周繼術(shù) 曹艷姿 吉 紅 于海波
(西北農(nóng)林科技大學(xué)動(dòng)物科技學(xué)院水產(chǎn)科學(xué)系, 楊凌 712100)
二十二碳六烯酸(Docosahexaenoic acid, DHA)主要來(lái)源于海水魚(yú)與藻類[1], 屬于n-3系列的高不飽和脂肪酸(Highly unsaturated fatty acid, HUFA), 具有抗癌[2—4]、抗氧化[5—7]、防治心血管疾病[8]、提高免疫力[9,10]、調(diào)節(jié)脂代謝[11—13]等功能, 對(duì)大腦及神經(jīng)系統(tǒng)發(fā)育[14,15]與視覺(jué)功能[16]密切相關(guān)。在水產(chǎn)動(dòng)物上, DHA是海水魚(yú)尤其是海水仔稚魚(yú)正常生長(zhǎng)發(fā)育的必需脂肪酸之一[17], 對(duì)黑鯛[18—20]、舌鰨仔魚(yú)[21]等海水魚(yú)脂質(zhì)代謝也具有重要的調(diào)控作用, 而溫水性魚(yú)類如草魚(yú)、鯉等具有將18:3n-3合成為DHA的能力, 一般認(rèn)為DHA并非溫水性魚(yú)類的必需脂肪酸, 然而DHA對(duì)魚(yú)類生長(zhǎng)、脂代謝、細(xì)胞膜的流動(dòng)性以及免疫功能顯示出重要的調(diào)控作用[22—27]。但是高濃度HUFA的添加會(huì)給機(jī)體帶來(lái)過(guò)高的過(guò)氧化壓力[28—30], 從而影響草魚(yú)組織脂質(zhì)含量、抑制鯉及草魚(yú)脂質(zhì)沉積[31—33], 還可能造成生長(zhǎng)減緩、飼料轉(zhuǎn)化率降低等負(fù)面影響[34]。高濃度HUFA的添加對(duì)魚(yú)類造成的負(fù)面效應(yīng)是否和飼料中其他脂肪酸或脂肪總量水平相關(guān), 尚未見(jiàn)報(bào)道。
為了進(jìn)一步了解不同油脂水平下DHA的添加對(duì)淡水魚(yú)類的營(yíng)養(yǎng)生理作用, 本試驗(yàn)以鯉(Cyprinus carpioL.)為對(duì)象, 在6%與12%兩個(gè)油脂水平下, 探討了3%添加水平下DHA對(duì)鯉生長(zhǎng)、生物學(xué)性狀、體成份、血清理化性狀及組織結(jié)構(gòu)的影響, 旨在為研究淡水魚(yú)類脂質(zhì)營(yíng)養(yǎng)及其代謝調(diào)控提供基本資料。
以酪蛋白、糊精、纖維素、大豆油以及復(fù)合魚(yú)用預(yù)混料等為飼料原料, 采用Lovell[35]試驗(yàn)飼料配方配制鯉飼料。在6%與12%兩個(gè)油脂水平下, 以DHA制品(無(wú)錫訊達(dá)化學(xué)品廠, 江蘇, 無(wú)錫)分別替代3%的大豆油, 制成基礎(chǔ)組、基礎(chǔ)-DHA組、高脂組、高脂-DHA組4種等氮精制試驗(yàn)飼料。將各原料均粉碎過(guò)60目篩, 將原料按比例混勻后壓制成直徑為2 mm長(zhǎng)3 mm顆粒, 于冰箱冷藏保存?zhèn)溆?。DHA制品的脂肪酸組成見(jiàn)表 1, 試驗(yàn)飼料配方及營(yíng)養(yǎng)成分見(jiàn)表 2。
試驗(yàn)鯉購(gòu)自陜西省周至縣某漁場(chǎng)。先挑選健康且個(gè)體相近的鯉馴養(yǎng)于容積為160 L的循環(huán)水養(yǎng)殖系統(tǒng)中, 經(jīng)過(guò)7d馴養(yǎng)后, 選出體質(zhì)健康的試驗(yàn)魚(yú)360尾(14.81±0.13) g, 隨機(jī)分成4個(gè)組, 每組3個(gè)重復(fù),每個(gè)重復(fù)30尾魚(yú), 飼養(yǎng)于12個(gè)循環(huán)水養(yǎng)殖缸中。
將4組試驗(yàn)飼料分別投喂4組試驗(yàn)魚(yú), 投飼率3.5%, 每天4次(8:30、11:30、14:30和17:30), 每次持續(xù)投喂時(shí)間為1h, 每次投食后清除殘餌和糞便。水源為經(jīng)曝氣的自來(lái)水, 每天記錄水溫及試驗(yàn)魚(yú)攝食等情況。試驗(yàn)期間水溫(27±2)℃, 水流速度為20—30 L/h, DO>6 mg/L, pH 7.5—8.0。飼養(yǎng)中期稱重一次以調(diào)整投飼量, 飼養(yǎng)試驗(yàn)為74d。在飼養(yǎng)試驗(yàn)結(jié)束后, 對(duì)所有試驗(yàn)魚(yú)稱重并測(cè)量體長(zhǎng)和取樣。
在飼養(yǎng)結(jié)束后, 將試驗(yàn)魚(yú)用濃度為100 mg/kg MS-222麻醉后, 隨機(jī)取9尾魚(yú)采血。將所有魚(yú)稱其體重并測(cè)量其體長(zhǎng), 再將魚(yú)進(jìn)行解剖后, 分離其內(nèi)臟、肝胰臟、脾臟、腸、腹腔脂肪、單側(cè)肌肉并稱重與量取魚(yú)腸長(zhǎng)。將分離的肌肉與肝胰臟于-20℃保存?zhèn)溆谩?/p>
鯉生長(zhǎng)指標(biāo)的測(cè)定試驗(yàn)結(jié)束后, 稱取所有試驗(yàn)魚(yú)體重, 其生長(zhǎng)指標(biāo)測(cè)定如下:
存活率(%)=末尾數(shù)/始尾數(shù)×100;
絕對(duì)生長(zhǎng)率(g/d)=(末尾均重-始尾均重)/飼養(yǎng)時(shí)間(d);
紅琴平時(shí)很少叫風(fēng)影的名字,開(kāi)口閉口的總喚他和尚,林燕常常拿著風(fēng)影敲過(guò)的木魚(yú),坐在門(mén)檻上敲。他的眼神郁郁的,在懷想出家時(shí)的生活。風(fēng)影又體味著塵世的樂(lè)趣,特別是在紅琴身上,他體驗(yàn)著那種女人特有的味道,陽(yáng)光的溫暖,雨絲的纏綿,蘭花的馨香。對(duì)于林燕,村子里的好事者有各種猜測(cè),他們用各自的縝密的邏輯推理得出了一個(gè)又一個(gè)結(jié)論,有人說(shuō)是紅琴落洞時(shí)山神在她身上播的種,也有人說(shuō)是風(fēng)影這個(gè)花和尚早就動(dòng)了花心,和尚也是人,是男人都會(huì)想做那點(diǎn)事兒。嘴巴長(zhǎng)在別人的臉上,人家要嚼舌頭風(fēng)影有什么辦法。
相對(duì)生長(zhǎng)率(%/d)=(末尾均重-始尾均重)/始尾均重×100;
飼料系數(shù)=飼料投喂量(g)/魚(yú)體增重量(g)。
鯉生物學(xué)性狀的測(cè)定分離魚(yú)體內(nèi)臟, 稱取魚(yú)體空殼、肝胰臟、脾臟、腸、腹腔脂肪、單側(cè)肌肉等的重量并測(cè)量魚(yú)體腸長(zhǎng)。鯉生物學(xué)性狀的測(cè)定指標(biāo)如下:
肥滿度(g/cm3%)=魚(yú)體重(g)/體長(zhǎng)(cm)3×100;
空殼比率(%)=空殼重(g)/體重(g)×100;
含肉率(%)=肌肉重(g)/體重(g)×100;
表 1 試驗(yàn)油脂脂肪酸組成Tab. 1 Fatty acids composition of dietary oils (%)
表 2 半純化試驗(yàn)飼料配方及營(yíng)養(yǎng)成分組成Tab. 2 Ingredient and proximate composition of the semi-purified experimental diet
肝胰臟指數(shù)(%)=肝胰臟重(g)/體重(g)×100;
腹脂指數(shù)(%)=腹腔脂肪重(g)/體重(g)×100;
腸重比(%)=腸重(g)/體重(g)×100;
脾臟指數(shù)(%)=脾臟重(g)/體重(g)×100。
飼料與肌肉及肝胰臟常規(guī)成分的測(cè)定飼料、肝胰臟與肌肉常規(guī)成分的測(cè)定根據(jù)AOAC[37]法, 分別用索氏抽提法測(cè)定肌肉及肝胰臟的粗脂肪含量, 用半微量凱氏定氮法測(cè)定粗蛋白含量。
血清樣品制備和指標(biāo)測(cè)定飼養(yǎng)試驗(yàn)結(jié)束后每箱隨機(jī)取鯉9尾, 于其尾靜脈處采血, 3000 r/min離心10min, 制備血清。血清谷丙轉(zhuǎn)氨酶(ALT)、谷草轉(zhuǎn)氨酶(AST)、總蛋白(TP)、白蛋白(ALB)、球蛋白(GLO)、總膽固醇(Chol)、甘油三脂(TG)、葡萄糖(GLU)等指標(biāo)由生化試劑盒(中生北控生物科技有限公司, 北京, 中國(guó))及全自動(dòng)生化分析儀(島津ILAB600)條件下進(jìn)行測(cè)定。
肝細(xì)胞及腹腔脂肪細(xì)胞觀察在飼養(yǎng)及饑餓試驗(yàn)結(jié)束后, 每個(gè)處理隨機(jī)取3尾魚(yú)解剖, 分離腸道、肝胰臟、腹腔脂肪組織立即于波恩氏液中固定。24h后自來(lái)水洗滌, 不同濃度梯度的酒精脫水,二甲苯透明, 石蠟包埋, 連續(xù)切片, HE染色, 中性樹(shù)膠封片。光學(xué)顯微鏡下進(jìn)行組織學(xué)觀察, 并利用顯微鏡的照相系統(tǒng)進(jìn)行肝細(xì)胞直徑及腹腔脂肪細(xì)胞的長(zhǎng)軸與短軸距離的測(cè)量。將脂肪細(xì)胞長(zhǎng)軸與短軸距離相乘, 計(jì)算脂肪細(xì)胞的面積。
所得數(shù)據(jù)采用平均數(shù)±標(biāo)準(zhǔn)差(Mean±SD)表示。用SPSS17.0軟件(Chicago, IL, USA)對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行單因素方差分析(One-way ANOVA)以及Duncan’s多重比較檢驗(yàn)組間差異,P<0.05為差異顯著。
在6%油脂水平下, 基礎(chǔ)-DHA組末尾均重(43.7±0.8) g、絕對(duì)生長(zhǎng)率(0.40±0.01) g/d與相對(duì)生長(zhǎng)率(2.67±0.03)%/d均顯著低于基礎(chǔ)組(P<0.05)。在12%油脂水平下, 高脂-DHA組絕對(duì)生長(zhǎng)率(0.45±0.01) g/d顯著低于高脂組(0.49±0.01) g/d, (P<0.05),而末尾均重與相對(duì)生長(zhǎng)率在兩高脂組間均無(wú)顯著差異(P>0.05)?;A(chǔ)-DHA組的飼料系數(shù)顯著高于其他各組(P<0.05), 而該飼料系數(shù)在其他三組間均無(wú)顯著差異。飼料的攝食量(3972—4212 g)與鯉的存活率(93%—99%)在各組間均無(wú)顯著差異(P>0.05)。
由表 4可以看出: 基礎(chǔ)-DHA組魚(yú)體肥滿度最低且顯著低于高脂-DHA組(P<0.05)。基礎(chǔ)-DHA組腹脂指數(shù)為(0.37±0.05)%, 顯著低于基礎(chǔ)組(0.52±0.04)%、高脂組(0.70±0.05)%及高脂-DHA組(0.67±0.06)%的腹脂指數(shù)(P<0.05)。同時(shí), 12%水平下的高脂組與高脂-DHA組的腹脂指數(shù)均高于6%水平下的基礎(chǔ)組與基礎(chǔ)-DHA組(P<0.05)。空殼比率、含肉率、比腸長(zhǎng)與脾臟指數(shù)等在各組間均無(wú)顯著差異(P>0.05)。
從表 5可以看出, 在12%脂肪水平下鯉肌肉與肝胰及粗脂肪含量均分別顯著高于6%脂肪水平組。在6%與12%脂肪水平下, DHA添加組的鯉肌肉粗脂肪含量[(1.82±0.07)%、(3.03±0.09)%]均分別顯著低于無(wú)DHA組[(2.58±0.07)%、(3.51±0.11)%;P<0.05)]。鯉肌肉粗蛋白含量在各組間均無(wú)顯著差異(P>0.05)。
表 3 DHA對(duì)鯉生長(zhǎng)的影響Tab. 3 Effect of dietary DHA fortification on growth performance of common carp
表 4 DHA對(duì)鯉生物學(xué)性狀的影響Tab. 4 Effect of dietary DHA fortification on biological parameters (n=13)
表 5 DHA對(duì)鯉肌肉及肝胰臟粗脂肪與粗蛋白含量的影響Tab. 5 Effect of dietary DHA fortification on crude lipid and crude protein of muscle and hepstosomatese (n=3)
從表 6可以看出, 高脂-DHA組谷丙轉(zhuǎn)氨酶為(126.9±31.2) U/L, 該值顯著高于其他各組(58.9—70.2 U/L,P<0.05), 同時(shí)該組的總蛋白與球蛋白等均達(dá)到各組中的最高值, 分別為(33.98±1.02) g/L與(23.66±0.89) g/L。分別在6%與12%油脂水平下,DHA的添加均顯著升高了鯉血清膽固醇含量 (P<0.05), 而DHA的添加有降低血清甘油三酯含量的趨勢(shì)。血清谷草轉(zhuǎn)氨酶、白蛋白、白球比與葡萄糖等指血清生化指標(biāo)在各組間均無(wú)顯著差異(P>0.05)。
從表 7可以看出, 6%脂肪水平下, 基礎(chǔ)-DHA組腹腔脂肪細(xì)胞面積為(67.5±7.0)×103μm2, 顯著低于基礎(chǔ)組; 當(dāng)飼料脂肪水平上升至12%水平時(shí), 兩組間魚(yú)體腹腔脂肪細(xì)胞面積無(wú)顯著差異(P<0.05)。
在黑鯛這樣海水魚(yú)的研究中發(fā)現(xiàn), 飼料中添加1.5%DHA, 黑鯛生長(zhǎng)及生物學(xué)指標(biāo)均沒(méi)有顯著變化, 但飼料效率顯著增高[20]。DHA并非草魚(yú)、鯉等溫水性魚(yú)類的必需脂肪酸, 本研究結(jié)果顯示, 3%DHA制品的添加不但并未提高鯉的生長(zhǎng)與飼料效率, 反而對(duì)其有明顯的抑制作用(表 3), 這與Du等[30]在草魚(yú)的研究中發(fā)現(xiàn), 隨飼料中魚(yú)油添加量的增加, 草魚(yú)攝食率及表觀生長(zhǎng)率下降相一致, 也與Takeuchi等[34]關(guān)于虹鱒飼料中添加過(guò)量n-3HUFA, 導(dǎo)致魚(yú)體生長(zhǎng)下降、飼料轉(zhuǎn)化效率降低的研究結(jié)果相一致,也與鯉、草魚(yú)[31—33]的研究結(jié)果相一致。
DHA的高不飽和性使其易受氧或其他自由基的攻擊, 從而產(chǎn)生有害的過(guò)氧化產(chǎn)物, 這些過(guò)氧化產(chǎn)物的產(chǎn)生會(huì)損傷體抗氧化能力[25,37—39]。然而, 也有研究發(fā)現(xiàn), DHA能夠增強(qiáng)機(jī)體抗氧化酶活性以及促進(jìn)自由基的清除[6,8,40—42]。因此, DHA對(duì)機(jī)體抗氧化能力的影響尚不明確。本研究結(jié)果顯示, 3%DHA制品的添加不但未能提高鯉的生長(zhǎng)與飼料效率, 反而對(duì)其有明顯的抑制作用(表 3), 雖然本次試驗(yàn)沒(méi)能檢測(cè)谷胱甘肽過(guò)氧化物酶、超氧化物岐化酶等抗氧化指標(biāo), 然而結(jié)合本次試驗(yàn)結(jié)果, 筆者推測(cè),DHA添加組的鯉較差的生長(zhǎng)效果可能與DHA的添加與食入有關(guān); 易于氧化的DHA在沒(méi)有額外的抗氧化物質(zhì), 如維生素E的供給, 會(huì)給鯉機(jī)體帶來(lái)過(guò)高的過(guò)氧化壓力, 從而帶給鯉較高的氧化應(yīng)激, 進(jìn)而影響鯉的生長(zhǎng), 降低鯉的飼料轉(zhuǎn)化效率, 而這一結(jié)果在鯉的以往研究[34]及哺乳動(dòng)物[43]中均有類似發(fā)現(xiàn)。
在本試驗(yàn)的研究結(jié)果中發(fā)現(xiàn), DHA的添加, 魚(yú)體肥滿度、腹脂指數(shù)、腹腔脂肪細(xì)胞面積與肌肉粗脂肪含量均低于同一脂肪水平下的無(wú)DHA的添加組(表 4—7)。本研究與Om等[18,19]的研究結(jié)果:飼料中DHA降低了黑鯛腹腔脂肪細(xì)胞脂質(zhì)蓄積和細(xì)胞直徑大小相一致。
表 6 DHA對(duì)鯉血清生理生化指標(biāo)的影響Tab. 6 Effect of dietary DHA fortification on serum biochemical index (n=3)
表 7 DHA對(duì)鯉肝胰臟與腹脂組織的細(xì)胞大小的影響Tab. 7 Effect of dietary DHA fortification on cell area of hetopancreas and adipose tissues (n=3)
DHA等多不飽和脂肪酸(PUFA)是動(dòng)物生命活動(dòng)的重要能量來(lái)源, 也是細(xì)胞膜的重要組成成分,在細(xì)胞表面信號(hào)傳導(dǎo)以及細(xì)胞生化代謝過(guò)程中起著重要作用[44]。對(duì)嚙齒動(dòng)物的研究表明, n-3PUFA能降低肥胖[45]。進(jìn)一步的研究發(fā)現(xiàn), PUFA能與鼠等哺乳動(dòng)物中的肝臟過(guò)氧化物酶增殖物激活受體(PPARs)、固醇調(diào)節(jié)元件結(jié)合蛋白(SREBP)、X受體 (LXRs)等核受體特異性地結(jié)合, 使PUFA調(diào)節(jié)相關(guān)酶的轉(zhuǎn)錄基因, 從而減少脂肪合成和體脂沉積,促進(jìn)了脂肪降解[44,46,47]。研究表明, 與陸生動(dòng)物一樣, PUFA能從分子水平上激活大西洋鮭PPAR受體, 調(diào)節(jié)相關(guān)酶的轉(zhuǎn)錄基因, 抑制脂合成酶的活性,促進(jìn)脂肪降解, 最終減少體脂沉積[48—50]。因此, PUFA等長(zhǎng)鏈脂肪酸是一種調(diào)控能量代謝的物質(zhì)[51], 它通過(guò)作用于PPARs、SREBP等核受體實(shí)現(xiàn)對(duì)細(xì)胞脂質(zhì)代謝的調(diào)控[52]。本研究室對(duì)水產(chǎn)動(dòng)物尤其是對(duì)草魚(yú)的長(zhǎng)期研究也發(fā)現(xiàn), DHA等PUFA對(duì)草魚(yú)脂肪細(xì)胞發(fā)育及某些脂質(zhì)氧化代謝基因, 如三酰甘油酯酶(ATGL)、過(guò)氧化物酶體增殖受體α激活因子1(PGC-1α)、過(guò)氧化物酶體增殖物激活受體(PPARs)等有顯著影響[33,53—55], 從而促進(jìn)了脂質(zhì)的氧化。雖然本次試驗(yàn)并未檢測(cè)以上脂質(zhì)代謝基因, 但本研究結(jié)果顯示, DHA的添加降低了魚(yú)體肥滿度、腹脂指數(shù)、腹腔脂肪細(xì)胞面積與肌肉粗脂肪含量, 為此,筆者推測(cè), 這一結(jié)果可能與DHA促進(jìn)了鯉脂質(zhì)及脂肪酸的氧化代謝有關(guān), 同時(shí), 本試驗(yàn)結(jié)果與DHA的添加影響草魚(yú)組織脂質(zhì)含量、抑制鯉及草魚(yú)脂質(zhì)沉積的研究結(jié)果[31—33]相一致。
在塞內(nèi)加爾舌鰨(Solea senegalensis)的研究發(fā)現(xiàn), 提高DHA及飼料油脂水平, 將提高其生長(zhǎng)率, 反之則降低其生長(zhǎng)率[56]。本研究發(fā)現(xiàn), 隨飼料脂肪水平的提高, DHA的添加對(duì)鯉生長(zhǎng)、肥滿度、腹脂指數(shù)、腹腔脂肪細(xì)胞面積、肌肉粗脂肪含量與血清膽固醇含量等的抑制作用均有減輕的趨勢(shì)(表3—7), 顯示出脂肪水平對(duì)DHA添加所造成的損傷的補(bǔ)償作用。
在本實(shí)驗(yàn)中添加DHA使鯉血清膽固醇含量并未顯著降低(表 6), 這與飼料PUFA有降低哺乳動(dòng)物血漿膽固醇含量的研究結(jié)果作用[57,58]不一致。HUFA對(duì)魚(yú)類膽固醇代謝的影響與哺乳動(dòng)物不同的原因還有待進(jìn)一步研究。鯉血清甘油三酯含量隨DHA添加有降低趨勢(shì)(表 6), 這在鼠[59]上也有類似的研究結(jié)果。研究表明, DHA對(duì)鯉脂質(zhì)代謝具有調(diào)控作用, DHA作為鯉的非必需脂肪酸, 其利用能力及其作用機(jī)制可能與哺乳動(dòng)物不同, 其相關(guān)機(jī)制還需進(jìn)一步研究。
3%DHA制品的添加不但并未提高鯉的生長(zhǎng)與飼料效率, 反而對(duì)其有明顯的抑制作用。與此同時(shí),DHA的添加對(duì)魚(yú)體肥滿度、腹脂指數(shù)、腹腔脂肪細(xì)胞面積與肌肉粗脂肪含量均有抑制作用, 這可能與DHA的添加量可能超過(guò)了鯉的營(yíng)養(yǎng)需求量, 從而對(duì)魚(yú)體形成了的過(guò)氧化壓力, 進(jìn)而影響了魚(yú)機(jī)的生長(zhǎng)與健康有關(guān)。隨飼料脂肪水平的提高, DHA的添加對(duì)鯉生長(zhǎng)、肥滿度、腹脂指數(shù)、腹腔脂肪細(xì)胞面積、肌肉粗脂肪含量等所形成的抑制作用均有減輕趨勢(shì), 顯示出提高飼料脂肪水平可在一定程度下補(bǔ)償DHA添加所造成的機(jī)體損傷。
[1]Hammond B G, Mayhew D A, Kier L D,et al. Safety assessment of DHA-Rich microalgae fromSchizochytriumsp [J].Regulatory Toxicology and Pharmacology, 2002,35(2): 255—265
[2]Zerouga M, Stillwell W, Stone J,et al. Phospholipid class as a determinant in docosahexaenoic acids effect on tumor cell viability [J].Anticancer Research, 1996, 16(5a):2863—2868
[3]Zerouga M, Jenski L J, Booster S,et al. Can docosahexaenoic acid inhibit metastasis by decreasing deformability of the tumor cell plasma membrane [J]?Cancer Letters, 1997, 119(2): 163—168
[4]Pettersen K, Monsen V T, Pettersen C H H,et al. DHA-induced stress response in human colon cancer cells - Focuson oxidative stress and autophagy [J].Free Radical Biology and Medicine, 2016, 90: 158—172
[5]Seiji S, Kazuhiro K, Tadahiro T,et al. Dietary docosahexaenoic acid-induced generation of liver lipid peroxides is not suppressed further by elevated levels of glutathione in ODS rats [J].Nutrition, 2006, 22(4): 385—394
[6]Green P, Glozman S, Weiner L,et al. Enhanced free radical scavenging and decreased lipid peroxidation in the rat fetal brain after treatment with ethyl docosahexaenoate[J].Biochimica et Biophysica Acta, 2001, 1532(3):203—212
[7]Hossain M S, Hashimoto M, Masumura S. Influence of docosahexaenoic acid on cerebral lipid peroxide level in aged rats with and without hypercholesterolemia [J].Neuroscience Letters, 1998, 244(3): 157—160
[8]Frenoux J-M R, Prost E D, Belleville J L,et al. A polyunsaturated fatty acid diet lowers blood pressure and improves antioxidant status in spontaneously hypertensive rats [J].Biochemical and Molecular Action of Nutrients,2001, 131(1): 39—45
[9]Yang Y J, Bing X W, Xu Z H. Effects of unsaturated fatty acids on the growth and immunity indices ofMonopterus albus[J].Journal of Anhui Agricultural University, 2008,35(2): 224—228 [楊鳶劼, 邴旭文, 徐增洪. 不飽和脂肪酸對(duì)黃鱔生長(zhǎng)及免疫指標(biāo)的影響. 安徽農(nóng)業(yè)大學(xué)學(xué)報(bào),2008, 35(2): 224—228]
[10]Trichet V V. Nutrition and immunity: an update [J].Aquaculture Research, 2010, 41(3): 356—372
[11]Gaíva M H, Couto R C, Oyama L M,et al. Diets rich in polyunsaturated fatty acids: effect on hepatic metabolism in rats [J].Nutrition, 2003, 19(2): 144—149
[12]Gillingham L G, Caston L, Leeson S,et al. The effects of consuming docosahexaenoic acid (DHA)-enriched eggs on serum lipids and fatty acid compositions in statintreated hypercholesterolemic male patients [J].Food Research International, 2005, 38(10): 1117—1123
[13]Clarke S D, Armstrong M K, Jump D B. Dietary polyunsaturated fat uniquely suppress rat liver fatty acid synthase and s14 mRNA content [J].Journal of Nutrition,1990, 120(2): 225—231
[14]Masuda R, Takeuchi T, Tsukamoto K,et al. Critical involvement of dietary docosahexaenoic acid in the ontogeny of schooling behaviour in the yellowtail [J].Journal of Fish Biology, 1998, 53(3): 471—484
[15]Wang D, Zhang L Y, Wen M,et al. Enhanced neuroprotective effect of DHA and EPA-enriched phospholipids against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP) induced oxidative stress in mice brain [J].Journal of Functional Foods, 2016, 25: 385—396
[16]Benítez-Santana T, Masuda R, Juárez C E,et al. Dietary n-3 HUFA deficiency induces a reduced visual response in gilthead seabreamSparus auratalarvae [J].Aquaculture, 2007, 264(1-4): 408—417
[17]Rombenso A N, Trushenski J T, Jirsa D,et al. Docosahexaenoic acid (DHA) and arachidonic acid (ARA) are essential to meet LC-PUFA requirements of juvenile California Yellowtail (Seriola dorsalis) [J].Aquaculture,2016, 463: 123—134
[18]Om A D, Umino T, Nakagawa H,et al. The effects of dietary EPA and DHA fortification on lipolysis activity and physiological function in juvenile black sea breamAcanthopagrus schlegeli(Bleeker) [J].Aquaculture Research, 2001, 32(sup.): 255—262
[19]Om A D, Ji H, Unino T,et al. Dietary effects of eicosapentaenoic acid and docosahexaenoic acid on lipid metabolism in black sea bream [J].Fisheries Science, 2003,69(6): 1182—1193
[20]Ji H, Om A D, Yoshimatsu T,et al. Effect of dietary docosahexaenoic acid on lipogenesis and lipolysis in black sea breamAcanthopagrus schlegeli[J].Acta Oceanologica Sinica, 2007, 26(1): 112—121
[21]Villalta M, Estévez A, Bransden M P,et al. The effect of graded concentrations of dietary DHA on growth, survival and tissue fatty acid profile of Senegal sole (Solea senegalensis) larvae during the Artemia feeding period[J].Aquaculture, 2005, 249(1-4): 353—365
[22]Higgs D A, Dong F M. Lipids and fatty acids. The encyclopedia of aquaculture [M]. John Wiley and Sons, New York, USA, 2000, 476—496
[23]Kiron V, Thawonsuwan J, Panigrahi A,et al. Antioxidant and immune defences of rainbow trout (Oncorhynchus mykiss) offered plant oils differing in fatty acid profiles from early stages [J].Aquaculture Nutrition, 2011, 17(2):130—140
[24]Guo P, Zhou J S, Ji H,et al. Influence of fatty acids with different chain length on fatty acid composition of ova-ries, fecundity and survival rate of larvae in zebrafish(Danio rerio) [J].Acta Hydrobiologica Sinica, 2017,41(4): 766—773 [郭盼, 周繼術(shù), 吉紅, 等. 不同鏈長(zhǎng)脂肪酸對(duì)斑馬魚(yú)的性腺脂肪酸組成、繁殖力與仔魚(yú)成活率的影響. 水生生物學(xué)報(bào), 2017, 41(4): 766—773]
[25]Song J H, Fujimoto K, Miyazawa T. Polyunsaturated (n-3) fatty acids susceptible to peroxidation are increased in plasma and tissue lipids of rats fed docosahexaenoicacidcontaining oils [J].The Journal of Nutrition, 2000,130(12): 3028—3033
[26]Li C, Liu P, Ji H,et al. Dietary n-3 highly unsaturated fatty acids affected the biological and serum biochemical parameters, tissue fatty acid profile, antioxidation status and expression of lipid-metabolism-related genes in grass carp,Ctenopharyngodon idellus[J].Aquaculture Nutrition, 2015, 21(3): 373—383
[27]Wu F C, Ting Y Y, Chen H Y. Dietary docosahexaenoic acid is more optimal than eicosapentaenoic acid affecting the level of cellular defence responses of the juvenile grouperEpinephelus malabaricus[J].Fish & Shellfish Immunology, 2003, 14(3): 223—238
[28]Ji H, Zhou J S, Cao F Y,et al. Effect of DHA on anti-oxidation capacity in common carp (Cyprinus carpioL.) [J].Journal of Shanghai Ocean University, 2009, 18(2):142—149 [吉紅, 周繼術(shù), 曹福余, 等. DHA對(duì)鯉抗氧化能力影響的初步研究. 上海水產(chǎn)大學(xué)學(xué)報(bào), 2009, 18(2):142—149]
[29]Yu H B, Gao Q F, Dong S L,et al. Effects of Dietary n-3 Highly Unsaturated Fatty Acids (HUFAs) on growth,fatty acid profiles, antioxidant capacity and immunity of sea cucumberApostichopus japonicus(Selenka) [J].Fish and Shellfish Immunology, 2016 (accepted) DOI: 10.1016/j.fsi.2016.04.013
[30]Du Z Y, Clouet P, Huang L M,et al. Utilization of different dietary lipid sources at high level in herbivorous grass carp (Ctenopharymgodon idellus): mechanism related to hepatic fatty acid oxidation [J].Aquaculture Nutrition, 2008, 14(1): 77—92
[31]Cao J M, Liu Y J, Lao C L,et al. Effect of different dietary fatty acids on tissue lipid content and fatty acids composition of grass carp [J].Acta Zoonutrimenta Sinica,1997, 9(3): 36—44 [曹俊明, 劉永堅(jiān), 勞彩玲, 等. 飼料中不同脂肪酸對(duì)草魚(yú)組織脂質(zhì)含量和脂肪酸構(gòu)成的影響.動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 1997, 9(3): 36—44]
[32]Zhou J S, Ji H, Wang J H,et al. Influence of fish oil on growth and lipid metabolism in common carp (Cyprinus carpio) [J].Periodical of Ocean University of China,2008, 38(2): 275—280 [周繼術(shù), 吉紅, 王建華, 等. 魚(yú)油對(duì)鯉生長(zhǎng)及脂質(zhì)代謝的影響. 中國(guó)海洋大學(xué)學(xué)報(bào), 2008,38(2): 275—280]
[33]Ji H, CaoY Z, Liu P,et al. Effect of dietary HUFA on the lipid metabolism in grass carp (Ctenopharymgodon idellus) [J].Acta Hydrobiologica Sinica, 2009, 33(5):881—889 [吉紅, 曹艷姿, 劉品, 等. 飼料中HUFA影響草魚(yú)脂質(zhì)代謝的研究. 水生生物學(xué)報(bào), 2009, 33(5):881—889]
[34]Takeuchi T, Watanabe T. Effect of excess amounts of essential fatty acids on growth of rainbow trout [J].Bulletin of the Japanese Society of Scientific Fisheries, 1979,45(12): 1517—1519
[35]Lovell T. Nutrition and Feeding of Fish [M]. New York:Van Nostrand Reinhold. 1989, pp., 169—179
[36]Li A J. Nutrition and Feeding of Aquatic Animal [M].Beijing: Agricultural Publishing House of China. 2004,97—98 [李愛(ài)杰. 水產(chǎn)動(dòng)物營(yíng)養(yǎng)與飼料. 北京:中國(guó)農(nóng)業(yè)出版社. 2004, 97—98]
[37]Association of Official Analytical Chemists (AOAC) Official methods of analysis of Official Analytical Chemists international, 17th edn [M]. Gaithersburg, MD: Association of Official Analytical Chemists, 2000
[38]Ibrahim W, Lee U S, Yeh C C,et al. Oxidative stress and antioxidant status in mouse liver: Effects of dietary lipid,Vitamin E and iron [J].The Journal of Nutrition, 1997,127(7): 1401—1406
[39]Stéphan G, Guillaume J, Lamour F. Lipid peroxidation in turbot (Scophthalmus maximus) tissue: effect of dietary vitamin E and dietary n-6 or n-3 polyunsaturated fatty acids [J].Aquaculture, 1995, 130(2-3): 251—268
[40]Bechoua S, Dubois M, Dominguez Z,et al. Protective effect of docosahexaenoic acid against hydrogen peroxideinduced oxidative stress in human lymphocytes [J].Biochemical Pharmacology, 1999, 57(9): 1021—1030
[41]Ruiz-Gutiérrez V, Carmen M V, Consuelo S-M. Liver lipid composition and antioxidant enzyme activities of spontaneously hypertensive rats after injection of dietary fat(Fish, Olive and High-oleic sunflower oils) [J].Bioscience Reports, 2001, 21(3): 271—285
[42]Jeyarajah D R, Kielar M, Penfield J,et al. Docosahexaenoic acid, a component of fish oil, inhibits nitric oxide production in vitro [J].Journal of Surgical Research,1999, 83(2): 147—150
[43]Lagarde M. Docosahexaenoic acid: Nutrient and precursor of bioactive lipids [J].European Journal of Lipid Science and Technology, 2008, 110(8): 673—678
[44]Jump D B, Thelen A, Mater M. Dietary polyunsaturated fatty acids and hepatic gene expression [J].Lipids, 1999,34(Suppl.): S20—S212
[45]Buckley J D, Howe P R C. Long-chain omeg-3 pulyunsaturated fatty acids may be beneficial for reducing obesitya review [J].Journal of Nutrition, 2010, 2(12): 1212—1230
[46]Takada R, Saitoh M, Mori T. Biochemical and molecular roles of nutrients Dietary γ-Linolenic acid-enriched oil reduces body fat content and induces liver enzyme activities relating to fatty acid β-oxidation in rats [J].Journal of Nutrition, 1994, 124: 469—474
[47]Georgiadi A, Kersten S. Mechanisms of gene regulation by fatty acids [J].Advances in Nutrition, 2012, 3(2):127—134
[48]Kj?r M A, Todorcevic M, Torstensen B E,et al. Dietary n-3 HUFA affects mitochondrial fatty acid β-oxidation capacity and susceptibility to oxidative stress in Atlantic Salmon [J].Lipids, 2008, 43(9): 813—827
[49]Jordal A-E O, Torstensen B E, Tsoi S,et al. Dietary rapeseed oil affects the expression of genes involved in hepatic lipid metabolism in Atlantic salmon (Salmo salarL.)[J].Journal of Nutrition, 2005, 135(10): 2355—2361
[50]Todor?evi? M, Kjar M A, Djakovic N,et al. N-3 HUFAs affect fat deposition, susceptibility to oxidative stress, and apoptosis in Atlantic salmon visceral adipose tissue [J].Comparative Biochemistry and Physiology B, 2009,152(2): 135—143
[51]Nakamura M T, Yudell B E, Loor J J. Regulation of energy metabolism by long-chain fatty acids [J].Progress in Lipid Research, 2014, 53(1): 124—144
[52]Clarke S D. Polyunsaturated fatty acid regulation of gene transcription: a molecular mechanism to improve the metabolic syndrome [J].Journal of Nutrition, 2001,131(4): 1129—1132
[53]Ji H, Om A D, Yoshimatsu T,et al. Effect of dietary ascorbate on lipogenesis and lipolysis activities in black sea bream,Acanthopagrus schlegelii[J].Fish Physiology and Biochemistry, 2010, 36(3): 749—755
[54]Liu P, Li C, Huang J,et al. Regulation of adipocytes lipolysis by n-3 HUFA in grass carp (Ctenopharyngodon idellus) in vitro and in vivo [J].Fish Physiology and Biochemistry, 2014(5): 1447—1460
[55]Lei C X, Zhang J L, Ji H,et al. Effects of dietary DHA/EPA ratios on fatty acid composition, lipid metabolism-related enzyme activity and gene expression of juvenile grass carp (Ctenopharyngodon idellus) [J].Journal of the World Aquaculture Society, 2016, 47(2): 287—297
[56]Pinto W, Engrola S, Santos A,et al. Can Senegalese sole post-larvae effectively grow on low dietary DHA and lipid levels during weaning [J]?Aquaculture, 2016, 463:234—240
[57]Fernandez M L, West K L. Mechanisms by which dietary fatty acids modulate plasma lipids [J].Journal of Nutrition, 2005, 135(9): 2075—2078
[58]Grundy S M, Denke M A. Dietary influences on serum lipids and lipoproteins [J].Journal of Lipid Research,1990, 31: 1149—1172
[59]Peyron-Caso E, Quignard-Boulangé A, Laromiguière M,et al. Dietary fish oil increases lipid mobilization but does not decrease lipid storage-related enzyme activities in adipose tissue of insulin-resistant, sucrose-fed rats [J].Journal of Nutrition, 2003, 133(7): 2239—2243