• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Supersolvable Order of Hyperplanes of an Arrangement

    2013-08-10 03:07:02GAORUIMEIANDPEIDONGHE

    GAO RUI-MEIAND PEI DONG-HE

    (1.College of Science,Changchun University of Science and Technology,Changchun,130022) (2.School of Mathematics and Statistics,Northeast Normal University,Changchun,130024)

    Communicated by Du Xian-kun

    The Supersolvable Order of Hyperplanes of an Arrangement

    GAO RUI-MEI1AND PEI DONG-HE2

    (1.College of Science,Changchun University of Science and Technology,Changchun,130022) (2.School of Mathematics and Statistics,Northeast Normal University,Changchun,130024)

    Communicated by Du Xian-kun

    This paper mainly gives a sufficient and necessary condition for an order of hyperplanes of a graphic arrangement being supersolvable.In addition,we give the relations between the set of supersolvable orders of hyperplanes and the set of quadratic orders of hyperplanes for a supersolvable arrangement.

    quadratic arrangement,graphic arrangement,supersolvable order of hyperplane,quadratic order of hyperplane,supersolvable order of vertices

    1 Introduction

    As we know,a central question in the theory of hyperplane arrangements is the problem of expressing topological invariants of the complement space in terms of combinatorics.Therefore,the study of arrangements with rational K[π,1]complements has a relatively long history(see[1–3]).Assume that M(A)is the complement of the arrangement A.Then a necessary condition for M(A)being rational K[π,1]is that the Orlik-Solomon algebra A(A)is quadratic(see[4–5]).Therefore,the study of quadratic Orlik-Solomon algebras attracts more and more attentions(see[6]).Pearson[7]gave the def i nition of a quadratic arrangement,and showed that if A is a quadratic arrangement,then its Orlik-Solomon algebra A(A)is quadratic.Hence,it is important to study quadratic arrangements. It was pointed out in[8]that if A is a supersolvable arrangement,then A is a quadratic arrangement under some supersolvable order of hyperplanes.A natural question is whether there exists a good method to characterize all the supersolvable orders of hyperplanes for a supersolvable arrangement,and what is the relation between the supersolvable order ofhyperplanes and the order which makes A quadratic.We give the answers of these two questions in this paper.

    Firstly,this paper gives a sufficient and necessary condition of an order of hyperplanes of a graphic arrangement being supersolvable.Secondly,we prove that the set of the supersolvable orders of hyperplanes is strictly contained in the set of quadratic orders of hyperplanes for any supersolvable arrangement.

    We assume that A is a central arrangement in this paper.

    2 Basic Notions

    Let K be a f i eld and V be a vector space of dimension n on K.A hyperplane H in V is an affine subspace of dimension(n-1).A hyperplane arrangement A is a f i nite set of hyperplanes in V.Most often we take K=R.We simply use the term arrangement for a hyperplane arrangement.We call A central ifH=T/=?.Let L=L(A)be the set of nonempty intersections of hyperplanes in A.Def i ne X≤Y in L if X?Y.In other words, L is partially ordered by reverse inclusion.We call L the intersection poset of A.Let X∨Y be the least upper bound of X and Y,and X∧Y be the greatest lower bound of X and Y.For any X∈L,the rank of X is given by r(X)=codim(X).A pair(X,Y)∈L×L is called a modular pair if

    An element X∈L is called a modular element if(X,Y)is a modular pair for all Y∈L. We call A supersolvable if L(A)has a maximal chain of modular elements

    where r=r(T).

    We introduce an arbitrary linear order“?”on the hyperplanes of A,that is,Hi?Hjif 1≤i<j≤|A|.

    Let A be a supersolvable arrangement with order?.We say that the order?is a supersolvable order of hyperplanes if there exists a maximal modular chain

    in L such that

    (1)X1=H1;

    (2)for 1<i≤r,there exists ni≥2 such that

    We denote by?sa supersolvable order of hyperplanes.

    Let S=(Hi1,···,Hip)be a p tuple of A.We say that an S is dependent if r(∩S)<|S|, otherwise,an S is independent.A p-tuple is a circuit if it is minimally dependent.We calla p-tuple S=(Hi1,···,Hip)standard if Hi1?···?Hip.A standard p-tuple S is a broken circuit if there exists H∈A such that H?minS and(H,S)is a circuit.Let

    We call BC the broken circuit set of A.We say that A is a quadratic arrangement with respect to linear order?,if for any S∈BC,there exists T∈BC with T?S and|T|=2. At this time,we call the order?a quadratic order of hyperplanes.

    Let G=(V(G),E(G))be a simple graph with n vertices,where V(G)is the set of vertices of G,and E(G)is the set of edges of G.We def i ne

    to be the graphic arrangement corresponding to G.It is well known that G is a chordal graph if and only if A(G)is supersolvable.

    A graph G with at least one edge is doubly connected if it is connected and remains connected upon the removal of any vertex(and all incident edges).We suppose that G is doubly connected in this paper.

    The symbols and notions in this paper are the same as the ones in[9–10].

    3 A Sufficient and Necessary Condition for the Supersolvable Order of Hyperplanes

    The following lemma gives a sufficiency and necessity condition for a graphic arrangement being supersolvable.

    Lemma 3.1[11]Let G be a simple graph with n vertices.Its corresponding graphic arrangement A(G)is supersolvable if and only if the vertices of G can be labeled as 1,2,···,n, such that if i<k,j<k and(i,k),(j,k)∈E(G),then(i,j)∈E(G).

    Remark 3.1We call the order of vertices which satisf i es the condition in Lemma 3.1 a supersolvable order of vertices of G.As we know,any order of vertices of G can be regarded as a permutation σ=a1a2···an∈Snof n elements,where

    with ai∈[n]={1,2,···,n},1≤i≤n,and the Snis the permutation group of n elements.

    Def i nition 3.1Assume that σ1,σ2are two dif f erent orders of vertices of G.We def i ne σ1~σ2if σ1and σ2satisfy the following two conditions:

    (1)there exist 1≤i,j≤n such that σ1(vi)=σ2(vj)=1,and σ1(vj)=σ2(vi)=2;

    (2)σ1(vk)=σ2(vk),if k/=i,j.

    Proposition 3.1Assume that G is a chordal graph with n vertices.In the set of supersolvable orders of vertices of G,we identify σ1with σ2if σ1~σ2.Then there exists a one-to-one correspondence between the set of supersolvable orders of vertices of G and the set of maximal modular chains in L(A(G)).

    Proof.First,we prove that if σ is a supersolvable order of vertices of G,then(1,2)∈E(G)σ,where E(G)σdenotes the set of edges of G after labeling all the vertices of G with respect to σ.This conclusion can be proved by induction on|V(G)|.Since G is doubly connected,the conclusion is clear for the case|V(G)|=3.When|V(G)|=p,let Gi=(V(Gi),E(Gi)),where

    Then by the induction hypothesis,(2,3)∈E(G1),(1,3)∈E(G2).Hence,

    For any f i xed 1≤i≤n,let

    Def i ne a mapping

    where 1≤ip,jp≤n,and ip/=jp,1≤p≤k. Let

    Since(1,2)∈E(G)σ,we have

    Let

    Then by the proof of Lemma 3.1 in[11],is a modular element in L(A(G)).We use the symbol Cσto denote the following maximal modular chain:

    Def i ne a mapping from the set of supersolvable orders of vertices of G to the set of maximal modular chains in L(A(G))as follows:

    Since we identify σ1with σ2if σ1~σ2,it is clear that the mapping Φ is injective. Assume that we have a maximal modular chain∩

    Since Xi(0≤i≤n-1)is a modular element,we can label the vertices viand vjby 1 and 2,respectively,if X1={xi-xj=0}.Also,we can label other vertices by the integers from 3 to n according to the elements from X2to Xn-1,respectively,and the order of vertices with respect to this labeling is a supersolvable order of vertices.Therefore,we can say that the mapping Φ is surjective.This completes the proof.

    If G is a chordal graph,then it has the supersolvable order of vertices,and its corresponding arrangement A(G)has the supersolvable order of hyperplanes.Do they have somerelations?Next,we give a conclusion about them.First of all,if σ is an order of vertices of G,we def i ne its corresponding order of edges τσ.In order to do this,we give the def i nitions of some symbols.

    For a graph G with n vertices,we assume that the order of vertices σ is f i xed.

    Let

    For σ,we def i ne its corresponding order of edges

    as follows:

    For any edge

    τσsatisf i es

    and dif f erent edges have dif f erent images,where 2≤i≤n. Since

    we know that τσis a bijection between E(G)andE(G).

    From the def i nition of τσ,it is clear that there are many orders of edges correspond to σ,and the number of τσis

    As we know,there exists a canonical bijection between E(G)and A(G).Therefore,for any τσ,the order of edges which corresponds to σ,there exists an order of hyperplanes ofnaturally,and we may also write it as τσ.From now on,we do not distinguish the orders of edges of G and the orders of hyperplanes of A(G).

    Theorem 3.1If G is a chordal graph,then

    Proof.If σ is a supersolvable order of vertices of G,we consider the maximal modular chain decided by σ,

    where

    Then

    And for

    we have τσ(e)∈[1],that is,

    In addition,for i>1,

    then

    Hence

    Conversely,for any supersolvable order of hyperplanes of A(G)?s,it decides a unique maximal modular chain in L(A(G))as follows:

    By Proposition 3.1,there exists a supersolvable order of vertices σ,which satisf i es

    Next,we prove that?sis an order of edges of E(G)which corresponds to σ. Since?sis a supersolvable order of hyperplanes of A(G),one has

    and

    it satisf i esTherefore,?sis an order of edges of E(G)which corresponds to σ.This completes the proof.

    4 The Relations Between the Set of Supersolvable Orders of Hyperplanes and the Set of Quadratic Orders of Hyperplanes

    In this section,we mainly give the conclusion that the set of the supersolvable orders of hyperplanes is strictly contained in the set of quadratic orders of hyperplanes for any supersolvable arrangement.

    Theorem 4.1Let A be a supersolvable arrangement.If?sis a supersolvable order of hyperplanes respects to the maximal modular chain

    then?smust be a quadratic order of hyperplanes of A.

    Proof.Suppose that S=(Ha,Hb,Hc)is a minimally broken circuit with respect to the order?s,and

    Let

    Then there exist i1,i2,i3with 1≤i1≤i2≤i3≤r such that

    We can get the conclusion that i1,i2,i3are pairwise distinct.Otherwise,we assume that j=i1=i2since i1,i2,i3cannot be equal.Let Y=Ha∨Hb.By the property of modular element X,we obtain

    Then there exists a hyperplane Ht≤Xj-1such that S1=(Ht,Ha,Hb)is dependent.Therefore T=(Ha,Hb)is a broken circuit.This contradicts the minimality of S=(Ha,Hb,Hc). Since S=(Ha,Hb,Hc)is a broken circuit,there exists a hyperplane Hp?sHasuch that

    is a circuit.By the def i nition of?s,we can see

    which is a contradiction.

    If

    is a minimally broken circuit,we can also get a contradiction by using of the same method. Therefore,the broken circuit set has only 2-broken circuits.We complete the proof.

    Next,we give an example of a quadratic arrangement under an order which is not a supersolvable order of hyperplanes.

    Example 4.1The corresponding graphic arrangement A(G)of the following graph G is a quadratic arrangement under the order given in Fig.4.1.It is also easy to see this order is not a supersolvable order of hyperplanes.

    Fig.4.1A quadratic arrangement under a non-supersolvable order of hyperplanes

    [1]Falk M,Randell R.The lower central series of a f i ber-type arrangements.Invent.Math.,1985, 82:77–88.

    [2]Falk M.The minimal model of the complement of an arrangement of hyperplanes.Trans. Amer.Math.Soc.,1988,309:543–556.

    [3]Kohno T.Sˊerie de Poincarˊe-Koszul associˊee aux groupes de tresses pures.Invent.Math.,1985, 82:57–75.

    [4]Falk M.Line-closed matroids,quadratic algebras,and formal arrangements.Adv.in Appl. Math.,2002,28:250–271.

    [5]Papadima S,Yuzvinsky S.On rational K[π,1]spaces and Koszul algebras.J.Pure Appl. Algebra,1999,144:157–167.

    [6]Yuzvinsky S.Orlik Solomon algebras in algebra and topology.Russian Math.Surveys,2001, 56:87–166.

    [7]Pearson K J.Cohomology of OS algebras for quadratic arrangements.Lect.Mat.,2002,22: 103–134.

    [8]Bj¨orner A,Ziegler G.Broken circuit complexes:factorization and generalizations.J.Combin. Theory Ser.B,1991,5:96–126.

    [9]Orlik P,Terao H.Arrangements of Hyperplanes.Berlin:Springer-Verlag,1992.

    [10]Stanley R P.An Introduction to Hyperplane Arrangements.In:Miller E,Reiner V,Sturmfels B.Geometric Combinatorics.Providence,RI:IAS/Park City Math.Ser.Amer.Math.Soc., 2004,13:389–496.

    [11]Stanley R P.Supersolvable lattices.Algebra Universalis,1972,2:197–217.

    A

    1674-5647(2013)03-0231-08

    Received date:March 18,2011.

    The NSF(10871035)of China.

    E-mail address:gaorm135@nenu.edu.cn(Gao R M).

    2000 MR subject classif i cation:32S22,52C35

    欧美日韩中文字幕国产精品一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 99国产极品粉嫩在线观看| 午夜免费成人在线视频| 国产老妇女一区| 特大巨黑吊av在线直播| 亚洲欧美日韩卡通动漫| 哪里可以看免费的av片| 国产国拍精品亚洲av在线观看| 我要看日韩黄色一级片| 男女视频在线观看网站免费| 午夜福利视频1000在线观看| 久久久午夜欧美精品| 97人妻精品一区二区三区麻豆| 亚洲性久久影院| 国产高清三级在线| 亚洲天堂国产精品一区在线| 国产男靠女视频免费网站| 免费看a级黄色片| 18禁黄网站禁片免费观看直播| 亚洲一级一片aⅴ在线观看| 人人妻人人澡欧美一区二区| 精品久久久久久,| 亚洲av免费在线观看| 色哟哟·www| 男女之事视频高清在线观看| 免费搜索国产男女视频| 久久久久九九精品影院| bbb黄色大片| 内地一区二区视频在线| 国产激情偷乱视频一区二区| 搡老熟女国产l中国老女人| 国产精品一区二区三区四区免费观看 | 午夜日韩欧美国产| 国产午夜精品论理片| 三级男女做爰猛烈吃奶摸视频| av福利片在线观看| 亚洲一区二区三区色噜噜| 亚洲真实伦在线观看| 亚洲自拍偷在线| 黄色女人牲交| 久久精品国产清高在天天线| 国产精品爽爽va在线观看网站| 国产高清有码在线观看视频| 在现免费观看毛片| 夜夜夜夜夜久久久久| 九九爱精品视频在线观看| 联通29元200g的流量卡| 在线播放无遮挡| 精品不卡国产一区二区三区| 男女啪啪激烈高潮av片| 色噜噜av男人的天堂激情| 长腿黑丝高跟| 69av精品久久久久久| 男人和女人高潮做爰伦理| 麻豆精品久久久久久蜜桃| 亚洲第一电影网av| av专区在线播放| 伊人久久精品亚洲午夜| 久久精品91蜜桃| 精品久久久久久,| 91麻豆精品激情在线观看国产| 成人特级av手机在线观看| 欧美激情在线99| 成人av在线播放网站| 亚洲男人的天堂狠狠| 99精品在免费线老司机午夜| 国产精品乱码一区二三区的特点| 精品一区二区三区视频在线观看免费| 嫩草影视91久久| 热99在线观看视频| 琪琪午夜伦伦电影理论片6080| 制服丝袜大香蕉在线| 色精品久久人妻99蜜桃| 1024手机看黄色片| 国产欧美日韩一区二区精品| 成熟少妇高潮喷水视频| 国产亚洲精品综合一区在线观看| 一个人看的www免费观看视频| 亚洲 国产 在线| 丰满的人妻完整版| 欧美日韩中文字幕国产精品一区二区三区| 99国产精品一区二区蜜桃av| 男人和女人高潮做爰伦理| 成人二区视频| 国产精品一区二区免费欧美| 91在线观看av| 又紧又爽又黄一区二区| 亚洲 国产 在线| 久久99热这里只有精品18| 精品久久国产蜜桃| 亚洲精华国产精华精| 亚洲成a人片在线一区二区| 国产又黄又爽又无遮挡在线| 国产欧美日韩精品一区二区| 亚洲av五月六月丁香网| 神马国产精品三级电影在线观看| 日日撸夜夜添| 国产伦人伦偷精品视频| av女优亚洲男人天堂| 欧美另类亚洲清纯唯美| 国产伦精品一区二区三区四那| 网址你懂的国产日韩在线| 国产精品久久久久久亚洲av鲁大| 久久婷婷人人爽人人干人人爱| 精品久久国产蜜桃| 欧美在线一区亚洲| 无人区码免费观看不卡| 又黄又爽又刺激的免费视频.| 内射极品少妇av片p| av在线蜜桃| 一区福利在线观看| 国产一区二区三区在线臀色熟女| 高清毛片免费观看视频网站| 国产精品伦人一区二区| 国产在线男女| 身体一侧抽搐| 国产91精品成人一区二区三区| 69人妻影院| x7x7x7水蜜桃| 欧美最黄视频在线播放免费| 一级黄色大片毛片| 久久国产乱子免费精品| 亚洲av日韩精品久久久久久密| 亚洲四区av| 国产视频内射| 嘟嘟电影网在线观看| 亚洲av欧美aⅴ国产| 国产在线一区二区三区精| 欧美极品一区二区三区四区| 亚洲图色成人| 亚洲国产精品999| 亚洲欧美日韩东京热| 蜜桃亚洲精品一区二区三区| 国产高清三级在线| 人妻制服诱惑在线中文字幕| 国产永久视频网站| 少妇丰满av| 久久ye,这里只有精品| 我要看黄色一级片免费的| 国产无遮挡羞羞视频在线观看| 日韩视频在线欧美| 色综合色国产| av在线观看视频网站免费| 黑人高潮一二区| av在线播放精品| 欧美精品亚洲一区二区| 老女人水多毛片| 国产成人freesex在线| 日韩一本色道免费dvd| 高清日韩中文字幕在线| 亚洲av电影在线观看一区二区三区| 最近手机中文字幕大全| 欧美极品一区二区三区四区| 亚洲欧美成人精品一区二区| 身体一侧抽搐| 国产成人91sexporn| 精品少妇久久久久久888优播| av女优亚洲男人天堂| 亚洲av在线观看美女高潮| 伊人久久精品亚洲午夜| 亚洲精品日韩在线中文字幕| 精品午夜福利在线看| 卡戴珊不雅视频在线播放| 性色av一级| 秋霞伦理黄片| 国产免费福利视频在线观看| 日本wwww免费看| 久久综合国产亚洲精品| a 毛片基地| 国产一区有黄有色的免费视频| 人人妻人人澡人人爽人人夜夜| 国产午夜精品久久久久久一区二区三区| 日本猛色少妇xxxxx猛交久久| 最近手机中文字幕大全| 高清毛片免费看| 欧美激情国产日韩精品一区| 久久99蜜桃精品久久| 男女国产视频网站| 精品一区二区三区视频在线| 亚洲av成人精品一区久久| 国产有黄有色有爽视频| 99热网站在线观看| 亚洲高清免费不卡视频| 欧美极品一区二区三区四区| 久久久久久久久久成人| 91午夜精品亚洲一区二区三区| 啦啦啦在线观看免费高清www| 高清欧美精品videossex| 久久久久久久国产电影| 成人高潮视频无遮挡免费网站| 日产精品乱码卡一卡2卡三| 欧美国产精品一级二级三级 | 精品午夜福利在线看| 美女cb高潮喷水在线观看| 狠狠精品人妻久久久久久综合| 不卡视频在线观看欧美| 亚洲欧美日韩无卡精品| 久久综合国产亚洲精品| 国产乱来视频区| 91精品一卡2卡3卡4卡| 亚洲av中文av极速乱| 亚洲国产欧美人成| av女优亚洲男人天堂| 久久国产精品男人的天堂亚洲 | 精品久久久久久电影网| 国产精品久久久久久av不卡| 欧美 日韩 精品 国产| 中文资源天堂在线| 午夜日本视频在线| 国产精品欧美亚洲77777| 亚洲国产精品成人久久小说| 精品一区二区三卡| 高清黄色对白视频在线免费看 | 精品一区在线观看国产| 97精品久久久久久久久久精品| 国产成人精品一,二区| 欧美区成人在线视频| 九九久久精品国产亚洲av麻豆| 日日摸夜夜添夜夜爱| 成年av动漫网址| 国产白丝娇喘喷水9色精品| 3wmmmm亚洲av在线观看| 91久久精品国产一区二区成人| 国产一级毛片在线| 十八禁网站网址无遮挡 | 各种免费的搞黄视频| 午夜福利影视在线免费观看| 精品亚洲成国产av| 日本免费在线观看一区| 免费不卡的大黄色大毛片视频在线观看| 国产在视频线精品| 午夜精品国产一区二区电影| 久久久精品免费免费高清| 午夜福利在线观看免费完整高清在| 欧美bdsm另类| 成人18禁高潮啪啪吃奶动态图 | 亚洲av综合色区一区| 大香蕉久久网| 日韩伦理黄色片| 男人和女人高潮做爰伦理| 国产成人a区在线观看| 三级国产精品片| 国产精品久久久久久久久免| 三级国产精品片| 欧美老熟妇乱子伦牲交| 成人黄色视频免费在线看| 国产免费视频播放在线视频| 亚洲不卡免费看| av.在线天堂| 成人黄色视频免费在线看| 嫩草影院入口| a 毛片基地| 久久精品熟女亚洲av麻豆精品| 国产女主播在线喷水免费视频网站| 久久久国产一区二区| 好男人视频免费观看在线| 日韩视频在线欧美| 久久国产乱子免费精品| 99久久综合免费| 老女人水多毛片| 久久久久久九九精品二区国产| 22中文网久久字幕| 激情 狠狠 欧美| 婷婷色av中文字幕| 成人亚洲欧美一区二区av| 在线观看三级黄色| 国产精品国产三级国产专区5o| 成人亚洲精品一区在线观看 | 国产在视频线精品| 一级毛片aaaaaa免费看小| 亚洲av国产av综合av卡| 777米奇影视久久| 国产乱来视频区| 成人亚洲欧美一区二区av| 久久久成人免费电影| 大片免费播放器 马上看| 成人综合一区亚洲| 亚洲美女黄色视频免费看| 国产成人a∨麻豆精品| 日韩欧美一区视频在线观看 | 美女主播在线视频| 99久国产av精品国产电影| 内射极品少妇av片p| 久久久久久伊人网av| 亚洲欧美一区二区三区国产| 久久精品国产亚洲av涩爱| 美女主播在线视频| av不卡在线播放| 日韩欧美一区视频在线观看 | 夜夜看夜夜爽夜夜摸| av免费在线看不卡| 春色校园在线视频观看| 老师上课跳d突然被开到最大视频| 伦精品一区二区三区| 亚洲国产av新网站| 久久久久网色| 亚洲欧美成人精品一区二区| 亚洲欧美成人综合另类久久久| 最后的刺客免费高清国语| 午夜免费观看性视频| 欧美精品一区二区免费开放| 国精品久久久久久国模美| 亚洲图色成人| 精品熟女少妇av免费看| 男女边吃奶边做爰视频| 亚洲精品中文字幕在线视频 | 久久这里有精品视频免费| 久久久午夜欧美精品| 免费观看无遮挡的男女| 国产一区有黄有色的免费视频| 亚洲av中文av极速乱| 日本爱情动作片www.在线观看| 免费看av在线观看网站| 免费av不卡在线播放| 2018国产大陆天天弄谢| 97精品久久久久久久久久精品| 亚洲在久久综合| www.色视频.com| 女性被躁到高潮视频| 国产伦理片在线播放av一区| 最新中文字幕久久久久| 能在线免费看毛片的网站| 黄色欧美视频在线观看| 欧美精品一区二区大全| 久久久久人妻精品一区果冻| 婷婷色av中文字幕| 国产高清不卡午夜福利| 一边亲一边摸免费视频| 日韩一区二区三区影片| 亚洲性久久影院| 少妇人妻 视频| 99久久精品国产国产毛片| 久久国产精品男人的天堂亚洲 | 一级a做视频免费观看| 久久99热6这里只有精品| 国产大屁股一区二区在线视频| 精品国产一区二区三区久久久樱花 | 成人亚洲欧美一区二区av| 国产精品国产三级国产av玫瑰| 午夜激情福利司机影院| 精品国产一区二区三区久久久樱花 | 亚州av有码| 在线免费十八禁| 亚洲在久久综合| 亚洲国产精品专区欧美| 欧美日韩国产mv在线观看视频 | 夫妻午夜视频| 久久久久久久国产电影| 边亲边吃奶的免费视频| 最近中文字幕高清免费大全6| 免费少妇av软件| 少妇被粗大猛烈的视频| a 毛片基地| 午夜福利网站1000一区二区三区| 亚洲av免费高清在线观看| 全区人妻精品视频| 99久久精品国产国产毛片| 精品国产露脸久久av麻豆| 欧美成人一区二区免费高清观看| 在线天堂最新版资源| 18禁裸乳无遮挡免费网站照片| 久久国产精品大桥未久av | 亚洲国产精品国产精品| 丰满人妻一区二区三区视频av| 久久精品国产鲁丝片午夜精品| 搡女人真爽免费视频火全软件| 国产91av在线免费观看| www.色视频.com| 日日啪夜夜爽| 黑人高潮一二区| 国产成人a区在线观看| 久久国产乱子免费精品| 亚洲国产精品成人久久小说| 欧美精品人与动牲交sv欧美| 亚洲av电影在线观看一区二区三区| av黄色大香蕉| 国产精品秋霞免费鲁丝片| 韩国av在线不卡| 大陆偷拍与自拍| 欧美日韩视频高清一区二区三区二| 久久久精品免费免费高清| 男女边吃奶边做爰视频| 在线播放无遮挡| 丰满迷人的少妇在线观看| 熟女av电影| 欧美一区二区亚洲| 一个人看视频在线观看www免费| 欧美日韩视频高清一区二区三区二| 亚洲,欧美,日韩| 观看美女的网站| 久久精品国产亚洲av涩爱| 久久99热这里只频精品6学生| 国产在线视频一区二区| 欧美成人a在线观看| 欧美最新免费一区二区三区| 美女cb高潮喷水在线观看| av.在线天堂| 国产精品熟女久久久久浪| 国产免费福利视频在线观看| 日韩 亚洲 欧美在线| 日韩av在线免费看完整版不卡| 最近的中文字幕免费完整| freevideosex欧美| 婷婷色av中文字幕| 亚洲av成人精品一二三区| 亚洲国产精品国产精品| 精品久久久久久电影网| 啦啦啦啦在线视频资源| 男的添女的下面高潮视频| 大香蕉97超碰在线| 亚洲欧美一区二区三区黑人 | 青春草视频在线免费观看| 国产精品免费大片| 久久亚洲国产成人精品v| 超碰av人人做人人爽久久| 久久鲁丝午夜福利片| 91精品伊人久久大香线蕉| 岛国毛片在线播放| 一级毛片我不卡| 欧美三级亚洲精品| 最近2019中文字幕mv第一页| 亚洲精品,欧美精品| 久热久热在线精品观看| 久久久成人免费电影| 亚洲国产毛片av蜜桃av| 久久久精品94久久精品| 一个人看视频在线观看www免费| 免费观看无遮挡的男女| 一级毛片黄色毛片免费观看视频| 人妻少妇偷人精品九色| 街头女战士在线观看网站| 18禁动态无遮挡网站| 国产伦精品一区二区三区视频9| 精品亚洲乱码少妇综合久久| 777米奇影视久久| a级一级毛片免费在线观看| 久久影院123| 国产在线视频一区二区| 最后的刺客免费高清国语| 身体一侧抽搐| 青春草国产在线视频| 精华霜和精华液先用哪个| 亚洲美女搞黄在线观看| 在线观看三级黄色| 日韩在线高清观看一区二区三区| av在线播放精品| av天堂中文字幕网| 亚洲国产精品成人久久小说| 国产精品成人在线| 国产深夜福利视频在线观看| 国产男人的电影天堂91| 亚洲av中文字字幕乱码综合| 噜噜噜噜噜久久久久久91| 高清视频免费观看一区二区| 久久韩国三级中文字幕| 免费观看av网站的网址| 最近的中文字幕免费完整| 少妇人妻一区二区三区视频| 精品人妻一区二区三区麻豆| 亚洲欧洲日产国产| 伊人久久精品亚洲午夜| 99九九线精品视频在线观看视频| 久久这里有精品视频免费| 高清av免费在线| 国产精品麻豆人妻色哟哟久久| 男女边摸边吃奶| 午夜老司机福利剧场| 日韩,欧美,国产一区二区三区| 欧美国产精品一级二级三级 | 国产又色又爽无遮挡免| 黑人高潮一二区| av在线app专区| 久久久久精品久久久久真实原创| 美女视频免费永久观看网站| 2022亚洲国产成人精品| 五月天丁香电影| 日本黄大片高清| 亚洲综合精品二区| 国产精品.久久久| 精品少妇久久久久久888优播| 国产又色又爽无遮挡免| 有码 亚洲区| 国产色婷婷99| 色吧在线观看| 高清在线视频一区二区三区| 99热国产这里只有精品6| 一级av片app| 欧美日韩在线观看h| 妹子高潮喷水视频| 婷婷色麻豆天堂久久| 国产精品久久久久久精品电影小说 | 国产精品免费大片| 久久精品熟女亚洲av麻豆精品| 一级a做视频免费观看| 内射极品少妇av片p| 性色avwww在线观看| 久久热精品热| 中文字幕免费在线视频6| 国产精品人妻久久久影院| 午夜免费男女啪啪视频观看| 国产成人a∨麻豆精品| 身体一侧抽搐| 一级av片app| 日韩大片免费观看网站| 免费看不卡的av| 国产成人a∨麻豆精品| 永久免费av网站大全| 国产精品久久久久久精品古装| 国产成人免费观看mmmm| 蜜桃在线观看..| 99久久综合免费| 国产爱豆传媒在线观看| 久久久久久久大尺度免费视频| 国产精品人妻久久久影院| 亚洲国产精品999| 王馨瑶露胸无遮挡在线观看| 亚洲精品乱码久久久久久按摩| 如何舔出高潮| 又粗又硬又长又爽又黄的视频| 国产成人一区二区在线| 夜夜骑夜夜射夜夜干| 免费高清在线观看视频在线观看| 又爽又黄a免费视频| 亚洲精品国产成人久久av| 性高湖久久久久久久久免费观看| 人妻少妇偷人精品九色| 久久精品久久久久久噜噜老黄| 亚洲三级黄色毛片| 久久97久久精品| 大话2 男鬼变身卡| 国产v大片淫在线免费观看| 国产欧美另类精品又又久久亚洲欧美| 高清视频免费观看一区二区| 春色校园在线视频观看| 欧美精品一区二区免费开放| 久久久久久久亚洲中文字幕| 青青草视频在线视频观看| 欧美日韩一区二区视频在线观看视频在线| 建设人人有责人人尽责人人享有的 | 国产成人a∨麻豆精品| 22中文网久久字幕| 丝瓜视频免费看黄片| 欧美另类一区| 亚洲成色77777| 欧美精品亚洲一区二区| 草草在线视频免费看| 国产在线男女| 国模一区二区三区四区视频| 汤姆久久久久久久影院中文字幕| videos熟女内射| 偷拍熟女少妇极品色| av.在线天堂| 男人狂女人下面高潮的视频| 午夜激情久久久久久久| 久久久久国产网址| 黄色视频在线播放观看不卡| 亚洲美女视频黄频| 欧美变态另类bdsm刘玥| 亚洲国产最新在线播放| 国产精品偷伦视频观看了| 国产色爽女视频免费观看| 亚洲欧美精品专区久久| 免费黄频网站在线观看国产| 日本av手机在线免费观看| 我的老师免费观看完整版| 国产一级毛片在线| 亚洲内射少妇av| 女性生殖器流出的白浆| 欧美xxxx性猛交bbbb| 亚洲av成人精品一二三区| 久久久欧美国产精品| 亚洲va在线va天堂va国产| 91aial.com中文字幕在线观看| 欧美一级a爱片免费观看看| 啦啦啦中文免费视频观看日本| 成人毛片a级毛片在线播放| 亚洲不卡免费看| 久久影院123| 天堂中文最新版在线下载| 女的被弄到高潮叫床怎么办| 97在线视频观看| 最近中文字幕2019免费版| 妹子高潮喷水视频| 国产亚洲欧美精品永久| 国产在线免费精品| 在线免费观看不下载黄p国产| 色吧在线观看| 亚洲最大成人中文| 狂野欧美激情性bbbbbb| 精品一区二区免费观看| 中文资源天堂在线| 久久久色成人| 日韩伦理黄色片| 欧美高清成人免费视频www| 午夜福利影视在线免费观看| 日本午夜av视频| av视频免费观看在线观看| 最后的刺客免费高清国语| 国产 一区精品| 国产淫语在线视频| 久久午夜福利片| 亚洲av中文av极速乱| 亚洲国产毛片av蜜桃av| 亚洲欧美日韩卡通动漫| 午夜福利网站1000一区二区三区| 老熟女久久久| 观看美女的网站| 在线观看av片永久免费下载| videos熟女内射| 国产高清有码在线观看视频| 亚洲av中文av极速乱| 国产成人精品一,二区| 国产成人a∨麻豆精品| 少妇精品久久久久久久|