• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Class of*-simple Type A ω2-semigroups(I)

    2013-08-10 03:06:58SHANGYUANDWANGLIMIN

    SHANG YUAND WANG LI-MIN

    (1.Department of Mathematics,Simao Teacher's College,Puer,Yunnan,665000) (2.School of Mathematics,South China Normal University,Guangzhou,510631)

    Communicated by Du Xian-kun

    A Class of*-simple Type A ω2-semigroups(I)

    SHANG YU1AND WANG LI-MIN2

    (1.Department of Mathematics,Simao Teacher's College,Puer,Yunnan,665000) (2.School of Mathematics,South China Normal University,Guangzhou,510631)

    Communicated by Du Xian-kun

    In this paper,we study*-simple type A ω2-semigroups in which D*=~D and D*|ES=Mdby the generalized Bruck-Reilly extension and obtain its structure theorem.We also obtain a criterion for isomorphisms of two such semigroups.

    type A semigroup,*-simple ω2-semigroup,generalized Bruck-Reilly extension

    1 Introduction and Preliminaries

    Earlier investigations in[1]studied*-bisimple type A ω2-semigroups whose equivalence D*and~D coincide,characterizing them as the generalized Bruck-Reilly*-extensions of cancellative monoids.The results of[1]generalize those of regular bisimple ω2-semigroups. In this paper,as a natural follow up on these investigations,we study*-simple type A ω2-semigroups in which D*=~D and D*|ES=Md.

    The theory developed here closely parallels the one for regular simple ω2-semigroups. In Sections 2 and 3,it is shown that the*-simple type A ω2-semigroups in which D*=~D and D*|ES=Mdare precisely the generalized Bruck-Reilly extensions of an ω-chain of cancellative monoids of length d.In Section 4,we obtain an isomorphism theorem for such semigroups.

    We complete this section with a summary of notions of type A semigroups,the details of which can be found in[1–3].

    For any semigroup S we denote by ESthe set of idempotents of S.We def i ne a partial ordering≥on ESby the rule that e≥f if and only if ef=f=fe.Let a,b∈S such that for all x,y∈S1,ax=ay if and only if bx=by.Then a,b are said to be L*-equivalent andwritten aL*b.Dually,aR*b if for all x,y∈S1,xa=ya if and only if xb=yb.If S has an idempotent e,the following characterisation is known.

    Lemma 1.1[3]Let S be a semigroup,and e be an idempotent in S.Then the following are equivalent:

    (i)eL*a;

    (ii)ae=a and for all x,y∈S1,ax=ay implies ex=ey.

    By duality,a similar condition holds for R*.A semigroup in which each L*-class and each R*-class contain an idempotent is called an abundant semigroup(see[2]).The join of the equivalence relations L*and R*is denoted by D*and their intersection by H*.Thus aH*b if and only if aL*b and aR*b.In general,L*?R*/=R*?L*and neither equals D*.Basically,aD*b if and only if there exist elements x1,x2,···,x2n-1in S such that aL*x1R*x2L*···L*x2n-1R*b.Let H*be an H*-class in a semigroup S with e∈H*,where e is an idempotent in S.Then H*is a cancellative monoid.Denote by R,L the left and right Green's relations respectively,on S.It is well-known that L?L*,R?R*,D?D*, H?H*for a semigroup S and if a,b are regular elements of S,then aL*b(aR*b)if and only if aLb(aRb).

    To avoid ambiguity we at times denote a relation K on S by K(S).The following notation will be used.An L*-class containing an element a∈S is denoted by L*a.Similarly,R*ais an R*-class with an element a∈S.Let S be a semigroup and I an ideal of S.Then I is called a*-ideal if L*a?I and R*a?I for all a∈I.The smallest*-ideal containing a is the principal*-ideal generated by a and is denoted by J*(a).For a,b in S,aJ*b if and only if J*(a)=J*(b).The relation J*contains D*.A semigroup S is said to be*-simple if the only*-ideal of S is itself.Clearly,a semigroup is*-simple if all its elements are J*-related. Let S be a semigroup with a semilattice E of idempotents.Then S is called a right adequate semigroup if each L*-class of S contains a unique idempotent.Dually,we have the notion of a left adequate semigroup.A semigroup which is both left and right adequate is called an adequate semigroup.In an adequate semigroup each L*-class and each R*-class contain unique idempotent.For an element x of an adequate semigroup S,x*(x+)denotes the unique idempotent in the L*-class L*x(R*-class R*x)of x.A right(left)adequate semigroup S is called a right(left)type A semigroup if ea=a(ea)*(ae=(ae)+a)for all elements a in S and all idempotents e in S.An adequate semigroups S is type A if it is both right and left type A.

    Lemma 1.2[4]Let S be an arbitrary semigroup.Then the following are equivalent:

    (i)For all idempotents e and f of S the element ef is regular;

    (ii)〈ES〉is a regular subsemigroup;

    (iii)Reg(S)is a regular subsemigroup.

    (i)φα,αis the identity map for each α∈Y;

    (ii)φα,βφβ,γ=φα,γfor every α,β,γ∈Y such that α≥β≥γ, and such that the product in S is given by

    where a∈Sα,b∈Sβ.We write

    Let S be an adequate semigroup with semilattice of idempotents E and let

    Thenμis the largest congruence contained in H*.

    Lemma 1.3[3]Let S be an adequate semigroup with semilattice of idempotents E.Then the following conditions are equivalent:

    (i)S/μ~=E;

    (ii)for all elements a of S,a*=a+;

    (iii)L*=H*=R*;

    (iv)each H*-class of S contains an idempotent;

    (v)E is central in S;

    (vi)S is a strong semilattice of cancellative monoids.

    Furthermore,if the above conditions hold,then D*∩(E×E)=1E.

    Let N0be the set of all nonnegative integers and N be the set of all positive integers. The set N0×N0with the order def i ned by

    is called an ω2-chain,and denoted by Cω2.Any partially ordered set order isomorphic to Cω2is also called an ω2-chain.We say that a semigroup S is an ω2-semigroup if and only if ESis order isomorphic to Cω2.Thus,if S is an ω2-semigroup,then we can write

    where em,n≤ep,qif and only if(m,n)≤(p,q).In[1],Shang and Wang have shown that the set S=N0×N0×N0×N0with the operation def i ned by

    is a bisimple ω2-semigroup,which is called the quadrucyclic semigroup,and is denoted by Bω2.

    Consider a monoid M with H*eas the H*-class which contains the identity element e of M.The set S=N0×M×N0with an opertation def i ned by

    where t=max{n,p}and θ is an endomorphism of M with images inis a semigroup with an identity(0,e,0).The semigroup S=N0×M×N0constructed above is called thegeneralized Bruck-Reilly extension of M determined by θ,and is denoted by S=BR*(M,θ). Let(m,x,n)∈S.Then(m,x,n)is an idempotent if and only if m=n and x is an idempotent.Furthermore,(m,a,n)is a regular element of S if and only if a is a regular element.An element(m,a,n)in S has an inverse(p,b,q)∈S if and only if b is the inverse of a in T,and p=n,q=m.For any(m,a,n),(p,b,q)∈BR*(M,θ),it can be verif i ed that

    Let S be a type A semigroup with a semilattice of idempotents E.Then S is called a type A ω2-semigroup if E is an ω2-chain.Thus in a type A ω2-semigroup ES={em,n:m,n∈N} and em,n≥ep,qif and only if(m,n)≥(p,q).In such a semigroup S,we denote by L*m,n(resp.)the L*-class(resp.R*-class)containing idempotent em,n,that is,

    In[1],we obtaind the following lemma.

    Lemma 1.4Let S be a type A ω2-semigroup.Then

    where

    Let S be a type A semigroup,a,b∈S.The relationis def i ned on S by

    Lemma 1.5[5]Let S be an adequate semigroup.The following conditions are equivalent:

    (i)D*=~D;

    (ii)every nonempty H*-class contains a regular element. Furthermore,if(i)and(ii)hold,then

    However,as an example in[6]shows,(i)and(ii)are not necessary conditions for the equality

    Other basic results discussed in[1]and[2]will be assumed.The notations adopted are similar to those in[2,7].

    Let S be a*-simple type A ω2-semigroup with the set{em,n:m,n∈N0}of idempotents, and let d be any positive integer.Let em,n,ep,q∈ES.The relation Mdis def i ned on ESby

    Mdis an equivalence relation on ES.In what follows we study*-simple type A ω2-semigroups in which D*=and D*|ES=Md.

    2 The*-simple Type A ω2-semigroup in which D*=and D*|ES=Md:Construction

    In this section we give a process for constructing a*-simple type A ω2-semigroup in which D*=and D*|ES=Mdfrom a inf i nite set of cancellative monoids and a homomorphism. In particular,the number of D*-classes of such semigroup is inf i nite.It will then be shown in Section 3 that this construction yields the most general type of*-simple type A ω2-semigroups in which D*=and D*|ES=Md.

    We now take T to be a strong semilattice of cancellative monoids.More precisely,let

    where d is a positive integer;let{Ti,j:(i,j)∈D×N}be set of parewise-disjoint cancellative monoids;for each(i,j)∈D×N0,let α(i,j),(i,j)be the identity map of Ti,j,and for each pair (i,j),(k,l)∈D×N0where(i,j)>(k,l),there is a homomorphism α(i,j),(k,l):Ti,j→Tk,lsuch that for all(i,j),(k,l),(m,n)in D×N0with(i,j)≥(k,l)≥(m,n),

    So we have a semigroup

    in which the semilattice D×N0is the chain

    We denote the idempotents of T by f0,0,f0,1,f0,2,···,f1,0,f1,1,f1,2,···,fd-1,0,fd-1,1, fd-1,2,···(the identity elements of T0,0,T0,1,T0,2,···,T1,0,T1,1,T1,2,···,Td-1,0,Td-1,1, T,···,respectively),and note that,in T,

    The element f0,0is the identity of T.We refer to T as an ω-chain of cancellative monoids of length d.It is easy to see that T is a type A monoid.

    Let θ:T→T0,0be a homomorphism on T.Consider the triples

    such that for(m,x,n),(p,y,q)in S,their product is given by

    where t=max{n,p}.

    Lemma 2.1S is the generalized Bruck-Reilly extension BR*(T,θ)of T determined by θ.

    Proof.From[6]S is a semigroup,the generalized Bruck-Reilly extension of T,determined by θ and denoted by BR*(T,θ).From[6],(0,f0,0,0)is the identity element in S and (m,x,n)in S has an inverse if and only if x in T has an inverse.Also,(m,x,n)in S is an idempotent if and only if x=fi,j∈Ti,j,(i,j)∈D×N0and m=n.

    Lemma 2.2A generalized Bruck-Reilly*-extension of a monoid M is*-simple.

    Proof.Let I be a*-ideal of BR*(M,θ)and(m,x,n)∈I.Then

    where e is the identity of M.Since xθH*e in M,we see that(0,e,0)and(0,xθ,n+1)are R*-related in BR*(M,θ)by Lemma 2.1 of[6].Thus(0,e,0)∈I and consequently I=S.

    Theorem 2.1Let T be an ω-chain of cancellative monoids of length d.Then BR*(T,θ)is a*-simple type A ω2-semigroup with inf i nite D*-classes such that D*=~D and D*|ES=Md. Proof.Evidently,BR*(T,θ)is a type A monoid by Lemma 2.4 of[6],and by Lemma 2.2,it is*-simple.For two idempotents(m,fi,j,m)and(n,fk,l,n)in BR*(T,θ),(m,fi,j,m)>(n,fk,l,n)if and only if m<n or m=n and fi,j>fk,l.Thus the idempotents of BR*(T,θ)form an ω2-chain

    For any i,k,n∈N0such that 0≤k≤d-1,we write

    where m=id+k.Then the set of idempotents of S is{em,n:m,n∈N0}and em,n≤ep,qif and only if(m,n)≤(p,q).Thus S is an ω2-semigroup.For any em,n,ep,q∈ES,by(1.1 we have that(em,n,ep,q)∈D*if and only if m≡p(mod d)and n=q,and so S is *-simple type A ω2-semigroup in which D*|ES=Md.

    Now if u=(m,x,n)∈BR*(T,θ),then x∈Ti,j,(i,j)∈D×N0,and by Lemma 2. of[6],uH*v where v=(m,fi,j,n)is a regular element.Thus each H*-class in BR*(T,θ contains a regular element.Hence D*=by Lemma 1.5.

    To prove that there are inf i nite D*-classes,observe that

    and if(m,x,n)L*uR*(h,y,k),where u=(p,z,q),then n=q,p=h and xL*(T)zR*(T)y. Ifandthen evidently

    Hence a D*-class of BR*(T,θ)is contained in N0×Ti,j×N0for some(i,j)∈D×N0.On the other hand,a simple check shows that any two elements of N0×Ti,j×N0are D*-related. Thus a D*-class of BR*(T,θ)equals N0×Ti,j×N0,(i,j)∈D×N0.Therefore,there are inf i nite D*-classes of BR*(T,θ).

    3 The Structure Theorem

    This section is devoted to showing that any*-simple type A ω2-semigroup in which D*=~D and D*|ES=Mdis isomorphic to a semigroup of the type BR*(T,θ).

    In this section,S denotes a*-simple type A ω2-semigroup with D*=and D*|ES=Md. We write

    where em,n≤ep,qif and only if(m,n)≤(p,q).The following is important.

    Lemma 3.1The following conditions are equivalent in S:

    (i)(em,i,en,j)∈D*;

    (ii)H*(m,i),(j,n)/=?;

    (iii)m≡n(mod d)and i=j.

    Proof.Since S is a type A semigroup with D*=,the(i)and(ii)are easily seen to be equivalent by Lemma 1.5.Let

    where S is a*-simple type A ω2-semigroup,and let

    where k∈N0.Then we have(ekd+n,i,en,i)∈Md.Hence

    We adopt the convention that a0=e0,0.Thus,it is clear that an∈H*(0,0),(0,nd)for all n∈N0.Since e0,0RanLend,0,it is easy to verify that the inverse a-nof anis in H*(nd,0),(0,0)and that

    Lemma 3.2Every element of S is uniquely expressible in the form

    Proof.If z∈S,then by Lemma 3.1,for some p,x,y,q∈N0with x=y and p≡q(mod d).Let x=y=j.For i∈{0,1,···,d-1},let p≡q≡i(mod d),say

    Also,since ee=e,ee=eand eze=z,it follows that

    Observe that m,i,j and n are uniquely determined by p,x,y and q,and if,then

    that is,

    Theorem 3.1Let S be a*-simple type A ω2-semigroup with D*=D~ and D*|ES=Md. Then S is isomo∪rphic to a generalized Bruck-Reilly extension BR*(T,θ)of a monoid T, whereis an ω-chain of cancellative monoids of length d and θ is an endomorphism of T with image in T0,0.

    Proof.Put

    where

    Then T is an ω-chain of cancellative monoids of length d,and the idempotents form a chain

    We adopt the above notation that a is a f i xed regular element in.If x∈T,then x∈Ti,jfor some(i,j)∈D×N0,and

    Def i ne θ:T→T0,0by xθ=axa-1.Then for x,y∈T we have

    Furthermore,the image xθ is in the H*-class of e0,0,which enables us to show that S can be obtained as a generalized Bruck-Reilly extension BR*(T,θ)of T determined by the endomorphism θ.

    Now we show that

    This holds trivially for n=0.Assume inductively that

    Then

    Similarly,

    where

    Let x,y∈T and m,n,p,q∈N0.If n≥p,since apa-p=a0=e0,0,then we have

    On the other hand,if n<p,then

    Put

    It is obvious that

    Def i ne a mapping ψ from S to BR*(T,θ)by

    Then evidently ψ is a bijection and for s=a-mxan,t=a-pyaq,clearly,

    Hence ψ is an isomorphism from S onto BR*(T,θ).The proof of the theorem is then completed.

    4 The Isomorphism Theorem

    In this section we obtain a criterion for isomorphisms of two*-simple type A ω2-semigroups in which D*=and D*|ES=Md.

    Let

    be ω-chains of cancellative monoids of length d(resp.with linking homomorphisms γ(i,j),(k,l)(resp.from Ti,jto Tk,l(resp.to T),where

    and

    Let ei,j(resp.)be the identity of Ti,j(resp.).Then for(d,0)<(k,l)≤(i,j)≤(0,0) and ai,j∈Ti,jwe have

    and for(d′,0)<(k,l)≤(i,j)≤(0,0)and∈,we have

    Let S=BR*(T,θ),S′=BR*(T′,θ′)be the generalized Bruck-Reilly extensions of T,T′, respectively.

    Theorem 4.1The semigroups S,S′are isomorphic if and only if

    (i)d=d′

    and

    (ii)there exist isomorphisms ψi,jof Ti,jonto,(i,j)∈D×N0and an inner automorphism τuofwhere u is a unit ofsuch that

    where(d,0)<(k,l)<(i,j)≤(0,0),and

    where(d,0)<(k,l)≤(0,0).

    Proof.Let σ:S→S′be an isomorphism.Then S and S′have the same number of D*-classes,so by Theorem 2.1,d=d′.

    Now σ|ESis clearly an isomorphism of the chain ESonto ES′,so for m∈N0,(i,j)∈D×N0,

    It follows that σ maps an H*-class of S onto an H*-class of S′.Hence we can def i ne a mapping ψ:T→T′by the rule that for all a∈T

    Evidently,ψ is an isomorphism.Let

    Then for(d,0)<(k,l)<(i,j)≤(0,0)and ai,j∈Ti,j,we have

    and for bi,j∈also

    Using these facts we have that

    Hence,

    Let

    Since(0,e0,0,1)is regular,(0,u,1)is regular,and hence by Lemma 2.2 of[6]u is regular. But u∈,so u is a unit ofandexists.Let τube the inner automorphism of T′0,0def i ned by u.

    For(d,0)<(k,l)≤(0,0)and ak,l∈Tk,l,we have ak,lθ∈T0,0and

    But

    Hence,

    that is,

    So

    For the converse we f i rst def i ne ψ:T→T′by

    Clearly,ψ is an isomorphism.Let τube determined by the unit u of T′.Then for y in T′, we have

    For each positive integer m,let

    We claim that

    where(d,0)<(k,l)≤(0,0),(d,0)<(i,j)≤(0,0),ak,l∈Tk,land m∈N.Using(4.2),we obtain

    By virtue of(4.1)we have

    and thus(4.3)is ture for m=1.Suppose that(4.3)is ture for m=h-1.Let ak,l∈Tk,l. Then by(4.2)we have

    So(4.3)holds for each positive integer m by induction.

    Clearly,umis in the group of units of T′,and so the mapping σ:S→S′def i ned by

    is clearly one-one and onto.Let(m,ai,j,n),(p,ak,l,q)∈S.We show that

    It is convenient to consider separately the f i ve cases:

    (i)n=p,(i,j)=(k,l);

    (ii)n=p,(i,j)<(k,l);

    (iii)n=p,(i,j)>(k,l);

    (iv)n>p;

    (v)n<p.

    Case(i).In this case,we have

    Case(ii).Utilizing(4.1),we obtain

    Thus we have

    Case(iii).This is similar to case(ii)and we omit the details.

    Case(iv).Using(4.3)we obtain

    A straightforward calculation shows that

    Thus

    By virtue of(4.4)and(4.5)we have

    Thus,we have

    Case(v).This is similar to case(iv)and we omit the details.

    The proof is completed.

    [1]Shang Y,Wang L M.*-bisimple type A ω2-semigroups as generalized Bruck-Reilly*-extensions. Southeast Asian Bull.Math.,2008,32:343–361.

    [2]Fountain J B.Abundant semigroups.Proc.London Math.Soc.,1982,44:103–129.

    [3]Fountain J B.Adequate semigroups.Proc.Edinbourgh Math.Soc.,1979,28:113–125.

    [4]Lawson M V.The natural partial order on an abundant semigroup.Proc.Edinburgh Math.Soc., 1987,30:169–186.

    [5]Asibong-ibe U.*-simple type A ω-semigroups.Semigroup Forum,1993,47:135–149.

    [6]Asibong-ibe U.*-bisimple type A ω-semigroups—I.Semigroup Forum,1985,31:99–117.

    [7]Howie J M.Fundamentals of Semigroup Theory.Oxford:Clarendon Press,1995.

    A

    1674-5647(2013)03-0218-13

    Received date:Nov.25,2010.

    The NSF(10901134)of China and the Science Foundation(2011Y478)of the Department of Education of Yunnan Province.

    E-mail address:shangyu503@163.com(Shang Y).

    2000 MR subject classif i cation:20M10

    一级毛片 在线播放| 亚洲欧美中文字幕日韩二区| 一级毛片 在线播放| 日韩制服骚丝袜av| 国产欧美日韩综合在线一区二区| 最新的欧美精品一区二区| 亚洲欧美一区二区三区黑人| 日韩av在线免费看完整版不卡| 国产女主播在线喷水免费视频网站| 天天躁夜夜躁狠狠久久av| 久久精品国产亚洲av高清一级| 久久天躁狠狠躁夜夜2o2o | 久久精品国产a三级三级三级| 亚洲少妇的诱惑av| 欧美成人精品欧美一级黄| 新久久久久国产一级毛片| 国产日韩欧美在线精品| 两个人免费观看高清视频| 国产午夜精品一二区理论片| 另类亚洲欧美激情| 熟女av电影| 国产精品二区激情视频| 中文字幕人妻丝袜一区二区 | 国产精品人妻久久久影院| www.熟女人妻精品国产| 亚洲婷婷狠狠爱综合网| 亚洲av综合色区一区| 熟女少妇亚洲综合色aaa.| 国产成人免费观看mmmm| 女人精品久久久久毛片| 亚洲综合色网址| 国产麻豆69| 成人国产麻豆网| 亚洲av成人精品一二三区| 成人国产麻豆网| 日韩中文字幕视频在线看片| 男女边吃奶边做爰视频| 我的亚洲天堂| av在线播放精品| 热re99久久国产66热| 丰满少妇做爰视频| av在线播放精品| 亚洲精品av麻豆狂野| 欧美乱码精品一区二区三区| 国产老妇伦熟女老妇高清| 亚洲三区欧美一区| 新久久久久国产一级毛片| 青春草视频在线免费观看| 两个人免费观看高清视频| 免费在线观看完整版高清| 九草在线视频观看| 亚洲中文av在线| 久久99一区二区三区| 亚洲精品视频女| 亚洲一卡2卡3卡4卡5卡精品中文| av片东京热男人的天堂| 免费av中文字幕在线| av国产精品久久久久影院| 精品国产国语对白av| www日本在线高清视频| 久久久久国产精品人妻一区二区| 999久久久国产精品视频| 久久国产精品男人的天堂亚洲| 18禁国产床啪视频网站| 国产探花极品一区二区| 99精国产麻豆久久婷婷| 欧美日韩亚洲综合一区二区三区_| 电影成人av| 18在线观看网站| 两性夫妻黄色片| 精品国产一区二区久久| 操美女的视频在线观看| 美女扒开内裤让男人捅视频| 久久热在线av| 王馨瑶露胸无遮挡在线观看| 欧美日韩av久久| 精品国产超薄肉色丝袜足j| 国产成人系列免费观看| 欧美日韩综合久久久久久| 欧美人与善性xxx| 精品国产露脸久久av麻豆| 亚洲激情五月婷婷啪啪| 波多野结衣一区麻豆| 国产麻豆69| 高清av免费在线| 国产99久久九九免费精品| 亚洲一区中文字幕在线| 亚洲国产欧美日韩在线播放| 日日啪夜夜爽| 国产成人午夜福利电影在线观看| 欧美日本中文国产一区发布| 最近中文字幕2019免费版| 亚洲av中文av极速乱| 日韩制服骚丝袜av| 国产精品三级大全| 少妇猛男粗大的猛烈进出视频| 女性被躁到高潮视频| 久久久久久久国产电影| 国产色婷婷99| 亚洲久久久国产精品| 老汉色av国产亚洲站长工具| 狠狠婷婷综合久久久久久88av| 男的添女的下面高潮视频| 久久久久精品久久久久真实原创| 国产精品一区二区在线不卡| 日本欧美国产在线视频| 国产精品久久久久久精品古装| 国产精品国产av在线观看| 欧美日韩综合久久久久久| 色精品久久人妻99蜜桃| 操出白浆在线播放| av在线观看视频网站免费| bbb黄色大片| 日本午夜av视频| 在线观看免费午夜福利视频| av又黄又爽大尺度在线免费看| 亚洲国产精品一区三区| 免费在线观看视频国产中文字幕亚洲 | 夜夜骑夜夜射夜夜干| 日韩中文字幕欧美一区二区 | 人人妻人人爽人人添夜夜欢视频| 满18在线观看网站| 久久精品久久久久久噜噜老黄| 成人三级做爰电影| 啦啦啦视频在线资源免费观看| 丝袜脚勾引网站| 精品国产超薄肉色丝袜足j| 国产精品麻豆人妻色哟哟久久| 国产欧美亚洲国产| 在线看a的网站| 日韩伦理黄色片| 久久人人爽av亚洲精品天堂| 成年人午夜在线观看视频| 精品亚洲成国产av| 久久久久精品人妻al黑| 天天操日日干夜夜撸| 成人国产av品久久久| 日本午夜av视频| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品在线美女| 午夜福利视频在线观看免费| 久久av网站| 99国产综合亚洲精品| 最新的欧美精品一区二区| 在线观看三级黄色| 久久97久久精品| 青春草国产在线视频| 巨乳人妻的诱惑在线观看| 国产精品.久久久| 久久性视频一级片| 午夜久久久在线观看| 91精品伊人久久大香线蕉| 激情视频va一区二区三区| 国产精品香港三级国产av潘金莲 | 精品国产一区二区三区久久久樱花| 又大又爽又粗| 伦理电影免费视频| a级毛片黄视频| 欧美成人精品欧美一级黄| 1024香蕉在线观看| 亚洲一码二码三码区别大吗| 十分钟在线观看高清视频www| 国产99久久九九免费精品| 一边摸一边做爽爽视频免费| 国产成人系列免费观看| 国产男女超爽视频在线观看| 超色免费av| 可以免费在线观看a视频的电影网站 | 久久久久久免费高清国产稀缺| 午夜福利视频在线观看免费| 亚洲精品美女久久av网站| 久久天躁狠狠躁夜夜2o2o | 中文字幕最新亚洲高清| 国产精品熟女久久久久浪| 国产日韩欧美亚洲二区| 国产高清不卡午夜福利| 国产国语露脸激情在线看| 亚洲婷婷狠狠爱综合网| 成年av动漫网址| 大香蕉久久网| 哪个播放器可以免费观看大片| 欧美精品av麻豆av| 在线免费观看不下载黄p国产| 久久久久久人妻| 尾随美女入室| 国产精品 国内视频| 桃花免费在线播放| 国产99久久九九免费精品| 在线观看www视频免费| 久久精品熟女亚洲av麻豆精品| 美女脱内裤让男人舔精品视频| 精品国产一区二区久久| 丰满迷人的少妇在线观看| 午夜激情av网站| 一级爰片在线观看| 国产熟女欧美一区二区| 在线观看免费午夜福利视频| 最近中文字幕高清免费大全6| 亚洲熟女毛片儿| 美女中出高潮动态图| 午夜福利网站1000一区二区三区| 成年女人毛片免费观看观看9 | 欧美日韩综合久久久久久| 日本一区二区免费在线视频| 亚洲精品久久午夜乱码| 久久久久国产精品人妻一区二区| 精品视频人人做人人爽| 电影成人av| 国产精品一区二区在线不卡| 国产日韩欧美视频二区| 午夜免费观看性视频| 丝袜人妻中文字幕| 久久热在线av| 欧美人与性动交α欧美软件| 伊人久久国产一区二区| 人人妻人人澡人人爽人人夜夜| 国产 一区精品| 校园人妻丝袜中文字幕| 亚洲熟女毛片儿| 18禁国产床啪视频网站| 成人手机av| 啦啦啦中文免费视频观看日本| 啦啦啦啦在线视频资源| 亚洲视频免费观看视频| 视频在线观看一区二区三区| 亚洲国产中文字幕在线视频| 超碰成人久久| 国产又爽黄色视频| 亚洲第一区二区三区不卡| 久久久久国产一级毛片高清牌| 99久国产av精品国产电影| 成年动漫av网址| 天天操日日干夜夜撸| 夫妻午夜视频| 热99国产精品久久久久久7| 久久狼人影院| 麻豆av在线久日| 高清av免费在线| 国产黄色视频一区二区在线观看| 宅男免费午夜| 国产精品一国产av| 最近中文字幕高清免费大全6| 国产亚洲av高清不卡| 18禁国产床啪视频网站| 两性夫妻黄色片| 一级爰片在线观看| 亚洲视频免费观看视频| 女性生殖器流出的白浆| 少妇被粗大猛烈的视频| 丝袜美足系列| 国产深夜福利视频在线观看| 九草在线视频观看| 99精品久久久久人妻精品| 热re99久久国产66热| 欧美av亚洲av综合av国产av | 制服人妻中文乱码| 啦啦啦啦在线视频资源| 在线精品无人区一区二区三| 波多野结衣一区麻豆| 国产精品 欧美亚洲| 精品国产国语对白av| 在线观看人妻少妇| 亚洲欧美精品自产自拍| 亚洲国产中文字幕在线视频| 一二三四在线观看免费中文在| 人妻 亚洲 视频| 超色免费av| 精品少妇久久久久久888优播| 久久人人97超碰香蕉20202| 欧美xxⅹ黑人| 美女扒开内裤让男人捅视频| 妹子高潮喷水视频| 国产成人精品福利久久| e午夜精品久久久久久久| 欧美国产精品va在线观看不卡| 赤兔流量卡办理| 看非洲黑人一级黄片| 高清欧美精品videossex| 在线观看一区二区三区激情| 伊人亚洲综合成人网| 国产精品女同一区二区软件| 天天躁夜夜躁狠狠躁躁| 黑丝袜美女国产一区| 欧美另类一区| 韩国高清视频一区二区三区| 久久女婷五月综合色啪小说| 色吧在线观看| 最近2019中文字幕mv第一页| 高清视频免费观看一区二区| 一区二区av电影网| av不卡在线播放| 青春草视频在线免费观看| 亚洲精品视频女| 国产成人a∨麻豆精品| 天天躁狠狠躁夜夜躁狠狠躁| 免费高清在线观看视频在线观看| 国产av国产精品国产| h视频一区二区三区| 亚洲人成网站在线观看播放| 亚洲精品自拍成人| 久久99热这里只频精品6学生| 免费黄频网站在线观看国产| 精品国产乱码久久久久久男人| 国产精品 欧美亚洲| 老汉色∧v一级毛片| 美女脱内裤让男人舔精品视频| 美女扒开内裤让男人捅视频| 少妇人妻精品综合一区二区| 亚洲中文av在线| 在线观看免费午夜福利视频| 丰满少妇做爰视频| 精品亚洲成国产av| 国语对白做爰xxxⅹ性视频网站| 久久久精品区二区三区| 欧美激情极品国产一区二区三区| 中国三级夫妇交换| 亚洲精品久久午夜乱码| 在现免费观看毛片| 18禁国产床啪视频网站| 成人毛片60女人毛片免费| 亚洲av男天堂| 国产精品熟女久久久久浪| 美女视频免费永久观看网站| 亚洲成人国产一区在线观看 | 一二三四中文在线观看免费高清| 欧美av亚洲av综合av国产av | 国产黄色免费在线视频| xxxhd国产人妻xxx| 免费在线观看视频国产中文字幕亚洲 | 午夜91福利影院| 波多野结衣av一区二区av| 亚洲av在线观看美女高潮| 亚洲成色77777| 日韩不卡一区二区三区视频在线| 亚洲国产精品一区三区| 9色porny在线观看| 老司机亚洲免费影院| av在线app专区| 你懂的网址亚洲精品在线观看| 观看av在线不卡| 国产亚洲午夜精品一区二区久久| 亚洲av综合色区一区| 日韩欧美一区视频在线观看| 国产精品一国产av| 人人妻人人添人人爽欧美一区卜| 嫩草影视91久久| 成人亚洲欧美一区二区av| 国产欧美日韩综合在线一区二区| 国语对白做爰xxxⅹ性视频网站| 久久久国产欧美日韩av| 视频在线观看一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 热re99久久精品国产66热6| 国产在线视频一区二区| 狂野欧美激情性xxxx| 久久久久精品性色| av有码第一页| 精品一区二区三区四区五区乱码 | 在线观看www视频免费| 精品酒店卫生间| 日韩人妻精品一区2区三区| 久久久久久久久久久久大奶| 大片电影免费在线观看免费| 国产无遮挡羞羞视频在线观看| 久久精品国产亚洲av高清一级| 国产免费现黄频在线看| 日本av免费视频播放| 国产在视频线精品| 久久精品国产亚洲av涩爱| 日本wwww免费看| 久久久久网色| 黄色视频不卡| 69精品国产乱码久久久| 午夜日韩欧美国产| 日韩一区二区视频免费看| 啦啦啦 在线观看视频| 亚洲天堂av无毛| 久久精品国产综合久久久| 80岁老熟妇乱子伦牲交| 国产成人精品久久二区二区91 | 中文字幕色久视频| 夜夜骑夜夜射夜夜干| 在线精品无人区一区二区三| 精品国产一区二区久久| av电影中文网址| 在线观看人妻少妇| 美女大奶头黄色视频| 免费av中文字幕在线| 伊人久久国产一区二区| 老鸭窝网址在线观看| 又黄又粗又硬又大视频| 精品人妻在线不人妻| 一区二区三区精品91| 丰满迷人的少妇在线观看| 熟妇人妻不卡中文字幕| 久久99一区二区三区| 丰满迷人的少妇在线观看| 丁香六月天网| 黄频高清免费视频| 亚洲成国产人片在线观看| netflix在线观看网站| 亚洲国产精品999| 国产精品成人在线| 亚洲国产中文字幕在线视频| 久久精品国产a三级三级三级| 制服丝袜香蕉在线| 大香蕉久久成人网| av不卡在线播放| 波多野结衣av一区二区av| 天天操日日干夜夜撸| 久久精品国产综合久久久| 日韩电影二区| 精品久久久久久电影网| 久久久久网色| 男女无遮挡免费网站观看| 操出白浆在线播放| 国产精品久久久久久精品电影小说| 亚洲av电影在线进入| 成人三级做爰电影| 亚洲国产精品国产精品| 国产成人精品久久久久久| av一本久久久久| 日韩制服丝袜自拍偷拍| 欧美黄色片欧美黄色片| 大香蕉久久成人网| 男人爽女人下面视频在线观看| 性色av一级| 国产精品久久久人人做人人爽| 人人妻人人澡人人看| 中文字幕精品免费在线观看视频| 美女中出高潮动态图| 日韩不卡一区二区三区视频在线| 亚洲精品国产av成人精品| 国产av一区二区精品久久| 亚洲免费av在线视频| 97精品久久久久久久久久精品| 日韩,欧美,国产一区二区三区| 夫妻午夜视频| 国产乱人偷精品视频| 母亲3免费完整高清在线观看| 丰满迷人的少妇在线观看| 精品国产一区二区三区四区第35| 欧美精品一区二区大全| 欧美人与性动交α欧美软件| 欧美黑人精品巨大| 看非洲黑人一级黄片| 日韩中文字幕欧美一区二区 | 亚洲第一av免费看| 老鸭窝网址在线观看| 老司机影院成人| www.av在线官网国产| 免费观看性生交大片5| 涩涩av久久男人的天堂| 亚洲av欧美aⅴ国产| 精品久久久精品久久久| 在线观看免费视频网站a站| 免费在线观看黄色视频的| 国产不卡av网站在线观看| 色婷婷久久久亚洲欧美| 五月天丁香电影| 国产成人一区二区在线| 亚洲一区二区三区欧美精品| 色综合欧美亚洲国产小说| 午夜91福利影院| 精品少妇久久久久久888优播| 国产av国产精品国产| 老司机深夜福利视频在线观看 | 男人舔女人的私密视频| 涩涩av久久男人的天堂| 亚洲一码二码三码区别大吗| 2018国产大陆天天弄谢| 欧美亚洲日本最大视频资源| 精品免费久久久久久久清纯 | 亚洲国产欧美日韩在线播放| 1024视频免费在线观看| 亚洲自偷自拍图片 自拍| 精品国产一区二区三区四区第35| 日韩一本色道免费dvd| 久久久久久久精品精品| 亚洲精品一二三| 亚洲av男天堂| www.自偷自拍.com| 欧美日韩成人在线一区二区| 水蜜桃什么品种好| 交换朋友夫妻互换小说| 国产成人免费无遮挡视频| 天天影视国产精品| 欧美人与性动交α欧美精品济南到| 国产99久久九九免费精品| 丁香六月天网| 菩萨蛮人人尽说江南好唐韦庄| 一本大道久久a久久精品| 亚洲精品美女久久av网站| 色视频在线一区二区三区| 波多野结衣av一区二区av| 在线观看免费日韩欧美大片| 97精品久久久久久久久久精品| 成人免费观看视频高清| 国产亚洲欧美精品永久| 国产在线一区二区三区精| 天天操日日干夜夜撸| 一二三四中文在线观看免费高清| 国产精品.久久久| 搡老乐熟女国产| 亚洲成人国产一区在线观看 | 婷婷色av中文字幕| 精品人妻熟女毛片av久久网站| 久久久久精品久久久久真实原创| 久久99精品国语久久久| 2021少妇久久久久久久久久久| 久久久久久久大尺度免费视频| 国产精品久久久av美女十八| 黄色一级大片看看| av在线老鸭窝| 亚洲熟女精品中文字幕| 日日摸夜夜添夜夜爱| 精品亚洲成国产av| 免费观看a级毛片全部| 蜜桃国产av成人99| 麻豆av在线久日| 免费在线观看视频国产中文字幕亚洲 | h视频一区二区三区| 日韩大码丰满熟妇| 亚洲精品成人av观看孕妇| 叶爱在线成人免费视频播放| 丰满乱子伦码专区| 18禁观看日本| a级毛片在线看网站| 咕卡用的链子| 国产高清不卡午夜福利| 久久午夜综合久久蜜桃| 国产又爽黄色视频| 亚洲av福利一区| 国产乱人偷精品视频| 精品一区二区免费观看| 亚洲精品中文字幕在线视频| 亚洲av国产av综合av卡| 日韩一区二区三区影片| 国产男女超爽视频在线观看| 一级毛片电影观看| 国产成人欧美| 国产成人精品在线电影| 嫩草影院入口| 另类亚洲欧美激情| 精品国产乱码久久久久久小说| av不卡在线播放| 国产一区二区三区综合在线观看| 最近最新中文字幕免费大全7| 搡老岳熟女国产| 天天操日日干夜夜撸| 国精品久久久久久国模美| 久久亚洲国产成人精品v| 婷婷色综合大香蕉| 日韩一区二区三区影片| 一区二区三区精品91| 免费日韩欧美在线观看| 亚洲人成网站在线观看播放| 日本色播在线视频| 热99国产精品久久久久久7| 日韩熟女老妇一区二区性免费视频| 国产精品三级大全| 国产日韩欧美在线精品| 国产精品秋霞免费鲁丝片| 婷婷成人精品国产| av免费观看日本| 亚洲精品在线美女| 午夜av观看不卡| 日韩中文字幕欧美一区二区 | 亚洲精品自拍成人| 亚洲精品日本国产第一区| 日韩av不卡免费在线播放| 高清欧美精品videossex| 精品国产一区二区三区久久久樱花| 午夜福利影视在线免费观看| 看免费成人av毛片| 各种免费的搞黄视频| 国产色婷婷99| 十分钟在线观看高清视频www| 欧美97在线视频| 亚洲欧美成人综合另类久久久| 国产无遮挡羞羞视频在线观看| 日韩av在线免费看完整版不卡| 久久99热这里只频精品6学生| 国产成人一区二区在线| 国产亚洲午夜精品一区二区久久| kizo精华| www.熟女人妻精品国产| 国产深夜福利视频在线观看| 亚洲成国产人片在线观看| 伊人久久国产一区二区| 一级,二级,三级黄色视频| 超碰成人久久| 一级,二级,三级黄色视频| 99久国产av精品国产电影| 捣出白浆h1v1| 久久韩国三级中文字幕| 欧美人与善性xxx| 色综合欧美亚洲国产小说| 午夜免费男女啪啪视频观看| 女人精品久久久久毛片| 老司机靠b影院| 日韩人妻精品一区2区三区| 中文字幕精品免费在线观看视频| 叶爱在线成人免费视频播放| 亚洲精品国产色婷婷电影| 亚洲精品一区蜜桃| 久久99精品国语久久久| 伦理电影免费视频| 嫩草影视91久久| 精品福利永久在线观看| 看免费av毛片| 免费在线观看完整版高清| 中文字幕av电影在线播放| 18禁国产床啪视频网站| 国产亚洲午夜精品一区二区久久|