• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modelling the Spread of HIV/AIDS Epidemic

    2013-08-10 03:07:06KELATLHEGILERICARDOGOSALAMANGANDHUANGQINGDAO

    KELATLHEGILE RICARDO GOSALAMANG AND HUANG QING-DAO

    (School of Mathematics,Jilin University,Changchun,130012)

    Communicated by Li Yong

    Modelling the Spread of HIV/AIDS Epidemic

    KELATLHEGILE RICARDO GOSALAMANG AND HUANG QING-DAO*

    (School of Mathematics,Jilin University,Changchun,130012)

    Communicated by Li Yong

    In this paper,a deterministic mathematical model for the spread of HIV/AIDS in a variable size population through horizontal transmission is considered. The existence of a threshold parameter,the basic reproduction number,is established, and the stability of both the disease-free equilibrium and the endemic equilibrium is discussed in terms of R0.

    spread of HIV/AIDS,horizontal transmission,threshold,stability

    1 Introduction

    Many recent theoretical,experimental and f i eld studies have challenged the old wisdom that parasites evolve to become harmless to their hosts.Longevity within the host often comes at the expense of other characteristics of evolutionary value to parasites,that is,the spread of replication,transmissibility and resistance to the host's immune response(see[1]). These patterns have also been observed in the context of HIV.The serious consequences of infection with the HIV virus,according to the prevailing view,which is the agent for AIDS, have stimulated many works on the epidemiological implications of this infection(see[2]).

    In recent decades,there have been several investigations on infectious diseases using deterministic mathematical models with or without demographic factors(see[3]).Similarly, we investigate in this work,the transmission of HIV,by considering a basic model with three compartments.Determinating the steady state solutions and analysing their stability represent the main part of our analysis,in which we also address the question of whether or not the disease can invade the host population and under what conditions it happens.

    2 Model Formulation

    We consider a sample of population of size N(t)at time t,with a constant inf l ow rate π of susceptibles.The size N(t)is divided into three subclasses of susceptibles S(t),chronic infectives I(t)and patients who have developed AIDS A(t)with a natural death rate d in each class.The constant progression rate to AIDS is denoted by γ,so thatyears is the mean duration of stay in the compartment I(t).

    In this simple HIV model,we assume that the transmission of the disease for the heterosexual population occurs horizontally,that is,due to direct contact.We also assume a homogenous mixing of the population,so the average number of contacts with susceptibles, adequate for the transmission of the infection,of one infective per unit time is given bywhere i=1,2.The incidence rate,the number of new cases,that arise per unit time in this model,is given bywhere the probabilities of transmitting infection from the infective partner to the susceptible partner are given by β1and β2respectively for infectives in compartments I and A.Individuals acquire new sexual partners at a rate c and the average number of adequate contacts of an infective per unit time is given by cβi, i=1,2.The total sexually active population is given by

    The transfer diagram is given by Fig.2.1.

    Fig.2.1

    The transfer diagram Fig.2.1 leads to the formulation of the autonomous dif f erential system

    Adding the equation(2.1)to(2.3)gives

    It is easy to see that for the system(2.1)–(2.3),the region

    is positively invariant,ensuring that the model is biologically meaningful and well posed.

    The model parameters are as follows:

    π:constant inf l ow of susceptibles;

    d:constant natural death rate;

    β1:the probability of transmitting infection from the chronic infective partner to the susceptible partner;

    β2:the probability of transmitting infection from the partner who developed AIDS to the susceptible partner;

    γ:progression rate to AIDS;

    μ:disease-related constant death rate.

    3 Equilibria and Reproduction

    3.1The Basic Reproduction Number

    To calculate the basic reproduction number of the model R0,we employ the technique described in[4].We def i ne the matrix of generation of new infections as

    and the matrix of transitions between other states as

    We can rewrite the system(2.1)–(2.3)as

    The infected compartments are I and A,given m=2.At the disease free equilibrium(DFE for short)point,

    where S*=Using the notations in[4],we have

    which gives

    and

    The characteristic equation of FV-1is

    that is,

    The basic reproduction number R0of the model,def i ned as the expected number of secondary cases produced,in a completely susceptible population,by a typical infected individual during its entire period of infectiousness(see,for instance,[5]),is given by the spectral radius(dominant eigenvalue)of FV-1,which is

    Remark 3.1Note that if R01≤1 and R02≤1,then

    This implies that the epidemic can be contained if each chronic HIV and each AIDS infected individual generates at most one secondary infective.

    3.2Steady-state Solutions

    In the absence of the disease,the population size approachesas t→∞.Therefore the DEF point is given by.We now derive the coordinates of the endemic equilibrium pointf the system(2.1)–(2.3),i.e.,seek for the solution of

    Adding the equation(3.2)to(3.3)yields

    and by using(3.4)one obtains

    Consequently,one either has

    or

    where

    The solution I*=0 leads to the disease free equilibrium pointWe now consider the solution of(3.7).Substituting R0obtained in(3.1)into(3.7),we have the following equation:

    Using the relation

    we have

    and by(3.4)we get

    From(3.5)we have

    and by substituting(3.11)into(3.10),we obtain

    Substituting(3.12)into(3.9)we obtain

    The other solutions can be obtained in terms of R0and are as follows:

    Hence the endemic equilibrium point is

    Remark 3.2We note that if R0=1,then E1reduces to E0,implying the epidemic clears from the population when R0=1.Also,the endemic equilibrium point of the system (2.1)–(2.3)exists if and only if R>1.

    4 The Stability Analysis of Equilibrium Points

    4.1The Analysis of E0

    We use the Jacobian of the system(2.1)–(2.3)to analyze the local stability properties of the equilibrium points E0and E1.In the absence of disease,the model has a steady state,called the disease-free equilibrium point.The local stability of E0is then determined based on the signs of the eigenvalues of the Jacobian matrix

    The characteristic equation is given by

    One of the eigenvalues is λ1=-d and the other two eigenvalues are given by the roots of the quadratic equation

    where R0is def i ned in(3.1).This can be written in the form

    where

    and

    It follows that E0is stable if R0<1 and unstable if R0>1.The results of the stability analysis can be summarized in the following theorem.

    Theorem 4.1The disease-free equilibrium point E0of the system(2.1)–(2.3)is asymptotically stable for R0<1 and unstable for R0>1.

    We now discuss the global stability of E0.

    Theorem 4.2The disease free equilibrium point E0of system(2.1)–(2.3)is globally asymptotically stable for R01≤1 and R02≤1.

    Proof.The global stability of the DFE point E0can be proved by taking V=I+A to be a Lyapunov function.Clearly,V=0 is at the DFE point only.The derivative of the Lyapunov function is as follows:

    and the equality holds if and only if

    And we may conclude that E0is globally asymptotically stable.From a biological point of view,this means that the HIV epidemic dies irrespective of the initial conditions if the average number of infectives generated by a single infective or by a single patient who has developed AIDS is less than one when put in a completely susceptible population.

    4.2The Analysis of E1

    The Jacobian matrix of system(2.1)–(2.3)at the endemic equilibrium point is given by

    where

    The cubic characteristic equation is

    where

    We have R0>1 at the endemic equilibrium point,and hence b2>0 since it is a sum of positive terms.

    In b1,

    since R0>R01,and hence b1>0.

    Next,we consider b1b2-b0.In this case,all the terms of b2and b1are positive thus giving b1b2-b0>0 and the two negative terms in-b0are canceled out as follows:

    (a)The f i rst term in b2times the fourth term in b1cancels out the f i rst term in-b0as follows:

    (b)The second term in-b0is canceled out by the second term in b2times the f i fth term in b1as follows:

    Thus b2b1-b0>0 since it is a sum of positive terms.We have shown that if R0>1 then b2>0,b1>0,b0>0,and b2b1-b0>0,showing that the Routh-Hurwitz conditions are satisf i ed.Thus,the endemic equilibrium point is locally asymptotically stable if R0>1, and we have obtained a proof of the following stability result.The results of the stability analysis can be summarized in the following theorem.

    Theorem 4.3The endemic equilibrium point E1of the system(2.1)–(2.3)is asymptotically stable for R0>1.

    Remark 4.1The result on global stability of E0if R01,R02≤1,indicates that the disease clears from the host population irrespective of initial population sizes.The local stability results of the endemic equilibrium point show that the disease persists in the population if the initial population sizes are near the equilibrium state.

    5 Numerical Simulations

    In this section,we f i rst give estimations of the parameters used in this model and then show several solution curves for cases where R0≤1 and R0>1.These numerical simulations conf i rm the analytical results and represent a basis which can be compared with future examples in which density-dependent demographics are included.

    5.1Parameter Estimates

    Table 5.1 shows the parameters that we use in the study and the ranges for those that we choose.At this point we give a brief review of some of the parameters.

    Table 5.1Parameter values,sources

    5.2Parameters Common to All Models

    Certain parameters are well known and common to dif f erent models,for instance,the removal rate,which is the sum of the natural death rate,d,and the disease related death rate,μ.For the natural death rate,we assume that the individuals in the population are young adults aged 15 years older and above and can be expected to live an average of 50 more years, so d=0.02 yrs-1.[6]approximated the number of years spent in infective groups I and A to be 8.7 years.Hence γ=0.1149 yrs-1.We choose the values of the transmission on probabilities guided by[6].

    Fig.5.1 shows the equilibrium susceptible,chronic infected and AIDS populations as functions of R0for the following parameter values:c=3,β2=0.125,β1=0.03,d=0.02, γ=0.1149,μ=0.05 and π=30000.

    Fig.5.1

    From Fig.5.1 we see that as R0increases we have more secondary infection per infective leading to a reduction in the susceptible group and an increase in both the chronic infectives and the AIDS population.The reduction of secondary infections per infective,that is, R0→1,leads to an increase in the population of susceptibles,and reduction in both the infectives and AIDS population which implies that the disease clears of f.

    Fig.5.2 shows the dynamics of the model states as time changes for the following parameter values:c=3,β2=0.03,β1=0.125,d=0.02,γ=0.1149,μ=0.05,π=30000and R0=2.5833>1.

    Fig.5.2

    Fig.5.2 is a prof i le of the susceptible,chronic infective and AIDS populations for the case R0>1.The results conf i rm the analytical result in Theorem 4.3.The practical signif i cance of this is that if R0>1,then the epidemic eventually settles down at an endemic equilibrium point.In this case,there is need to introduce interventions such as treatment and education on behavioral change in order to bring down the infected populations and eradicate the epidemic.

    Fig.5.3 conf i rms that as R0decreases towards 1 the epidemic approaches the DFE point, where the plot shows the dynamics of the model states as time changes for the following parameter values:c=3,β2=0.05,β1=0.005,d=0.02,γ=0.1149,μ=0.05,π=30000 and R0=1.2945.

    Fig.5.3

    The graph depicts that as we reduce the probabilities the epidemic clears.We can see that as time goes on and both the probabilities being small,the disease clears out,and hence the population approaches its carrying capacity K.

    6 Conclusion

    Mathematical model has now evolved into a useful tool in the area of population dynamics. Its usage has now become a helpful tool especially in combining complex data from various sources in order to analyze equally complex outcomes or results in the system.In this paper our focus was on the spread of HIV/AIDS pandemic by using the average number of people infected when a typical infective enters an entire susceptible population which is known as R0.We found that the signif i cance of R0does not end only on the measuring the burden of the disease but it can also be used to measure the transmission of the disease.

    Comparing our model with other models like[10–11]to mention a few,we have both come to a common understanding that if the basic reproduction number R0<1,the disease free equilibrium is always locally asymptotically stable,in such case the disease does not exist or is eradicated.If R0>1,a unique endemic equilibrium exists and the disease coexists.We have prove this threshold results which imply that the disease can make the host population goes to extinction if and only if R0>1,and the burden of the disease can be controlled or reduced or eradicated if and if only R0<1.When the ratio R0is greater than one it tell us that the spread of the disease is uncontrollable,while R0less than one imply that the disease can be controlled.

    AcknowledgementsWe are grateful to Dr Paul Georgescu for his valuable comments and suggestions that led to an improvement of the presentation of the paper.

    [1]Lipsitch M,Nowak M A.The evolution of virulence in sexually transmitted HIV/AIDS.J. Theoret.Biol.,1995,174:427–440.

    [2]Busenberg S,Cooke K,Thieme H.Demographic change and persistence of HIV/AIDS in a Heterogeneous population.SIAM J.Appl.Math.,1991,51:1030–1052.

    [3]Ghosh M,Chandra P,Sinha P,Shukla J B.Modelling the spread of carrier-dependent infectious diseases with environmental ef f ect.Appl.Math.Comput.,2004,152:385–402.

    [4]Van den Driessche P,Watmough J.Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission.Math.Biosci.,2002,180:29–48.

    [5]Inaba H.Subcritical Endemic Equilibria in an Age-Duration-Structured HIV/AIDS Epidemic Model.In:Asakura F et al.Hyperbolic Problems:Theory,Numerics and Applications II. Yokohama:Yokohama Publishers,2006:33–40.

    [6]Hyman J M,Li J,Stanley E A.The initialization and sensitivity of multigroup models for the transmission of HIV.J.Theoret.Biol.,2001,208:227–249.

    [7]Nyabadza F.A mathematics model for combating HIV/AIDS in Southern Africa:will multiple strategies work?J.Biol.Syst.,2006,14(3):357–372.

    [8]Kgosimore M,Lungu E M.The ef f ects of vertical transmission on the spread of HIV/AIDS in the presence of treatment.Math.Biosci.Eng.,2006,3:297–312.

    [9]Kirschner D.Using mathematics to understand HIV immune dynamics.Notices Amer.Math. Soc.,1996,43(2):191–202.

    [10]Gao Q L,Hethcote W H.Disease transmission models with density-dependent demographics. J.Math.Biol.,1992,30:717–731.

    [11]Naresh R,Tripathi A,Omar S.Modelliing the spread of AIDS epidemic with vertical transmission.Appl.Math.Comput.,2006,178:262–272.

    A

    1674-5647(2013)03-0244-11

    Received date:April 28,2011.

    This work is partly supported by NSF(201115043)of Jilin Province.

    *Corresponding author.

    E-mail address:gkelatlhegile@yahoo.com(Kelatlhegile R G),huangqd@jlu.edu.cn(Huang Q D).

    2000 MR subject classif i cation:92B05

    免费av中文字幕在线| 亚洲一级一片aⅴ在线观看| 黄色配什么色好看| 久久久a久久爽久久v久久| 女的被弄到高潮叫床怎么办| 人妻少妇偷人精品九色| 国产精品久久久久久av不卡| 777米奇影视久久| 日本色播在线视频| 亚洲精品,欧美精品| 三级国产精品欧美在线观看| 一级毛片黄色毛片免费观看视频| 少妇高潮的动态图| 久久久a久久爽久久v久久| 国产淫片久久久久久久久| 午夜免费鲁丝| 九色成人免费人妻av| 少妇人妻 视频| 亚洲欧美精品自产自拍| 久久精品国产亚洲av涩爱| 久久久久久久亚洲中文字幕| 妹子高潮喷水视频| 曰老女人黄片| 啦啦啦中文免费视频观看日本| 国产国拍精品亚洲av在线观看| www.色视频.com| 久久久午夜欧美精品| 交换朋友夫妻互换小说| 天堂8中文在线网| 国产亚洲5aaaaa淫片| 另类亚洲欧美激情| 久热久热在线精品观看| 高清不卡的av网站| 久久久久久伊人网av| 天天躁夜夜躁狠狠久久av| 久久av网站| 欧美成人精品欧美一级黄| 国产高清国产精品国产三级| 亚洲av男天堂| 亚洲美女黄色视频免费看| 国产毛片在线视频| 高清在线视频一区二区三区| 人人妻人人澡人人看| 大又大粗又爽又黄少妇毛片口| 老司机亚洲免费影院| 一级片'在线观看视频| 亚洲精品视频女| 亚洲精品成人av观看孕妇| 熟女av电影| 国产精品久久久久久精品电影小说| 成人毛片a级毛片在线播放| 精品亚洲成a人片在线观看| 国产精品嫩草影院av在线观看| 少妇人妻久久综合中文| 国产男人的电影天堂91| 亚洲欧美清纯卡通| 国产日韩欧美亚洲二区| 色网站视频免费| 久久久久精品久久久久真实原创| 毛片一级片免费看久久久久| 99久久人妻综合| 欧美激情极品国产一区二区三区 | 亚洲一区二区三区欧美精品| 成人影院久久| 成人二区视频| 九草在线视频观看| 日本午夜av视频| 9色porny在线观看| 秋霞在线观看毛片| 亚洲精华国产精华液的使用体验| 中文欧美无线码| 亚洲欧洲日产国产| 亚洲欧美一区二区三区国产| 日韩一区二区视频免费看| 成年美女黄网站色视频大全免费 | 国模一区二区三区四区视频| 一个人免费看片子| 亚洲电影在线观看av| 国产成人免费观看mmmm| 能在线免费看毛片的网站| 晚上一个人看的免费电影| 高清视频免费观看一区二区| 汤姆久久久久久久影院中文字幕| 青青草视频在线视频观看| 麻豆乱淫一区二区| 91精品一卡2卡3卡4卡| 亚洲精品自拍成人| 在线观看国产h片| 免费黄色在线免费观看| 国产成人午夜福利电影在线观看| av播播在线观看一区| 久久ye,这里只有精品| 最近的中文字幕免费完整| h视频一区二区三区| 日韩欧美 国产精品| 欧美精品国产亚洲| 亚洲国产精品成人久久小说| 蜜桃在线观看..| 亚洲一区二区三区欧美精品| 天美传媒精品一区二区| 纯流量卡能插随身wifi吗| 日本黄色日本黄色录像| 日韩精品有码人妻一区| videossex国产| av在线app专区| 欧美日韩综合久久久久久| 日韩制服骚丝袜av| 日韩免费高清中文字幕av| 乱码一卡2卡4卡精品| 99视频精品全部免费 在线| 亚洲伊人久久精品综合| 99久国产av精品国产电影| 午夜影院在线不卡| av网站免费在线观看视频| 色哟哟·www| 乱系列少妇在线播放| av专区在线播放| 亚洲精品乱码久久久久久按摩| 欧美少妇被猛烈插入视频| 国产精品99久久99久久久不卡 | 2022亚洲国产成人精品| 欧美日韩视频高清一区二区三区二| 啦啦啦啦在线视频资源| 免费大片黄手机在线观看| 欧美日韩在线观看h| 黑人猛操日本美女一级片| 日韩 亚洲 欧美在线| 人人妻人人看人人澡| 日产精品乱码卡一卡2卡三| 美女xxoo啪啪120秒动态图| 国产亚洲一区二区精品| 成年人免费黄色播放视频 | 麻豆精品久久久久久蜜桃| 亚洲性久久影院| 亚洲天堂av无毛| 中文字幕av电影在线播放| 亚洲人成网站在线播| .国产精品久久| 十分钟在线观看高清视频www | 麻豆成人av视频| 老司机影院毛片| 日日撸夜夜添| 亚洲欧美中文字幕日韩二区| 亚洲精华国产精华液的使用体验| 制服丝袜香蕉在线| 蜜桃在线观看..| 91久久精品国产一区二区三区| 肉色欧美久久久久久久蜜桃| 国产91av在线免费观看| 国产精品99久久99久久久不卡 | 精品熟女少妇av免费看| 777米奇影视久久| 女性被躁到高潮视频| 亚洲丝袜综合中文字幕| 亚洲精品自拍成人| 亚洲,一卡二卡三卡| 丝瓜视频免费看黄片| 一级毛片黄色毛片免费观看视频| 91久久精品国产一区二区三区| 在线观看www视频免费| 日韩,欧美,国产一区二区三区| 久久精品久久久久久噜噜老黄| 亚洲国产最新在线播放| 国产欧美日韩精品一区二区| 精品国产乱码久久久久久小说| 久久午夜福利片| 夜夜爽夜夜爽视频| 亚洲真实伦在线观看| 亚洲色图综合在线观看| 久久久国产欧美日韩av| 精品人妻偷拍中文字幕| 一级毛片久久久久久久久女| 日本91视频免费播放| 高清黄色对白视频在线免费看 | 性高湖久久久久久久久免费观看| 少妇的逼好多水| 韩国av在线不卡| 亚洲欧美日韩东京热| 精品国产一区二区久久| 国产老妇伦熟女老妇高清| 97超碰精品成人国产| 日本午夜av视频| 一区二区三区乱码不卡18| 亚洲三级黄色毛片| 日本av免费视频播放| 国产精品久久久久久av不卡| 国产精品国产av在线观看| 免费人妻精品一区二区三区视频| 最后的刺客免费高清国语| 国产亚洲av片在线观看秒播厂| 永久免费av网站大全| 国产日韩一区二区三区精品不卡 | 欧美一级a爱片免费观看看| 在线观看av片永久免费下载| 91精品国产国语对白视频| 免费黄频网站在线观看国产| 午夜av观看不卡| 亚洲婷婷狠狠爱综合网| 国产伦精品一区二区三区四那| 国产一区二区三区av在线| 黄色毛片三级朝国网站 | 亚洲欧美精品专区久久| 国产精品三级大全| 亚洲四区av| 亚洲人成网站在线播| 亚洲国产精品999| 我的老师免费观看完整版| 又大又黄又爽视频免费| 91在线精品国自产拍蜜月| 国产成人aa在线观看| 少妇精品久久久久久久| 高清午夜精品一区二区三区| 18禁裸乳无遮挡动漫免费视频| 国产高清有码在线观看视频| 晚上一个人看的免费电影| 18+在线观看网站| 大话2 男鬼变身卡| 桃花免费在线播放| 王馨瑶露胸无遮挡在线观看| av线在线观看网站| 黄色配什么色好看| 国产真实伦视频高清在线观看| 午夜激情久久久久久久| 丰满少妇做爰视频| 欧美成人午夜免费资源| 亚洲中文av在线| 欧美亚洲 丝袜 人妻 在线| xxx大片免费视频| 亚洲高清免费不卡视频| 亚洲美女搞黄在线观看| 国产在线免费精品| 欧美bdsm另类| 18禁在线无遮挡免费观看视频| 男女无遮挡免费网站观看| 街头女战士在线观看网站| 一区二区三区乱码不卡18| 熟女av电影| 亚洲一级一片aⅴ在线观看| 建设人人有责人人尽责人人享有的| 插逼视频在线观看| 午夜免费鲁丝| 另类亚洲欧美激情| 黑人高潮一二区| 欧美3d第一页| 亚洲精品亚洲一区二区| 春色校园在线视频观看| 亚洲国产日韩一区二区| 亚洲欧洲精品一区二区精品久久久 | 人人妻人人澡人人看| 日韩 亚洲 欧美在线| av福利片在线观看| 99久久综合免费| 少妇的逼水好多| 日本wwww免费看| 少妇人妻精品综合一区二区| 日本黄大片高清| 日日摸夜夜添夜夜爱| 日本欧美视频一区| 日本wwww免费看| 伦理电影免费视频| 18禁动态无遮挡网站| 亚洲精品aⅴ在线观看| 黄色毛片三级朝国网站 | 久久97久久精品| 秋霞伦理黄片| 又粗又硬又长又爽又黄的视频| 中文字幕制服av| 亚洲激情五月婷婷啪啪| 男人和女人高潮做爰伦理| 国产成人freesex在线| 精品久久久久久久久av| 伊人久久国产一区二区| 高清午夜精品一区二区三区| av免费在线看不卡| 午夜福利视频精品| 18禁动态无遮挡网站| 国产欧美亚洲国产| 亚洲欧美成人综合另类久久久| 亚洲成人手机| 国产高清三级在线| 寂寞人妻少妇视频99o| 激情五月婷婷亚洲| 少妇熟女欧美另类| 高清视频免费观看一区二区| 3wmmmm亚洲av在线观看| 最后的刺客免费高清国语| 男女无遮挡免费网站观看| 汤姆久久久久久久影院中文字幕| 校园人妻丝袜中文字幕| 中文字幕亚洲精品专区| 最近中文字幕2019免费版| 中文精品一卡2卡3卡4更新| 亚洲av综合色区一区| 久久久亚洲精品成人影院| 婷婷色综合www| 大香蕉久久网| 日本av手机在线免费观看| av专区在线播放| 成人国产av品久久久| 性色avwww在线观看| 在线观看一区二区三区激情| 欧美精品一区二区大全| 亚洲精品久久午夜乱码| 新久久久久国产一级毛片| 国产成人精品久久久久久| 午夜久久久在线观看| 99热6这里只有精品| 在线精品无人区一区二区三| 日日撸夜夜添| 99热全是精品| 欧美最新免费一区二区三区| 国产精品欧美亚洲77777| 久久人人爽人人片av| 精品少妇黑人巨大在线播放| 精品一区二区免费观看| 久久精品夜色国产| 性高湖久久久久久久久免费观看| 国产男女内射视频| 国产精品伦人一区二区| 高清午夜精品一区二区三区| 欧美少妇被猛烈插入视频| 亚洲国产欧美日韩在线播放 | 成人无遮挡网站| 大又大粗又爽又黄少妇毛片口| 亚洲真实伦在线观看| 毛片一级片免费看久久久久| 十八禁网站网址无遮挡 | 黄色日韩在线| 六月丁香七月| 色网站视频免费| 男男h啪啪无遮挡| 黄色配什么色好看| 黄色毛片三级朝国网站 | 99久国产av精品国产电影| 九九在线视频观看精品| 春色校园在线视频观看| 永久网站在线| 女性被躁到高潮视频| 亚洲第一区二区三区不卡| 一级毛片我不卡| 久久久国产精品麻豆| 黄色毛片三级朝国网站 | 国产精品嫩草影院av在线观看| 九九在线视频观看精品| 高清欧美精品videossex| 精品国产露脸久久av麻豆| 国产免费一区二区三区四区乱码| 欧美日韩综合久久久久久| 99久久综合免费| 国产白丝娇喘喷水9色精品| 国产高清有码在线观看视频| 精品人妻熟女毛片av久久网站| 搡老乐熟女国产| 久久久欧美国产精品| √禁漫天堂资源中文www| 一级毛片aaaaaa免费看小| 久久人人爽人人爽人人片va| 久久久精品免费免费高清| 精品久久国产蜜桃| 国产精品国产av在线观看| 久久久精品94久久精品| 日韩在线高清观看一区二区三区| 国产日韩一区二区三区精品不卡 | 久久国产精品大桥未久av | 三级国产精品欧美在线观看| 国产av国产精品国产| 在线观看www视频免费| 国产 精品1| 中文字幕免费在线视频6| 日韩熟女老妇一区二区性免费视频| 草草在线视频免费看| 国产免费视频播放在线视频| 免费少妇av软件| 亚洲精品,欧美精品| 王馨瑶露胸无遮挡在线观看| 国产成人午夜福利电影在线观看| 亚洲av.av天堂| 丰满饥渴人妻一区二区三| 天堂中文最新版在线下载| 最近中文字幕高清免费大全6| 高清在线视频一区二区三区| 国产精品国产三级专区第一集| 日韩欧美精品免费久久| 欧美人与善性xxx| av又黄又爽大尺度在线免费看| 久久久久久久大尺度免费视频| 中文字幕人妻丝袜制服| 在线观看美女被高潮喷水网站| 亚洲av在线观看美女高潮| 亚洲真实伦在线观看| 简卡轻食公司| 高清午夜精品一区二区三区| 中文字幕av电影在线播放| 中文资源天堂在线| 久久久久视频综合| 纯流量卡能插随身wifi吗| freevideosex欧美| 日韩av免费高清视频| 午夜激情久久久久久久| 免费在线观看成人毛片| 在线看a的网站| 六月丁香七月| 麻豆成人av视频| 久久ye,这里只有精品| 在现免费观看毛片| 日韩熟女老妇一区二区性免费视频| 亚洲国产精品一区三区| 国产伦精品一区二区三区四那| 亚州av有码| 六月丁香七月| 国产黄片美女视频| 高清不卡的av网站| 欧美+日韩+精品| 中国国产av一级| 欧美高清成人免费视频www| 高清av免费在线| 欧美精品高潮呻吟av久久| 九九久久精品国产亚洲av麻豆| 欧美日韩亚洲高清精品| 日日啪夜夜撸| 亚洲欧美一区二区三区国产| 午夜福利在线观看免费完整高清在| 丰满少妇做爰视频| 女人久久www免费人成看片| 久久午夜综合久久蜜桃| 国产一区有黄有色的免费视频| 国产熟女午夜一区二区三区 | 大片电影免费在线观看免费| 丝瓜视频免费看黄片| 一级爰片在线观看| 一级,二级,三级黄色视频| 国产淫片久久久久久久久| 亚洲电影在线观看av| 一本久久精品| 久久久久国产网址| 国产综合精华液| 另类亚洲欧美激情| 久久人人爽人人爽人人片va| 成年av动漫网址| 国产av码专区亚洲av| 91精品国产国语对白视频| 国产一区二区三区综合在线观看 | 80岁老熟妇乱子伦牲交| 国产成人一区二区在线| 女人久久www免费人成看片| 夜夜看夜夜爽夜夜摸| 日韩欧美精品免费久久| 国产白丝娇喘喷水9色精品| 爱豆传媒免费全集在线观看| 中文字幕亚洲精品专区| 最新的欧美精品一区二区| 精品少妇久久久久久888优播| 97在线视频观看| 涩涩av久久男人的天堂| 最新中文字幕久久久久| 亚洲国产欧美日韩在线播放 | 久久韩国三级中文字幕| 免费大片黄手机在线观看| 成人漫画全彩无遮挡| 日韩一区二区视频免费看| 各种免费的搞黄视频| 午夜影院在线不卡| 最近最新中文字幕免费大全7| 欧美精品国产亚洲| 91精品国产国语对白视频| 亚洲国产日韩一区二区| 我要看日韩黄色一级片| 美女中出高潮动态图| 亚州av有码| 国产亚洲av片在线观看秒播厂| 草草在线视频免费看| 三上悠亚av全集在线观看 | 免费看av在线观看网站| 久久久午夜欧美精品| 51国产日韩欧美| 中文天堂在线官网| 国产老妇伦熟女老妇高清| av.在线天堂| 亚洲欧美清纯卡通| 伊人久久精品亚洲午夜| 夜夜骑夜夜射夜夜干| 男人舔奶头视频| 午夜精品国产一区二区电影| 日韩三级伦理在线观看| 色5月婷婷丁香| 好男人视频免费观看在线| 男的添女的下面高潮视频| 国产一级毛片在线| 国产一区亚洲一区在线观看| 国产精品不卡视频一区二区| 99九九在线精品视频 | 国产欧美日韩一区二区三区在线 | 一本一本综合久久| 国产亚洲5aaaaa淫片| 九九爱精品视频在线观看| 2018国产大陆天天弄谢| 国产在线视频一区二区| 在现免费观看毛片| 久久国产乱子免费精品| 午夜影院在线不卡| 观看美女的网站| 国产精品一区二区在线观看99| 毛片一级片免费看久久久久| 中文资源天堂在线| av福利片在线观看| 久久韩国三级中文字幕| 女人久久www免费人成看片| 91精品伊人久久大香线蕉| 伦理电影大哥的女人| 91久久精品国产一区二区成人| 另类亚洲欧美激情| 亚洲内射少妇av| 一级爰片在线观看| 菩萨蛮人人尽说江南好唐韦庄| 成年av动漫网址| 国内揄拍国产精品人妻在线| 三上悠亚av全集在线观看 | 国产在视频线精品| 99视频精品全部免费 在线| 一本久久精品| 日本-黄色视频高清免费观看| 热99国产精品久久久久久7| 欧美日韩综合久久久久久| 日韩免费高清中文字幕av| 亚洲电影在线观看av| 99久国产av精品国产电影| 在线看a的网站| 水蜜桃什么品种好| 久久免费观看电影| 国产成人aa在线观看| 这个男人来自地球电影免费观看 | av卡一久久| 黑丝袜美女国产一区| 亚洲综合精品二区| 久久人妻熟女aⅴ| 国产成人aa在线观看| 少妇人妻 视频| 久热这里只有精品99| av卡一久久| 午夜日本视频在线| 精品亚洲成a人片在线观看| 国产高清国产精品国产三级| 插逼视频在线观看| 婷婷色av中文字幕| 777米奇影视久久| 免费大片黄手机在线观看| 国产精品久久久久久精品电影小说| 看非洲黑人一级黄片| 精品视频人人做人人爽| av国产精品久久久久影院| 自拍欧美九色日韩亚洲蝌蚪91 | 大香蕉97超碰在线| 欧美日韩在线观看h| 国产免费又黄又爽又色| 啦啦啦视频在线资源免费观看| 交换朋友夫妻互换小说| 亚洲不卡免费看| 久久ye,这里只有精品| 久久国产精品大桥未久av | 最黄视频免费看| 午夜免费观看性视频| 毛片一级片免费看久久久久| 久久久午夜欧美精品| 日本91视频免费播放| 少妇裸体淫交视频免费看高清| 午夜福利在线观看免费完整高清在| 人妻系列 视频| 亚州av有码| 久久久久国产网址| 最近2019中文字幕mv第一页| 日日撸夜夜添| 十八禁网站网址无遮挡 | 五月伊人婷婷丁香| 久久久精品免费免费高清| 午夜91福利影院| 黄片无遮挡物在线观看| 久久狼人影院| 久久午夜福利片| 中文欧美无线码| 免费人成在线观看视频色| 少妇猛男粗大的猛烈进出视频| 精品国产露脸久久av麻豆| 亚洲国产色片| 在线观看免费日韩欧美大片 | 国产精品一区二区性色av| 国产在视频线精品| 三级国产精品欧美在线观看| 午夜激情福利司机影院| 免费高清在线观看视频在线观看| 如何舔出高潮| 日本vs欧美在线观看视频 | 欧美精品国产亚洲| kizo精华| 国产免费视频播放在线视频| 夜夜看夜夜爽夜夜摸| 在线免费观看不下载黄p国产| 欧美bdsm另类| 久久久a久久爽久久v久久| 欧美国产精品一级二级三级 | 久久精品久久精品一区二区三区| 欧美最新免费一区二区三区| 成年人午夜在线观看视频| 亚洲精品久久久久久婷婷小说| 精品99又大又爽又粗少妇毛片| 各种免费的搞黄视频| 久久久欧美国产精品| 91久久精品国产一区二区成人| 高清午夜精品一区二区三区| 51国产日韩欧美| 欧美日韩精品成人综合77777| 一个人免费看片子| 国产高清国产精品国产三级| 国产白丝娇喘喷水9色精品| 中文字幕精品免费在线观看视频 | 交换朋友夫妻互换小说|