费人成在线观看视频色| 亚洲高清免费不卡视频| av在线观看视频网站免费| 欧美97在线视频| 好男人视频免费观看在线| 亚洲欧美精品专区久久| 中文字幕久久专区| 欧美成人一区二区免费高清观看| 精品人妻视频免费看| 在线观看人妻少妇| 综合色av麻豆| 成人亚洲精品一区在线观看 | 日韩,欧美,国产一区二区三区| 毛片一级片免费看久久久久| 国内精品美女久久久久久| 美女高潮的动态|