耿鑫彪, 劉 雯
(吉林大學(xué) 數(shù)學(xué)學(xué)院, 長春 130012)
分?jǐn)?shù)階微積分及微分方程在分形、 黏彈性力學(xué)、 空氣動(dòng)力學(xué)等領(lǐng)域應(yīng)用廣泛[1-2]. 目前, 非線性泛函分析中的方法和技巧是研究分?jǐn)?shù)階微分方程的有效工具[3-8]. 文獻(xiàn)[9]研究了一類帶有無窮點(diǎn)積分邊界條件的非線性分?jǐn)?shù)階微分方程(FBVP):
(1)
引理1[9]假設(shè)y(t)∈C([0,1]), 則邊值問題
(2)
式中
(3)
且
G(t,s)稱為邊值問題(2)的Green函數(shù). 顯然,G(t,s)是一個(gè)連續(xù)函數(shù).
引理2[9]假設(shè)p(0)>0, 則p(s)>0,s∈[0,1]且p(s)是單調(diào)不減函數(shù).
引理3[9]函數(shù)G(t,s)滿足如下條件:
3)G(t,s)>0, ?t,s∈(0,1).
Pc?E,Pc={u∈E|u(t)≥0,t∈[0,1]}.
?0 Br={u∈Pc: ‖u‖ 本文假設(shè)如下條件成立: (H2)f: [0,1]×[0,∞)→[0,∞)連續(xù),f(t,0)不恒為0. 定義算子A:C[0,1]→C[0,1], (4) 顯然, 算子A的不動(dòng)點(diǎn)即為邊值問題(1)的解. 當(dāng)假設(shè)條件(H1),(H2)成立時(shí),A(Pc)?Pc. 應(yīng)用Arzel-Ascoli定理[10-11]可知,A是一個(gè)全連續(xù)算子. 定義算子T:C[0,1]→C[0,1], (5) 顯然,T:Pc→Pc是一個(gè)全連續(xù)線性算子. 由Krein-Rutmann定理[12], 譜半徑r(T)≠0, 且T有一個(gè)正特征函數(shù)φ1, 對(duì)應(yīng)于第一特征值λ1(λ1=(r(T))-1). 假設(shè): (H7) 存在r0>0, 使得 ?0 其中τ∈(0,1), 有p(t)不恒為0,t∈[τ,1-τ]. 定理1假設(shè)條件(H3),(H4)成立, 則FBVP(1)至少有一個(gè)正解. 證明: 由(H3), 存在r>0,ε>0, 使得 f(t,u)≥(λ1+ε)u,t∈[0,1],u∈[0,r]. 不失一般性, 假設(shè)A在 ?Br∩Pc內(nèi)沒有不動(dòng)點(diǎn). 令 u-Au≠μφ1, ?u∈?Br∩Pc,μ≥0. (6) 否則, 存在u1∈?Br∩Pc且μ1≥0, 使得u1-Au1=μ1φ1, 因此u1≥μ1φ1. 令τ*=sup{τ|u1≥τφ1}.T是正線性算子, 從而 (λ1+ε)T(u1)≥λ1T(u1)≥τ*λ1T(φ1)=τ*φ1. 因此 u1=Au1+μ1φ1≥(λ1+ε)Tu1+μ1φ1≥(τ*+μ1)φ1, 與τ*的定義矛盾. 故式(6)成立, 且 i(A,Br∩Pc,Pc)=0. (7) 另一方面, 由(H4), 存在ε∈(0,λ1),m>0, 使得 f(t,u)≤(λ1-ε)u+m, ?u≥R1,t∈[0,1]. 令 W∶={u∈Pc|u=μAu,μ∈[0,1]}, (8) 則 (9) i(A,BR∩Pc,Pc)=1. (10) 由式(7)和式(10), 有 定理2假設(shè)(H5),(H6)成立, 則FBVP(1)至少有一個(gè)正解. 證明: 證明方法與文獻(xiàn)[8]中的定理3.2類似, 故忽略細(xì)節(jié). 由假設(shè)條件(H5), 有 i(A,Br∩Pc,Pc)=1. (11) 由假設(shè)條件(H6), 有 i(A,BR∩Pc,Pc)=0. (12) 定理3假設(shè)條件(H3),(H7)成立, 則FBVP(1)至少有一個(gè)正解. 證明: 用證明定理1的方法, 由(H1), 有 i(A,Br∩Pc,Pc)=0. (13) 由(H7), 選擇r0>r, 有 ?0 令 u≠μAu, ?u∈?Br0∩Pc,μ∈[0,1]. (14) 否則, 存在u1∈?Br0∩Pc,μ1∈[0,1], 使得u1=μ1Au1. 注意到 因此, ‖u1‖>‖Au1‖≥μ1‖Au1‖, 與u1=μ1Au1矛盾. 從而式(14)成立, 且 i(A,Br0∩Pc,Pc)=1. (15) 因此, 定理4假設(shè)條件(H4),(H8)成立, 則FBVP(1)至少有一個(gè)正解. 證明: 由(H4), 有 i(T,BR∩Pc,Pc)=1. (16) 其中τ∈(0,1), 使得p(t)不恒為0,t∈[τ,1-τ]. 令 (17) (18) 推論1假設(shè)條件(H6),(H7)成立, 則FBVP(1)至少有一個(gè)正解. 證明: 若(H6),(H7)成立, 可知 i(A,BR∩Pc,Pc)=0,i(A,Br0∩Pc,Pc)=1. 易得 因此FBVP(1)至少有一個(gè)正解. 由推論1可知如下結(jié)論成立: 推論2假設(shè)條件(H5),(H8)成立, 則FBVP(1)至少有一個(gè)正解. 推論3假設(shè)條件(H3),(H6),(H7)成立, 則FBVP(1)至少有兩個(gè)正解. 推論4假設(shè)條件(H4),(H5),(H8)成立, 則FBVP(1)至少有兩個(gè)正解. [1] Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations: North-Holland Mathematics Studies, Vol.204 [M]. Amsterdam: Elsevier, 2006. [2] Sabatier J, Agrawal O P, Tenreiro Machado J A. Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering [M]. Dordrecht: Springer, 2007. [3] LIU Suli, LI Huilai, DAI Qun. Nonlinear Fractional Differential Equations with Nonlocal Integral Boundary Conditions [J/OL]. Advances in Difference Equations, 2015-06-18. doi: 10.1186/s13662-015-0534-3. [4] WANG Wenli, TIAN Jingfeng. Generalized Monotone Iterative Method for Integral Boundary Value Problems with Causal Operators [J]. Journal of Nonlinear Science and Applications, 2015, 8(5): 600-609. [5] LIU Suli, LI Huilai, DAI Qun, et al. Existence and Uniqueness Results for Nonlocal Integral Boundary Value Problems for Fractional Differential Equations [J/OL]. Advances in Difference Equations, 2016-05-03. https://doi.org/10.1186/s13662-016-0847-x. [6] ZHANG Xingqiu. Positive Solutions for a Class of Singular Fractional Differential Equation with Infinite-Point Boundary Value Conditions [J]. Applied Mathematics Letters, 2015, 39: 22-27. [7] CUI Yujun. Uniqueness of Solution for Boundary Value Problems for Fractional Differential Equations [J]. Applied Mathematics Letters, 2016, 51: 48-54. [8] ZHANG Xingqiu, WANG Lin, SUN Qian. Existence of Positive Solutions for a Class of Nonlinear Fractional Differential Equations with Integral Boundary Conditions and a Parameter [J]. Applied Mathematics and Computation, 2014, 226: 708-718. [9] LIU Suli, LIU Junpeng, DAI Qun, et al. Uniqueness Results for Nonlinear Fractional Differential Equations with Infinite-Point Integral Boundary Conditions [J]. J Nonlinear Sci Appl, 2017, 10(3): 1281-1288. [11] Ascoli G. Le Curve Limiti di una VarietData di Curve [J]. Rend Accad Lincei, 1884, 18: 521-586. [12] Krasnosel’skiǐ M A. Positive Solutions of Operator Equations [M]. [S.l.]: Noordhoff Ltd, 1964.