• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simultaneous Determination of Inositols and Carbohydrates in Different Citrus Juices by Gas Chromatography with Pre-column Derivatization

    2012-04-06 01:30:18ZHANGYaohaiZHAOQiyangZHANGXuelianWANGLeiJIAOBiningZHOUZhiqin
    食品科學(xué) 2012年10期
    關(guān)鍵詞:肌醇柑桔西南

    ZHANG Yao-hai,ZHAO Qi-yang,ZHANG Xue-lian,WANG Lei,JIAO Bi-ning,,*,ZHOU Zhi-qin

    (1. Institute of Citrus Research, Southwest University, Chongqing 400712, China;2. College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China;3. College of Food Science, Southwest University, Chongqing 400716, China)

    Simultaneous Determination of Inositols and Carbohydrates in Different Citrus Juices by Gas Chromatography with Pre-column Derivatization

    ZHANG Yao-hai1,2,ZHAO Qi-yang1,ZHANG Xue-lian3,WANG Lei1,JIAO Bi-ning1,3,*,ZHOU Zhi-qin2

    (1. Institute of Citrus Research, Southwest University, Chongqing 400712, China;2. College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China;3. College of Food Science, Southwest University, Chongqing 400716, China)

    A gas chromatographic method using pre-column derivatization was described for the quantitative analysis of fructose, glucose, sucrose, chiro-, scyllo- and myo-inositol in different citrus juices. Juices from different fresh citrus (looseskin mandarin, sweet orange, pummelo, lemon and kumquat) were prepared in the laboratory. Inositols and carbohydrates were analyzed by GC as their oximes derivatives and their identities were confirmed by retention of pure standards. The method was evaluated for precision and recovery using methyl-α-D-glucoside as an internal standard. The recoveries of the method evaluated at two spiked levels were in the range of 98.1%-106.9% with RSDs from 0.6%-6.1%. The limits of detection (LODs) were from 0.29×10-3-0.41×10-3μg/L (RSN=3). The results support the suitability of the method. The method is simple, quick and reproducible, and applicable to confirm inositols and carbohydrates in different kinds of citrus juice.

    gas chromatography (GC);inositol;citrus juice;internal standard

    It is well known that fruit juices are an important source of energy in the form of glucose, fructose and sucrose being the most abundant in fruit and fruit products[1]. At present, analytical methods of sugar can be roughly divided into two groups. One is chromatography and the other is enzymology. As dominating method, chromatography developed to determine sugar includes gas chromatography (GC)[1-6], high performance liquid chromatography (HPLC)[7-8], high performance anion-exchange chromatography (HPAEC)[9-10]and capillary electrophoresis (CE)[11].

    The biochemical meaterials in citrus such as inositols, flavonoids, limonoides, carotenoids and phenolic acids not only have effects of reducing blood sugar level, cholesterollowering, anti-cancer, prevention and treatment of circulatory and psychiatric disorders and so on, but also can be used as the markers of screening species initially and adulteration detection of orange juice[12-13]. Untill now, a few researches on myo-inositol in citrus have been reported, while rarely on chiroand scyllo-inositol. Both the simultaneous determining method of inositols and carbohydrates in citrus juice and the contents in various of citrus are all lace of systematic research. As an important kind of carbohydrates, inositols are present in plants as minor components and some of them have positive physiological effects in humans[14-15]. Myo-inositol is a minor component of fruits[1]. Scyllo-inositol, which has been detected in grapes, has been proposed, along with myo-inositol, to control the genuineness of the concentrated rectified grape[16]. Myoinositol content and myo-inositol/fructose ratio have been found to provide information on the quality and genuineness of citrus juice[2]. The structure of three inositols was shown in Fig.1.

    Fig.1 Structure of inositols

    Analytical methods developed to determine inositols include titrimetry[17], spectrofluorimetry[18], thin-layer chromatography (TLC)[19], GC[1-6], HPLC[20-21], HPAEC[9-10]and CE[22]. Those traditional analytical methods, such as titrimetry, spectrofluorimetry and TLC, are not suitable for multi-carbohydrates analysis. Although carbohydrates are detected using HPLC and HPAEC without derivatization, HPLC is required to combine with refractive index detector (RID) with poor selectivity and limited sensitivity and also HPAEC is in need of special detector and expensive sugar column. CE is a powerful separation technique that can provide high speed and low cost with poor reproducibility, compared with other chromatographic methods. Since inositol is present in citrus juice in very low concentrations compared to the major carbohydrates, GC technique seemed to be more suitable for its accurate determination. Most of GC separation is carried out using FID (flame ionization detector) due to its response to most volatile organic compound. As inositols and carbohydrates have poor volatility, derivatizing becomes a necessary procedure to determine them.

    In the present paper, we have reported a quantitative GC method for the occurrence and contents of inositols in fresh juices from different citrus (loose-skin mandarin, sweet orange, pummelo, lemon and kumquat) in an attempt to establish if these parameters can be used as indicators of the quality and genuineness of citrus juice. Major carbohydrates have also been determined.

    1 Materials and Methods

    1.1 Meterials, reagents and apparatus

    Methanol, hexamethyldisilazane (HMDS) and trifluoroacetic acid (TFA) were analytical reagent (Sinopharm Chemcial Reagent Co. Ltd., Shanghai, China). D-fructose (CAS No. 57-48-7), glucose (CAS No. 50-99-7) and sucrose (CAS No. 57-50-1) were of chromatographic grade. Methylα-D-glucoside, Myo-inositol (CAS No. 87-89-8, ≥99.0%) were obtained from Fluka Company (CAS No. 97-30-3, ≥99.0%, sum of enantimers, Lithuania). D-chiro-inositol (CAS No. 643-12-9), L-chiro-inositol (CAS No. 551-72-4) and scylloinositol (CAS No. 488-59-5) were purchased from Tokyo Chemical Industry Co. Ltd. (EP, Japan).

    All other reagents were of analytical grade and deionized water purified by a Milli-Q system (Millipore, Bedford, MA, USA) was used throughout.

    The GC analyses were performed on Agilent gas chromatograhy (model 6890, USA) equipped with FID. Three different capillary columns, including HP-1701 (30 m×0.32 mm, 0.25 μm film), HP-1(30 m×0.25 mm, 0.25 μm film) and HP-5MS (30m×0.32mm, 0.25 μm film) were used for the optimization of the experimental conditions.

    1.2 Methods

    1.2.1 Samples and sampling

    Citrus samples were supplied by National Citrus Germplasm Repository officially established in Citrus Research Institute of Chinese Academy of Agricultural Sciences. Citrus juices were crushed after removing skins (and seeds when necessary) and centrifuged at 12000 r/min during 10 min at 5 ℃. 1.00 mL supernatant and 1.00 mL internalstandard solution were mixed in a 25.00 mL volumetric flask and diluted to the mark with methanol/water mixture (70∶30, V/V). Out of the above solution, one portion of 0.40 mL was transferred to a 10 mL colorimetric tube and stored in an oven at 60 ℃ for at least 12 h.

    1.2.2 Derivatization procedure

    To the above colorimetric tube containing sample and internal standard, 0.75 mL of 1.25% hydroxylaminechloride in pyridine was added. The mixture was kept for 20 min at 50 ℃. After oximation reaction, 0.35 mL hexamethyldisilazane (HMDS) and 0.035 mL trifluoroacetic acid (TFA) were carefully added to the tube parked in ice-bath. Then samples were persilylated at 60 ℃ for 25 min and centrifuged at 12000 r/min for 5 min.

    1.2.3 Chromatographic conditions

    Gas chromatographic separation was carried out using a HP-1701 fused silica capillary column. All injections were split, the ratio was 9∶1 and the volume was 1 μL. The flow rates of carrier gas (N2, ≥99.999%), fuel gas (H2, ≥99.999%) and combustion-supporting gas (air, ≥99.999%) were 0.8 mL/ min, 40.0 mL/min and 450.0 mL/min respectively. The injector temperature was 250 ℃. FID detector temperature was 300 ℃. The column temperature program was from 200 ℃ (200℃ for 12 min) to 280 ℃ at 25 ℃/min, then 250 ℃ for 5 min.

    2 Results and Analyses

    2.1 Optimization of derivation reaction

    In order to be detected using GC, those compounds with hydroxyl group, such as carbohydrates, are required of derivation treatment. It has been well documented that HMDS, a widely used silylation reagent produced several by-products when it was directly applied to the derivation of reducing sugars[23]. Multiple peaks found for reducing sugars, which corresponded to the various isomeric forms resulted in severe interference. Once reducing sugars react with methylhydroxylamine hydrochloride, the number of isomeric forms can dramatically decrease when using the silylation procedure. So, ketonic group of reducing sugar is in need of protection before silylation reaction and oximation reaction is an effective approach.

    2.1.1 Optimization of oximation reaction

    It could be seen easily from Fig.2 that neither oximation reaction temperature nor time had remarkable effect on the derivation of three inositols, which resulted from no carbonyl group of their molecular structure. High temperature could accelerate the derivatization reaction of sucrose as well as the hydrolysis of the reagent[24]. Therefore, the experiment aimed at the best temperature to achieve the best derivatization yield. Fig.2(A) indicates that the effect of different temperature on the peak areas. The optimum temperature (50 ℃) was employed.

    Usually, the derivatizing is expected to be performed in a short time with satisfying efficiency. In this experiment, the investigation of suitable reaction time was carefully carried out at 50 ℃. As shown in Fig.2 (B), it was demonstrated that the reaction was completed in 20 min. To get reproducible results, the oximation reaction at 50 ℃ for 20 min was performed.

    2.1.2 Optimization of silylation reaction

    Fig.2 Effect of oximation temperature (oximation time for 20 min) (A) and oximation time (oximation temperature for 50 ℃) (B) on response ratio

    Fig.3 Effect of silylation temperature (silylation time for 25min) (A) and silylation time (silylation temperature for 60 ℃) (B) on response ratio

    As shown in Fig.3(A), at first, the peak areas of the derivatives of chiro-inositol, scyllo-inositol and sucrose increased gradually with the increasing of silylation reaction temperature. At 40 ℃, the maximal were almost obtained. The peak areas of their derivatives dropped down markedly with the increase of temperature. In the latter 20 min, the peak areas remained constant. Moreover, the peak areas of other three derivatives could be stable for about 30 min when it reached maximal. Therefore, the silylation reaction was performed at 60 ℃ for 25 min.

    Additionally, the influence of how to add silylation reagent on the separation of carbohydrates was studied. When HMDS and TFA were entered to the reaction system at the room temperature, multiple peaks was found with poor separation in Fig.4(A) and Fig.5(A). While at the ice bath, the contrary result was shown in Fig.4(B) and Fig.5(B).

    Fig.4 Chromatograms of fructose standard under room temperature (A) and ice-bath (B) conditions

    Fig.5 Chromatograms of glucose standard underroom temperature (A) and ice-bath (B) conditions

    2.2 Typical chromatogram

    Fig.6 Chromatographic profiles of TMS inositols and sugar oximes of mixed standard resolution

    A typical gas chromatogram obtained after use of the optimum conditions for derivatization and separation was shown in Fig.6. The derivatives of inositols and carbohydrates were separated to baseline within 20 min. Although peaks of 2 and 3 from fructose partially overlapped, they were integrated without difficulty. Besides, the effect of different capillary columns on the separation was also taken into consideration. Three types of capillary columns, including HP-1701 (30 m× 0.32 mm, 0.25 μm film), HP-1 (30m×0.25 mm, 0.25 μm film) and HP-5MS (30 m×0.32 mm, 0.25 μm film) were used in the experment. It was observed that chiro-inositol and fruc-tose were not separated to baseline and two peaks of scylloinositol and glucose were completely overlapped either in HP-1 or HP-5MS capillary column. As a result, HP-1701 capillary column was a perfect choice in the separation.

    2.3 Accuracy and precision of analytical methods

    In order to quantify the recovery, a known amount of each compoud was added to half-diluted freshly squeezed citrus juices. Table 1 gives the analysis results of satsuma mandarin samples. The satisfactory recoveries were found to be 98.1%-106.9% with RSDs ranged from 0.6%-6.1%. The results support the suitability of the method.

    2.4 Sample analysis

    Table 1 Range studied for retention time, limits of quantification (LOQs), relative standard deviation (RSD) and mean recovery of inositols and carbohydrates

    The proposed method has been applied to the analysis of citrus samples including loose-skin mandarin, sweet orange, pummelo, lemon and kumquat. Tangerines, mandarins and hybrids were part of loose-skin mandarins. Three major carbohydrates fructose, glucose and sucrose were usually found in a ratio of 1∶1∶2 (m/m). This value was similar to the previous report[6]. Moreover, three inositols have also been found in different fresh citrus juice at low concentrations (Table 2). Chiro-inositol was present in all citrus samples except a portion of pummelos. Scyllo-inositol was found in all citrus juices except a few mandarins, whereas myo-inositol was observed in all analyzed samples.

    Myo-inositol was present in variable amounts, from 0.14 g/L in lemon to 3.15 g/L in pummelo. Myo-inositol content in citrus juice except pummelo was within the ranges 0.12-0.16 g/L and 0.13-0.17 g/L reported by Villamiel et al.[2]and Belitz et al.[25], respectively. Myo-inositol in pummelo (0.95-3.15 g/L) was higher than the maximum of above report. Scyllo-inositol ranged from traces in mandarin to 0.43 g/L in hybrid. Chiroinositol varied from traces in pummelo to 1.75 g/L of hybrid.

    Fig.7 Scatterplot of CI-Is (A), SI-Is (B), MI-Is (C) in citrus juice

    Table 2 Content ranges of fructose, glucose, sucrose, chiro-, scyllo- and myo-inositol in fresh juices from different citrus

    Fig.7(A), (B) and (C) show the scatterplots of CI-Is, SI-Is and MI-Is in different citrus juices, respectively. Compared to the scatterplots of MI-Is and CI-Is, the above citrus juices except lemon and kumquat were not distinguished effectively in the scatterplot of SI-Is. On the other hand, it was obvious that different citrus juices were distinguished either in the scatterplots of MI-Is or CI-Is and even the scatterplots of loose-skin mandarin and sweet citrus were seldom or never overlapped. As a result, these parameters such as the scatterplots of MI-Is and CI-Is be used as indicators of the quality and genuineness of citrus juice.

    3 Conclusions

    From the results above we conclude that our method allows a suitable quantitative determination of inositols and carbohydrates in different citrus juice (loose-skin mandarin, sweet orange, pummelo, lemon and kumquat). Compared with the existing approach, the above is more effective, simple and reproducible. Moreover, the MI-Is and CI-Is scatterplots could afford additional information on the quality and genuineness of commercial citrus juice.

    [1]SANZ M L, VILLAMIEL M, MARTINEZ-CASTRO I. Inositols and carbohydrates in different fresh fruit juices[J]. Food Chemistry, 2004, 87 (3)∶ 325-328.

    [2]VILLAMIEL M, MARTINEZ-CASTRO I, OLANO A, et al. Quantitative determination of carbohydrates in citrus juice by gas chromatography [J]. Zeitschrift fur Lebensmittel Untersuchung und Forschung A, 1998, 206(1)∶ 48-51.

    [3]KATONA Z F, SASS P, MOLNAR-PERL I. Simultaneous determination of sugars, sugar alcohols, acids and amino acids in apricots by gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 1999, 847(1/2)∶ 91-102.

    [4]MACIAS-RODRIGUEZ L, QUERO E, LOPEZ M G. Carbohydrate differences in strawberry crowns and fruit (Fragaria×ananassa) during plant development[J]. Journal of Agriculture Food Chemistry, 2002, 50 (11)∶ 3317-3321.

    [5]FUZFAI Z, KATONA Z F, KOVACS E, et al. Simultaneous identification and quantification of the sugar, sugar alcohol, and carboxylic acid contents of sour cherry, apple, and ber fruits, as their trimethylsilyl derivatives, by gas chromatography-mass spectrometry[J]. Journal of Agriculture Food Chemistry, 2004, 52(25)∶ 7444-7452.

    [6]FUZFAI Z, MOLNAR-PERL I. Gas chromatographic-mass spectrometric fragmentation study of flavonoids as their trimethylsilyl derivatives∶Analysis of flavonoids, sugars, carboxylic and amino acids in model systems and in citrus fruits[J]. Journal of Chromatography A, 2007, 1149(1)∶ 88-101.

    [7]MANGAS J J, MORENO J, PICINELLI A, et al. Characterization of cider apple fruits according to their degree of ripening. A chemometric approach [J]. Journal of Agriculture Food Chemistry, 1998, 46(10)∶ 4174-4178.

    [8]MASUDA R, KANEKO K, YAMASHITA I. Sugar and cyclitol determination in vegetables by HPLC using postcolumn fluorescent derivatization[J]. Journal of Food Science, 1996, 61(6)∶ 1186-1190.

    [9]GUIGNARD C, JOUVE L, BOGEAT-TRIBOULOT M B, et al. Analysis of carbohydrates in plants by high-performance anion-exchange chromatography coupled with electrospray mass spectrometry[J]. Journal of Chromatography A, 2005, 1085(1)∶ 137-142.

    [10]BRUGGINK C, MAURER R, HERRMANN H, et al. Analysis of carbohydrates by anion exchange chromatography and mass spectrometry [J]. Journal of Chromatography A, 2005, 1085(1)∶ 104-109.

    [11]SOGA T, SERWE M. Determination of carbohydrates in food samples by capillary electrophoresis with indirect UV detection[J]. Food Chemistry, 2000, 69(3)∶ 339-344.

    [12]PUPIN A M, DENNIS M J, TOLEDO M C F. Polymethoxylated flavones in brazilian orange juice[J]. Food Chemistry, 1998, 63(4)∶ 513-518.

    [13]PETERSON J J, DWYER J T, BEECHER G R, et al. Flavanones in oranges, tangerines (mandarins), tangors, and tangelos∶ a compilation and review of the data from the analytical literature[J]. Journal of Food Composition and Analysis, 2006, 19(Suppl 1)∶ 66-73.

    [14]McLAURIN J, GOLOMB R, JUREWICZ A, et al. Inositol stereoisomers stabilize an oligomeric aggregate of Alzehimer amyloid β-peptide and inhibit a β-induced toxicity[J]. Journal of Biological Chemistry, 2000, 275(24)∶ 18495-18502.

    [15]NESTLER J E, JAKUBOWICZ D J, REAMER P, et al. Ovulatory and metabolic effects of D-chiro-inositol in the polycystic ovary syndrome [J]. The New England Journal of Medicine, 1999, 340(17)∶ 1314-1320.

    [16]MONETTI A, VERSINI G, DALPIAZ G, et al. Sugar adulterations control in concentrated rectified grape musts by finite mixture distribution analysis of the Myo- and scyllo-inositol content and the D/H methyl ratio of fermentative ethanol[J]. Journal of Agriculture Food Chemistry, 1996, 44(8)∶ 2194-2201.

    [17]ZHANG Yanqiu, LI Zhiwei, ZHANG Baotong, et al. The property of inositol and its application in aquaculture[J]. Feed Industry, 2007, 28 (14)∶ 28-30.

    [18]WANG Xiuli, LI Yeyun, ZHOU Hui. Quantitative determination of inositol in herba patriniae[J]. Journal of Anhui Traditional Chinese Medical College, 2002, 21(1)∶ 52-54.

    [19]LIU Renjie, PIAO Chunhong, YU Hansong, et al. TLC determination method research of D-chiro-inositol in buckwheat seed[J]. Food Science and Technology, 2006, 8∶ 263-265.

    [20]DAI Chuanbo, LI Jianqiao, LI Jianxiu. Determination of inositol by high performance liquid chromatography coupled with refraction detector [J]. Journal of Chemistry Industry and Engineering, 2006, 27(4)∶ 57-58.

    [21]YANG Nan, REN G uixing. Determination of D-chiro-Inositol in tartary buckwheat using high performance liquid chromatography with an evaporative light scattering detector[J]. Journal of Agriculture Food Chemistry, 2008, 56(3)∶ 757-760.

    [22]KONG Lingyao, WANG Yun, CAO Yuhua. Determination of Myoinositol and D-chiro-inositol in black rice bran by capillary electrophoresis with electrochemical detection[J]. Journal of Food Composition and Analysis, 2008, 21(6)∶ 501-504.

    [23]BARTOLOZZI F, BERTAZZA G, DANIELE B, et al. Simultaneous determination of soluble sugars and organic acids as their trimethylsilyl derivatives in apricot fruits by gas-liquid chromatography[J]. Journal of Chromatography A, 1997, 758(1)∶ 99-107.

    [24]SHEPHERD T, DOBSON G, VERRALL S R, et al. Potato metabolomics by GC-MS∶ what are the limiting factors[J]. Metabolomics, 2007, 3(4)∶ 475-482.

    [25]BELITZ H D, GROSCH W. Quimica de los Alimentos∶ food chemistry [M]. Acribia∶ Zaragoza, 1997.

    柱前衍生-氣相色譜法同時(shí)測定不同柑橘汁中的糖和肌醇

    張耀海1,2,趙其陽1,張雪蓮3,王 磊1,焦必寧1,3,*,周志欽2

    (1.西南大學(xué)柑桔研究所,重慶 400712;2.西南大學(xué)園藝園林學(xué)院,重慶 400716;3.西南大學(xué)食品科學(xué)學(xué)院,重慶 400716)

    為建立柱前衍生-氣相色譜技術(shù)同時(shí)測定不同柑橘汁(寬皮柑橘、甜橙、柚子、檸檬和金柑)中3種肌醇(肌肌醇、鯊肌醇、手性肌醇)和3種可溶性糖(果糖、葡萄糖、蔗糖)的方法,以內(nèi)標(biāo)物(甲基-α-D-葡萄糖苷)定量,標(biāo)準(zhǔn)物質(zhì)的保留時(shí)間定性。結(jié)果表明:在兩個(gè)添加水平下,6種成分的平均回收率為98.1%~106.9%,相對標(biāo)準(zhǔn)偏差為0.6%~6.1%,檢測限在0.29×10-3~0.41×10-3μg/L(RSN=3)。本方法簡便快速,結(jié)果準(zhǔn)確可靠。

    氣相色譜;肌醇;柑橘汁;內(nèi)標(biāo)物

    TS255.1

    A

    1002-6630(2012)10-0173-06

    2011-07-07

    國家現(xiàn)代農(nóng)業(yè)(柑桔)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-27);重慶市自然科學(xué)基金項(xiàng)目(CSTC 2009BB1136);

    張耀海(1977—),男,助理研究員,博士,研究方向?yàn)檗r(nóng)產(chǎn)品質(zhì)量安全檢測。E-mail:zyh26824@sina.com

    第四十七批中國博士后科學(xué)基金面上項(xiàng)目(20100470808);中央高?;究蒲袠I(yè)務(wù)費(fèi)項(xiàng)目(XDJK2012C059)

    *通信作者:焦必寧(1964—),男,研究員,研究方向?yàn)檗r(nóng)產(chǎn)品質(zhì)量安全檢測。E-mail:bljiao@tom.com

    猜你喜歡
    肌醇柑桔西南
    低蛋白質(zhì)日糧添加植酸酶和肌醇對蛋雞生產(chǎn)性能、蛋品質(zhì)及消化道發(fā)育的影響
    中國飼料(2022年6期)2022-04-22 05:14:30
    “潮”就這么說
    Country Driving
    柑桔無公害栽培技術(shù)研討
    柑桔樹青苔病的發(fā)生與防治
    柑桔園冬季管理技術(shù)
    柑桔砂皮病研究進(jìn)展
    一路向西南——然烏湖、米堆冰川
    啟蒙(3-7歲)(2017年4期)2017-06-15 20:28:55
    磷脂酰肌醇蛋白聚糖3在肝細(xì)胞癌組織中的表達(dá)及臨床意義
    西南絲綢之路及其對西南經(jīng)濟(jì)的影響
    久久久精品94久久精品| 亚洲激情五月婷婷啪啪| 国产精品.久久久| 久久国产精品大桥未久av| 叶爱在线成人免费视频播放| 亚洲,欧美精品.| 欧美激情 高清一区二区三区| 老熟女久久久| 91精品伊人久久大香线蕉| 亚洲精品第二区| 国产视频一区二区在线看| 老司机靠b影院| 999精品在线视频| 97精品久久久久久久久久精品| 亚洲av片天天在线观看| 亚洲专区国产一区二区| 亚洲成人免费电影在线观看 | 热99国产精品久久久久久7| 一级毛片 在线播放| 99精品久久久久人妻精品| 18禁黄网站禁片午夜丰满| 成人国产av品久久久| 大话2 男鬼变身卡| 国产一区二区三区av在线| 别揉我奶头~嗯~啊~动态视频 | 一边亲一边摸免费视频| 欧美国产精品一级二级三级| 国产一区二区 视频在线| 色网站视频免费| 天天躁狠狠躁夜夜躁狠狠躁| 日本91视频免费播放| 精品福利观看| 亚洲国产欧美日韩在线播放| 嫩草影视91久久| 亚洲欧美中文字幕日韩二区| av片东京热男人的天堂| 亚洲黑人精品在线| 久久久亚洲精品成人影院| 男女边摸边吃奶| 99国产综合亚洲精品| 亚洲av日韩在线播放| 国产精品成人在线| 亚洲专区中文字幕在线| 水蜜桃什么品种好| 午夜视频精品福利| 亚洲伊人色综图| 一本久久精品| 一本—道久久a久久精品蜜桃钙片| av福利片在线| 一本色道久久久久久精品综合| 制服人妻中文乱码| 日本wwww免费看| 久9热在线精品视频| 国产精品成人在线| 老司机午夜十八禁免费视频| 国产一区亚洲一区在线观看| 欧美大码av| 日本猛色少妇xxxxx猛交久久| 亚洲av成人精品一二三区| 久久精品国产亚洲av高清一级| 亚洲国产欧美一区二区综合| 一本一本久久a久久精品综合妖精| 精品国产乱码久久久久久男人| 久久久精品免费免费高清| 亚洲av成人不卡在线观看播放网 | 亚洲中文日韩欧美视频| 好男人视频免费观看在线| 日本av手机在线免费观看| 咕卡用的链子| 亚洲欧美清纯卡通| 日韩 亚洲 欧美在线| 国产无遮挡羞羞视频在线观看| 亚洲五月色婷婷综合| 久久人人爽av亚洲精品天堂| 国产亚洲午夜精品一区二区久久| 9191精品国产免费久久| 午夜久久久在线观看| 欧美另类一区| 丝袜人妻中文字幕| 亚洲国产精品一区二区三区在线| 中国美女看黄片| 欧美日韩综合久久久久久| 亚洲九九香蕉| 精品国产一区二区三区久久久樱花| 永久免费av网站大全| 最黄视频免费看| 天天躁夜夜躁狠狠久久av| 日本色播在线视频| 国产在线免费精品| 午夜福利一区二区在线看| 人妻一区二区av| 欧美精品一区二区大全| www.av在线官网国产| 久久精品aⅴ一区二区三区四区| 在线观看www视频免费| 亚洲专区中文字幕在线| 国产精品久久久人人做人人爽| 免费在线观看完整版高清| 你懂的网址亚洲精品在线观看| 中文字幕人妻丝袜制服| 深夜精品福利| h视频一区二区三区| 久久av网站| 久久国产精品影院| 精品人妻一区二区三区麻豆| 久久久久久久大尺度免费视频| 午夜精品国产一区二区电影| 人人妻,人人澡人人爽秒播 | 国产一区二区三区av在线| 久久精品成人免费网站| 久久av网站| 国产精品.久久久| 国产男女超爽视频在线观看| 涩涩av久久男人的天堂| 国产亚洲一区二区精品| 黄色a级毛片大全视频| 日本欧美国产在线视频| 欧美国产精品va在线观看不卡| 男女国产视频网站| 欧美精品人与动牲交sv欧美| 天天操日日干夜夜撸| 亚洲欧洲国产日韩| 亚洲天堂av无毛| 大话2 男鬼变身卡| 最近最新中文字幕大全免费视频 | 色婷婷久久久亚洲欧美| 亚洲精品成人av观看孕妇| 一级毛片我不卡| 大片免费播放器 马上看| 欧美日韩视频高清一区二区三区二| 国产熟女午夜一区二区三区| 一级片'在线观看视频| 国产1区2区3区精品| 午夜两性在线视频| 少妇粗大呻吟视频| 女人被躁到高潮嗷嗷叫费观| videos熟女内射| 国产淫语在线视频| 91成人精品电影| 大香蕉久久网| 亚洲一区二区三区欧美精品| e午夜精品久久久久久久| 国产视频首页在线观看| 后天国语完整版免费观看| 亚洲欧洲国产日韩| 中国国产av一级| 国产一区亚洲一区在线观看| 别揉我奶头~嗯~啊~动态视频 | 熟女少妇亚洲综合色aaa.| 高清av免费在线| 免费不卡黄色视频| 国产成人91sexporn| 黄色怎么调成土黄色| 久久久久国产精品人妻一区二区| 啦啦啦啦在线视频资源| 国产精品香港三级国产av潘金莲 | 超碰成人久久| 欧美日韩亚洲高清精品| 蜜桃在线观看..| 国产欧美日韩一区二区三 | 亚洲第一青青草原| 九草在线视频观看| 99国产精品免费福利视频| 香蕉国产在线看| 久久久精品国产亚洲av高清涩受| av国产精品久久久久影院| 亚洲五月色婷婷综合| 免费一级毛片在线播放高清视频 | 亚洲国产看品久久| 少妇粗大呻吟视频| 久久久久网色| 好男人电影高清在线观看| 久久国产精品大桥未久av| 日韩大片免费观看网站| 亚洲av片天天在线观看| 精品人妻1区二区| 国产有黄有色有爽视频| 亚洲欧美成人综合另类久久久| 在线观看免费高清a一片| 欧美日韩av久久| 在线观看人妻少妇| 性高湖久久久久久久久免费观看| 嫁个100分男人电影在线观看 | 亚洲专区中文字幕在线| 99国产精品免费福利视频| 国产成人影院久久av| 午夜久久久在线观看| 欧美 亚洲 国产 日韩一| av线在线观看网站| 久久国产精品大桥未久av| 女警被强在线播放| 亚洲av片天天在线观看| 亚洲中文字幕日韩| 一本—道久久a久久精品蜜桃钙片| 亚洲色图综合在线观看| 亚洲欧美激情在线| 久久毛片免费看一区二区三区| 纵有疾风起免费观看全集完整版| 免费观看a级毛片全部| 国产高清国产精品国产三级| 免费在线观看视频国产中文字幕亚洲 | videosex国产| 亚洲天堂av无毛| 操美女的视频在线观看| 国产免费视频播放在线视频| 亚洲精品成人av观看孕妇| 午夜影院在线不卡| 男女床上黄色一级片免费看| 人人妻人人澡人人爽人人夜夜| 亚洲美女黄色视频免费看| 久久久精品94久久精品| 亚洲精品一卡2卡三卡4卡5卡 | 一边摸一边抽搐一进一出视频| 精品一品国产午夜福利视频| 欧美在线一区亚洲| 亚洲精品av麻豆狂野| 亚洲国产欧美日韩在线播放| 国产精品九九99| 国产一区亚洲一区在线观看| 好男人电影高清在线观看| 中文字幕人妻丝袜制服| 免费一级毛片在线播放高清视频 | 亚洲 欧美一区二区三区| 亚洲第一av免费看| 观看av在线不卡| 老司机影院成人| 99re6热这里在线精品视频| 七月丁香在线播放| 亚洲国产欧美日韩在线播放| 免费看十八禁软件| 高潮久久久久久久久久久不卡| 91成人精品电影| 国产成人影院久久av| 99九九在线精品视频| 91麻豆精品激情在线观看国产 | 欧美乱码精品一区二区三区| 国产在线视频一区二区| 男女高潮啪啪啪动态图| 日本91视频免费播放| 亚洲美女黄色视频免费看| 日本欧美国产在线视频| 免费高清在线观看日韩| 亚洲欧美日韩高清在线视频 | 久久精品国产a三级三级三级| 久久免费观看电影| 国产在视频线精品| 看免费成人av毛片| 久久ye,这里只有精品| 乱人伦中国视频| 国产黄色免费在线视频| 亚洲一区中文字幕在线| 国产精品av久久久久免费| 亚洲国产精品一区三区| 日本欧美视频一区| 亚洲伊人久久精品综合| 亚洲中文字幕日韩| 久久免费观看电影| www日本在线高清视频| 久久久久精品人妻al黑| 久久ye,这里只有精品| videos熟女内射| 日本av免费视频播放| 亚洲一区中文字幕在线| 欧美日韩综合久久久久久| 亚洲情色 制服丝袜| 亚洲成人免费av在线播放| 久久精品亚洲av国产电影网| 老司机在亚洲福利影院| 免费观看人在逋| 日本av手机在线免费观看| 精品视频人人做人人爽| 成年女人毛片免费观看观看9 | 免费久久久久久久精品成人欧美视频| 久久精品久久久久久久性| 狠狠婷婷综合久久久久久88av| 色视频在线一区二区三区| 成年动漫av网址| 亚洲国产av新网站| 欧美日韩亚洲高清精品| 欧美成狂野欧美在线观看| 女性被躁到高潮视频| 欧美激情极品国产一区二区三区| 国产成人av激情在线播放| 男女无遮挡免费网站观看| 亚洲欧洲国产日韩| 中文字幕亚洲精品专区| 日韩av不卡免费在线播放| 欧美日韩国产mv在线观看视频| 高清视频免费观看一区二区| 大码成人一级视频| 久久久国产欧美日韩av| 日本一区二区免费在线视频| 丝袜在线中文字幕| 久久免费观看电影| 丝袜脚勾引网站| 99国产综合亚洲精品| 一级毛片女人18水好多 | 国精品久久久久久国模美| 国产又色又爽无遮挡免| 国产精品 欧美亚洲| 国产亚洲av片在线观看秒播厂| 99香蕉大伊视频| 亚洲五月色婷婷综合| 亚洲七黄色美女视频| 真人做人爱边吃奶动态| 日韩,欧美,国产一区二区三区| 欧美国产精品一级二级三级| 精品视频人人做人人爽| av网站在线播放免费| 精品人妻1区二区| 日本午夜av视频| 亚洲精品第二区| 满18在线观看网站| 欧美精品啪啪一区二区三区 | 大型av网站在线播放| 大片免费播放器 马上看| 一二三四社区在线视频社区8| 国产精品 欧美亚洲| 午夜影院在线不卡| 日韩中文字幕视频在线看片| 日本五十路高清| 中文字幕人妻熟女乱码| 亚洲国产成人一精品久久久| 日本av免费视频播放| 黄色视频在线播放观看不卡| 最近最新中文字幕大全免费视频 | 色精品久久人妻99蜜桃| 欧美精品亚洲一区二区| 母亲3免费完整高清在线观看| 婷婷色综合www| 成在线人永久免费视频| 亚洲国产欧美网| www.av在线官网国产| 我的亚洲天堂| 亚洲精品美女久久久久99蜜臀 | av有码第一页| 国产1区2区3区精品| 国产一区二区三区综合在线观看| 久久99热这里只频精品6学生| 国产不卡av网站在线观看| 亚洲精品国产一区二区精华液| 免费少妇av软件| 一本色道久久久久久精品综合| 精品人妻1区二区| 亚洲av成人精品一二三区| 欧美日韩亚洲高清精品| 99热国产这里只有精品6| 欧美日韩亚洲高清精品| 国产国语露脸激情在线看| 国产成人欧美| 免费在线观看黄色视频的| 黄色 视频免费看| 欧美亚洲 丝袜 人妻 在线| 亚洲精品一卡2卡三卡4卡5卡 | 婷婷色综合大香蕉| 在线亚洲精品国产二区图片欧美| 国产欧美日韩综合在线一区二区| 亚洲av成人不卡在线观看播放网 | 国产免费一区二区三区四区乱码| 天天添夜夜摸| 中文字幕精品免费在线观看视频| 肉色欧美久久久久久久蜜桃| 在现免费观看毛片| 男的添女的下面高潮视频| 一边摸一边抽搐一进一出视频| 亚洲av日韩在线播放| 99国产精品一区二区三区| 免费观看人在逋| 夜夜骑夜夜射夜夜干| 国产av精品麻豆| 咕卡用的链子| 51午夜福利影视在线观看| 欧美性长视频在线观看| 纵有疾风起免费观看全集完整版| 一级a爱视频在线免费观看| 国产精品久久久久久人妻精品电影 | 精品国产一区二区久久| 亚洲伊人色综图| 老司机午夜十八禁免费视频| 亚洲国产毛片av蜜桃av| 又粗又硬又长又爽又黄的视频| 日韩视频在线欧美| 免费av中文字幕在线| 久久久精品免费免费高清| 丰满人妻熟妇乱又伦精品不卡| 国产午夜精品一二区理论片| 在线观看国产h片| 91麻豆精品激情在线观看国产 | 久久久精品区二区三区| 69精品国产乱码久久久| 自线自在国产av| 日韩制服骚丝袜av| 一个人免费看片子| 免费久久久久久久精品成人欧美视频| 免费看不卡的av| 欧美精品av麻豆av| a级片在线免费高清观看视频| 久久午夜综合久久蜜桃| 一本一本久久a久久精品综合妖精| 黄片播放在线免费| 亚洲精品美女久久久久99蜜臀 | 黄色视频不卡| 亚洲欧洲精品一区二区精品久久久| avwww免费| 精品久久蜜臀av无| 精品一品国产午夜福利视频| 精品久久久久久久毛片微露脸 | 最近最新中文字幕大全免费视频 | 欧美在线一区亚洲| www.熟女人妻精品国产| 黄网站色视频无遮挡免费观看| 亚洲天堂av无毛| 高清不卡的av网站| 欧美97在线视频| 亚洲伊人久久精品综合| 日韩制服骚丝袜av| www日本在线高清视频| 日韩欧美一区视频在线观看| 亚洲激情五月婷婷啪啪| 两个人看的免费小视频| 一区二区日韩欧美中文字幕| 国产成人精品久久久久久| 久久青草综合色| 丰满饥渴人妻一区二区三| 亚洲欧美一区二区三区黑人| 操美女的视频在线观看| 丝袜在线中文字幕| 免费在线观看完整版高清| 国产男女内射视频| 久久久久久免费高清国产稀缺| 大型av网站在线播放| 欧美日韩视频高清一区二区三区二| 欧美变态另类bdsm刘玥| 少妇人妻 视频| 999精品在线视频| 成人亚洲欧美一区二区av| 91九色精品人成在线观看| www.av在线官网国产| 欧美日韩国产mv在线观看视频| 日本a在线网址| 亚洲国产欧美网| 黄频高清免费视频| 欧美乱码精品一区二区三区| 久久久久久久久久久久大奶| 国产精品国产三级国产专区5o| 黄色视频在线播放观看不卡| 久久精品人人爽人人爽视色| 国产99久久九九免费精品| 夫妻性生交免费视频一级片| 亚洲,一卡二卡三卡| 午夜福利在线免费观看网站| 久久精品亚洲熟妇少妇任你| 亚洲九九香蕉| 少妇 在线观看| 十八禁人妻一区二区| 秋霞在线观看毛片| 在线观看免费午夜福利视频| 国产成人欧美| 日本午夜av视频| 成人影院久久| 精品人妻熟女毛片av久久网站| 人人澡人人妻人| 日韩精品免费视频一区二区三区| 欧美日韩国产mv在线观看视频| 日韩熟女老妇一区二区性免费视频| 国产av国产精品国产| 老司机影院毛片| 久久国产亚洲av麻豆专区| 欧美日韩综合久久久久久| 亚洲色图综合在线观看| 性色av乱码一区二区三区2| 国产精品免费视频内射| 久久久亚洲精品成人影院| 999精品在线视频| 亚洲国产av新网站| 久久精品国产a三级三级三级| 成人三级做爰电影| 久久国产精品男人的天堂亚洲| 国产精品免费大片| www.999成人在线观看| 伦理电影免费视频| 美女高潮到喷水免费观看| 国产在视频线精品| 亚洲七黄色美女视频| 亚洲熟女毛片儿| 日本色播在线视频| 国产一级毛片在线| 狂野欧美激情性xxxx| 久久久欧美国产精品| 免费av中文字幕在线| 成年人免费黄色播放视频| 可以免费在线观看a视频的电影网站| www.自偷自拍.com| 一边亲一边摸免费视频| 午夜影院在线不卡| 青青草视频在线视频观看| 色94色欧美一区二区| 黄色毛片三级朝国网站| cao死你这个sao货| 晚上一个人看的免费电影| 亚洲人成电影免费在线| 日韩视频在线欧美| 天堂8中文在线网| 一本一本久久a久久精品综合妖精| 精品卡一卡二卡四卡免费| www.999成人在线观看| 亚洲精品久久午夜乱码| 黄频高清免费视频| 亚洲欧美激情在线| 免费观看a级毛片全部| 午夜福利视频在线观看免费| 日本vs欧美在线观看视频| 考比视频在线观看| 99国产精品99久久久久| 国产精品av久久久久免费| 亚洲五月色婷婷综合| 视频区图区小说| 亚洲av成人不卡在线观看播放网 | 国产成人免费观看mmmm| 亚洲国产精品国产精品| 亚洲专区国产一区二区| 亚洲av国产av综合av卡| 国产精品久久久久久精品电影小说| 一级片免费观看大全| 9191精品国产免费久久| 最近最新中文字幕大全免费视频 | 国产精品.久久久| 亚洲精品日本国产第一区| 成人手机av| 每晚都被弄得嗷嗷叫到高潮| 一级片'在线观看视频| 在线观看一区二区三区激情| 日本av手机在线免费观看| 亚洲欧美一区二区三区黑人| a 毛片基地| 18禁黄网站禁片午夜丰满| 日韩视频在线欧美| 国产精品三级大全| 成人亚洲精品一区在线观看| 久久精品国产综合久久久| 又大又爽又粗| 久久性视频一级片| 午夜视频精品福利| 69精品国产乱码久久久| 成年动漫av网址| 日日摸夜夜添夜夜爱| 90打野战视频偷拍视频| 国产精品免费视频内射| 国产一区二区在线观看av| 精品人妻一区二区三区麻豆| 国产一区二区 视频在线| 欧美黑人欧美精品刺激| 免费日韩欧美在线观看| 最黄视频免费看| 妹子高潮喷水视频| 日韩中文字幕视频在线看片| 捣出白浆h1v1| 亚洲欧美一区二区三区久久| 在线观看免费日韩欧美大片| 男女午夜视频在线观看| 91麻豆av在线| av有码第一页| 91精品伊人久久大香线蕉| 1024视频免费在线观看| 97在线人人人人妻| 久久久久久亚洲精品国产蜜桃av| 欧美人与善性xxx| 老司机影院成人| 一级,二级,三级黄色视频| 亚洲少妇的诱惑av| 青春草亚洲视频在线观看| 大香蕉久久网| 亚洲精品第二区| 成人国语在线视频| 在线观看免费视频网站a站| 亚洲精品av麻豆狂野| 99国产精品一区二区蜜桃av | 欧美xxⅹ黑人| 黄色 视频免费看| 国产成人91sexporn| 亚洲男人天堂网一区| 日本欧美国产在线视频| 国产成人影院久久av| 亚洲国产毛片av蜜桃av| 一区二区三区四区激情视频| 天天添夜夜摸| 国产无遮挡羞羞视频在线观看| 婷婷丁香在线五月| 亚洲,欧美精品.| 我要看黄色一级片免费的| 中文字幕人妻丝袜制服| 一二三四在线观看免费中文在| 久久这里只有精品19| 男人添女人高潮全过程视频| 国产亚洲午夜精品一区二区久久| 久久久久精品人妻al黑| 日韩免费高清中文字幕av| 亚洲欧美日韩高清在线视频 | 久久精品熟女亚洲av麻豆精品| 在线观看国产h片| 大话2 男鬼变身卡| 亚洲专区中文字幕在线| 一本色道久久久久久精品综合| 啦啦啦 在线观看视频| 97人妻天天添夜夜摸| 亚洲美女黄色视频免费看| 一区福利在线观看| 欧美乱码精品一区二区三区| 电影成人av| 波多野结衣av一区二区av| 高清不卡的av网站| 18在线观看网站| 免费少妇av软件| 人人妻人人添人人爽欧美一区卜| 中文字幕人妻丝袜制服|