陳 杰, 馬永清, 薛泉宏
?
利用微生物防除根寄生雜草列當(dāng)*
陳 杰1,2, 馬永清3**, 薛泉宏1
(1. 西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院 楊凌 712100; 2. 山西農(nóng)業(yè)大學(xué)農(nóng)學(xué)院 太谷 030801; 3. 中國科學(xué)院水利部水土保持研究所黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點(diǎn)實(shí)驗(yàn)室 楊凌 712100)
根寄生雜草列當(dāng)(spp.)已經(jīng)嚴(yán)重制約全球許多地區(qū)的農(nóng)業(yè)發(fā)展, 尋找有效防除措施迫在眉睫。由于列當(dāng)具有特殊生活史且與寄主關(guān)系密切, 常規(guī)防除雜草措施難以達(dá)到理想防效。目前, 尚無既能有效防除列當(dāng)又不對(duì)寄主造成危害且便于大規(guī)模推廣應(yīng)用的列當(dāng)防除措施。在眾多列當(dāng)防除措施中, 微生物防除越來越引起關(guān)注和重視。本文對(duì)微生物防除列當(dāng)?shù)膰鴥?nèi)外研究進(jìn)展及防除機(jī)理進(jìn)行了綜述。目前, 列當(dāng)生防微生物的研究主要集中在鐮刀菌(spp.)等列當(dāng)病原菌和根瘤菌(spp.)等列當(dāng)寄主植物共生菌上。微生物防除列當(dāng)?shù)臋C(jī)制主要包括兩方面: 一是通過產(chǎn)生代謝產(chǎn)物直接影響列當(dāng)?shù)拿劝l(fā)和生長(zhǎng), 或通過降解列當(dāng)種子萌發(fā)誘導(dǎo)物質(zhì)間接影響列當(dāng)?shù)拿劝l(fā); 二是通過提高寄主植物自身對(duì)列當(dāng)?shù)目剐蚤g接影響列當(dāng)?shù)募纳蜕L(zhǎng)。此外, 本文還重點(diǎn)介紹了植物土傳病害的土壤拮抗微生物防除列當(dāng)雜草的可行性及研究進(jìn)展。植物土傳病害病原菌和列當(dāng)均首先通過在地下侵染作物的根系進(jìn)而危害作物正常生長(zhǎng), 而作物抗土傳病害的機(jī)理也與抗列當(dāng)?shù)臋C(jī)理類似。因此, 存在于土壤中具有防治植物土傳病害能力的微生物可能也具有防除根寄生雜草列當(dāng)?shù)墓δ?。本團(tuán)隊(duì)前期試驗(yàn)從植物土傳病害的土壤拮抗微生物中篩選到在盆栽試驗(yàn)中能夠有效防除向日葵列當(dāng)(Wallr.)和瓜列當(dāng)(Pers.)的放線菌各1株, 分別為淡紫褐鏈霉菌(Sveshnikova)和密旋鏈霉菌(Bhuyan B.K)。其中, 密旋鏈霉菌的菌劑在田間試驗(yàn)中既降低了瓜列當(dāng)?shù)某鐾翑?shù)量又增加了番茄的產(chǎn)量??傊? 微生物是防除根寄生雜草列當(dāng)?shù)囊粭l有效途徑。
列當(dāng); 寄生雜草; 生物防除; 微生物; 土傳微生物; 土傳病害
列當(dāng)(spp.)為列當(dāng)科(Orobanchaceae)列當(dāng)屬一年生草本植物。由于缺少葉片、葉綠素和功能性根, 列當(dāng)完全寄生在寄主植物根系上, 靠從寄主汲取水分、養(yǎng)分及各類生長(zhǎng)激素來維持自身生長(zhǎng), 因此會(huì)對(duì)寄主造成嚴(yán)重危害[1]。列當(dāng)雜草已經(jīng)嚴(yán)重危害許多地區(qū)的農(nóng)業(yè)生產(chǎn)。全球每年由列當(dāng)雜草造成的經(jīng)濟(jì)損失達(dá)數(shù)十億美元[2]。防除列當(dāng)?shù)拇胧┲饕ㄈ斯ぐ纬齕3]、噴施化學(xué)農(nóng)藥[4]、農(nóng)藝措施(輪作[5]和施肥[6]等)、培育抗性品種[7]和昆蟲防治[8]等。上述防除措施或不能獲得理想的防除效果或存在一定缺陷, 因此, 有效防除列當(dāng)目前仍是一個(gè)世界性難題。
近年來, 在寄生植物的研究發(fā)展中, 研究者逐漸意識(shí)到微生物在“寄主-寄生雜草”這一特殊系統(tǒng)中的重要性[9]。研究列當(dāng)生防微生物對(duì)于解決列當(dāng)雜草問題具有重要意義。目前, 利用微生物防除列當(dāng)雜草的研究日益增多。鐮刀菌(spp.)[10]、根瘤菌[11]和叢枝菌根真菌[12]等多種微生物已被報(bào)道具有防除列當(dāng)雜草的能力。與其他微生物相比, 應(yīng)用來源于土壤中對(duì)農(nóng)作物病害病原菌有拮抗?jié)撃艿奈⑸锓莱挟?dāng)具有對(duì)作物無害、對(duì)農(nóng)田環(huán)境無污染、微生物易于在土壤中定殖等眾多優(yōu)勢(shì)。然而, 目前關(guān)于此類微生物防除列當(dāng)?shù)难芯咳允秩狈Α1疚脑诰C述了國內(nèi)外應(yīng)用微生物防除列當(dāng)?shù)难芯窟M(jìn)展及微生物防除列當(dāng)機(jī)理的同時(shí), 分析了農(nóng)作物病害生防微生物防除列當(dāng)雜草的可行性并對(duì)本團(tuán)隊(duì)目前取得的成果進(jìn)行了概述, 旨在為應(yīng)用微生物防除列當(dāng)?shù)难芯抗ぷ魈峁┲笇?dǎo)和借鑒。
目前, 全球受列當(dāng)危害的農(nóng)作物面積尚無確切數(shù)據(jù)[13], 但據(jù)報(bào)道早在1991年僅地中海和亞洲西部區(qū)域受列當(dāng)危害的農(nóng)田面積就高達(dá)1 600萬hm2[14]。列當(dāng)危害嚴(yán)重的地區(qū)會(huì)造成作物減產(chǎn)80%甚至絕收[13,15]。全球每年由列當(dāng)雜草造成的經(jīng)濟(jì)損失高達(dá)數(shù)十億美元[2]。列當(dāng)種類繁多, 對(duì)農(nóng)作物危害嚴(yán)重的主要為向日葵列當(dāng)(Wallr.)、瓜列當(dāng)(Pers.或Pers.)、鋸齒列當(dāng)(Forsk.)、分枝列當(dāng)(L.)、彎管列當(dāng)(Loefl.)和小列當(dāng)(Sm.)等。
目前, 防除列當(dāng)?shù)拇胧┲饕ㄈ斯ぐ纬?、化學(xué)防除、農(nóng)藝措施、培育抗性品種和昆蟲防除等。人工拔除在一定程度上能夠防止列當(dāng)種子的蔓延及土壤中列當(dāng)種子數(shù)量的增加[3], 但該方法只適用于受列當(dāng)危害程度較小的地塊或采用其他防除措施后仍然剩余的少量列當(dāng)?shù)姆莱齕16]?;瘜W(xué)防除具有操作簡(jiǎn)單、成本低廉等優(yōu)點(diǎn), 是防除列當(dāng)中比較常用的方法。噴施草甘膦[4]、氯磺隆、醚苯磺隆[17]、仲丁靈乳油[18]和甲咪唑煙酸[19]等多種化學(xué)藥劑均對(duì)列當(dāng)有一定防除效果。然而, 化學(xué)農(nóng)藥對(duì)列當(dāng)?shù)倪x擇性差, 在防除列當(dāng)?shù)耐瑫r(shí)往往對(duì)寄主作物也會(huì)造成損害[20], 且存在污染農(nóng)田環(huán)境、易使列當(dāng)產(chǎn)生抗藥性等缺點(diǎn)。輪作[21-22]、施肥[20]、深耕[23]、調(diào)整播期[24]和土壤暴曬[25]等農(nóng)藝措施在一定程度上也能夠減輕列當(dāng)危害, 但防除效果不理想、費(fèi)時(shí)費(fèi)力是上述措施的主要缺陷。培育抗性新品種也是防除列當(dāng)?shù)闹匾胧┲? 但育種年限長(zhǎng)、抗性品種抗性的減弱或消失是限制該方法推廣應(yīng)用的重要原因。此外, 據(jù)報(bào)道, 潛葉蠅(Kalt.)和小爪象(spp.)的幼蟲通過在列當(dāng)種皮內(nèi)蠶食幼嫩的列當(dāng)種子, 從而破壞新列當(dāng)種子的產(chǎn)生[8]。由于土壤耕作會(huì)破壞土壤中潛葉蠅和小爪象蛹的正常發(fā)育, 化學(xué)農(nóng)藥和自然界中的天敵也會(huì)危害到上述兩種昆蟲的數(shù)量, 而列當(dāng)產(chǎn)生的種子數(shù)量龐大, 因此, 僅靠昆蟲防治難以有效防除列當(dāng)。
利用微生物防除列當(dāng)雜草的研究日益增多。目前, 已被報(bào)道的具有防除列當(dāng)潛能的微生物包括鐮刀菌(spp.)、根瘤菌(spp.)、洋蔥曲霉(Thom & Church)、叢枝菌根真菌和假單胞菌(spp.)等。這些防除列當(dāng)?shù)奈⑸镏饕譃榱挟?dāng)病原菌、寄主植物共生菌和其他微生物。
利用列當(dāng)病原菌防除列當(dāng)雜草的研究較早, 這類病原菌多為一些鐮刀菌。Thomas等[26]報(bào)道將1株尖孢鐮刀菌[fsp.(Appel & Wollenw.) Bilay]的分生孢子培養(yǎng)液接種于出土向日葵列當(dāng)上, 列當(dāng)?shù)乃劳雎蔬_(dá)85%。Nemat Alla等[10]試驗(yàn)表明尖孢鐮刀菌(Schl.) Foxy Ⅰ和Foxy Ⅱ的孢子懸浮液可顯著降低鋸齒列當(dāng)和分枝列當(dāng)?shù)拿劝l(fā)率及寄生率。而這兩種菌的固態(tài)顆粒制劑也能夠降低列當(dāng)?shù)纳锪?、寄生? 提高列當(dāng)?shù)陌l(fā)病率。其他鐮刀菌包括彎角鐮刀菌(Wollenw. & Reink.)、厚垣鐮刀菌(Wollenw. & Reink.)[27]和輪狀鐮刀菌(Nirenb.)[28]等也均具有防除列當(dāng)?shù)臐撃?。除鐮刀菌? 其他一些列當(dāng)?shù)牟≡簿哂蓄愃品莱挟?dāng)?shù)臐撃?。Zermane等[29]從發(fā)病列當(dāng)?shù)叵虏糠蛛x到的熒光假單胞菌(.Flügge) Bf7-9菌株在盆栽試驗(yàn)中可使鋸齒列當(dāng)?shù)某雒缏蕼p少64%。此外,s Preuss.[30]和洋蔥曲霉[31]也具有類似防除列當(dāng)?shù)墓δ堋?/p>
許多列當(dāng)病原真菌在防除列當(dāng)?shù)耐瑫r(shí)也會(huì)使寄主或其他作物發(fā)病, 如輪狀鐮刀菌具有防除列當(dāng)?shù)墓δ躘32], 但同時(shí)也是玉米穗腐病的病原菌[33]。因此, 利用此類病原菌防除列當(dāng)會(huì)對(duì)寄主或其他農(nóng)作物造成危害。此外, 列當(dāng)在出土前對(duì)寄主已經(jīng)造成嚴(yán)重危害, 而列當(dāng)病原菌大多直接噴施于已經(jīng)出土的列當(dāng)植株上, 故利用列當(dāng)病原菌不能從根本上防除列當(dāng)。
另一類研究較多的列當(dāng)生防微生物為寄主植物的共生菌, 主要包括根瘤菌和叢枝菌根真菌。Mabrouk等[11]試驗(yàn)發(fā)現(xiàn)接種根瘤菌P. SOM和P. 1236可以顯著降低豌豆(L.)根部鋸齒列當(dāng)?shù)拿劝l(fā)率, 增加附著于豌豆根部列當(dāng)塊莖的壞死率, 從而降低鋸齒列當(dāng)?shù)某雒缏省ouraoui等[34]研究發(fā)現(xiàn)接種根瘤菌Mat可以顯著減輕Poir.對(duì)蠶豆(L.)造成的產(chǎn)量損失。Fernández-Aparicio等[35]試驗(yàn)表明接種叢枝菌根真菌摩西球囊霉(Gerdemann & Trappe)和根內(nèi)球囊霉(Schenck & Smith)后, 顯著降低了豌豆根系浸提液誘導(dǎo)鋸齒列當(dāng)、分枝列當(dāng)和小列當(dāng)種子的萌發(fā)率。Louarn等[12]也報(bào)道叢枝菌根真菌中的根內(nèi)根生囊霉(Schenck. & Sm.)和玫瑰巨孢囊霉(Nicol.)的孢子浸提液均能夠降低向日葵列當(dāng)種子的萌發(fā)率。
除上述兩類微生物外, 其他一些微生物也具有防除列當(dāng)?shù)臐撃?。El-Kassas等[36]試驗(yàn)發(fā)現(xiàn)分離自蠶豆根部土壤中的疣孢漆斑霉(Alb. & Schwein.)能夠抑制鋸齒列當(dāng)種子的萌發(fā); Gonsior等[37]研究表明土壤根際細(xì)菌假單胞菌能夠減少分枝列當(dāng)對(duì)大麻(L.)和煙草(L.)的寄生; Zermane等[29]報(bào)道接種分離自蠶豆根際土壤中的熒光假單胞菌Bf7- 9使鋸齒列當(dāng)和的出土率分別降低了64%和76%。此外, 萎縮芽孢桿菌(Nakamura)QUBC16和枯草芽孢桿菌[(Ehrenberg) Cohn]QUBC18對(duì)瓜列當(dāng)和彎管列當(dāng)芽管的生長(zhǎng)也具有顯著的抑制作用[38]; 巴西固氮螺菌(Tarrand, Krieg & D?bereiner)也能夠抑制瓜列當(dāng)種子的萌發(fā)[39]。
微生物防除列當(dāng)主要通過直接影響列當(dāng)?shù)拿劝l(fā)和生長(zhǎng)或通過提高寄主植物自身對(duì)列當(dāng)?shù)目剐蚤g接對(duì)列當(dāng)產(chǎn)生影響來實(shí)現(xiàn)。微生物防除列當(dāng)?shù)臋C(jī)理主要包括抑制列當(dāng)種子萌發(fā)、阻礙列當(dāng)正常生長(zhǎng)、增強(qiáng)寄主對(duì)列當(dāng)抗性和降解誘導(dǎo)列當(dāng)種子萌發(fā)的化合物。
抑制列當(dāng)種子萌發(fā)是微生物防除列當(dāng)?shù)闹饕緩街?。Louarn等[12]試驗(yàn)表明叢枝菌根真菌能夠抑制向日葵列當(dāng)種子的萌發(fā); Müller-St?ver等[30]研究發(fā)現(xiàn)能夠使鋸齒列當(dāng)種子的萌發(fā)率降低80%; Thomas等[26]報(bào)道尖孢鐮刀菌也具有抑制向日葵列當(dāng)種子萌發(fā)的能力。微生物抑制寄生植物種子萌發(fā)多是由于產(chǎn)生了一些能夠抑制寄生植物種子萌發(fā)的代謝產(chǎn)物。Miché等[40]的試驗(yàn)結(jié)果表明巴西固氮螺菌能夠抑制GR24誘導(dǎo)的獨(dú)腳金[(Del.) Benth.]的萌發(fā)可能是由于前者產(chǎn)生的一些小的親脂性化合物發(fā)揮了作用; 疣孢漆斑霉對(duì)鋸齒列當(dāng)?shù)姆莱龣C(jī)理之一是其產(chǎn)生的單端孢霉烯和疣孢菌素抑制了鋸齒列當(dāng)種子的萌發(fā)[36]。目前, 已被證實(shí)能夠抑制列當(dāng)種子萌發(fā)的微生物代謝產(chǎn)物包括疣孢菌素A、羥基甲基氧雙環(huán)庚烯酮、球香豆榴素A、沒食子酸和cytochalasans等[41-42]。
除抑制列當(dāng)種子萌發(fā)外, 阻礙已經(jīng)萌發(fā)的列當(dāng)生長(zhǎng)也是減輕列當(dāng)危害的機(jī)理之一。據(jù)報(bào)道, 一些谷物的代謝產(chǎn)物Benzoxazolinones、L-色氨酸和香豆酸能夠顯著抑制鋸齒列當(dāng)芽管的伸長(zhǎng)[43]。熒光假單胞菌、萎縮芽孢桿菌QUBC16和枯草芽孢桿菌QUBC18也具有抑制瓜列當(dāng)和彎管列當(dāng)芽管伸長(zhǎng)的功能[38]。而一些微生物的代謝產(chǎn)物如球香豆榴素、cytochalasans和cyclohexene epoxide類化合物也能夠顯著抑制列當(dāng)芽管的伸長(zhǎng)[41]。
有些微生物還通過使已經(jīng)萌發(fā)的列當(dāng)發(fā)生畸形或病變來影響列當(dāng)正常寄生和生長(zhǎng)。Mabrouk等[42]發(fā)現(xiàn)經(jīng)cytochalasans處理后的列當(dāng)芽管出現(xiàn)異狀突起, 由球香豆榴素A處理后的列當(dāng)芽管也出現(xiàn)壞死現(xiàn)象。列當(dāng)病原菌發(fā)揮防除作用的機(jī)理均是通過使列當(dāng)植株發(fā)生病變從而阻礙列當(dāng)?shù)恼IL(zhǎng)發(fā)育。列當(dāng)生防菌輪狀鐮刀菌產(chǎn)生的萎蔫酸能夠使列當(dāng)植株發(fā)病死亡[28], 而尖孢鐮刀菌產(chǎn)生的兩種代謝產(chǎn)物萎蔫酸和9,10-脫氫鐮刀菌酸能夠使萌發(fā)后的列當(dāng)種子死亡并使出土的列當(dāng)植株萎蔫[44]。
除直接抑制和干擾列當(dāng)?shù)恼IL(zhǎng)外, 微生物還可以通過增強(qiáng)寄主植物對(duì)列當(dāng)?shù)目剐詠矸莱挟?dāng)。Gonsior等[37]報(bào)道根際細(xì)菌假單胞菌對(duì)列當(dāng)?shù)姆莱饔每赡芑谠摼T導(dǎo)列當(dāng)寄主對(duì)列當(dāng)產(chǎn)生了免疫反應(yīng)。
列當(dāng)形成吸器后需要刺穿寄主植物的根系細(xì)胞, 才能與寄主的維管組織連接, 進(jìn)而進(jìn)行養(yǎng)分和水分的傳輸。木質(zhì)素和氧化酚類的合成有助于增強(qiáng)細(xì)胞結(jié)構(gòu), 而多酚氧化酶(PPO)的活力與這兩類化合物的合成有關(guān)[45]。Brahmi等[46]研究表明, 抗列當(dāng)?shù)您椬於?Linn.)品種在受侵染時(shí), 其體內(nèi)PPO活力提高; 而根瘤菌誘導(dǎo)豌豆產(chǎn)生抗鋸齒列當(dāng)?shù)哪芰σ才c豌豆根系中PPO活力提高有關(guān)[45,47]。
過氧化物酶(POD)能夠通過聚合多糖和多酚類物質(zhì)來產(chǎn)生閉合維管組織的凝膠類物質(zhì), 從而加固植物的細(xì)胞壁[48]。此外, POD還與木質(zhì)素的形成有關(guān)[49], 而植物細(xì)胞壁的加固有助于植物抵抗外界不良環(huán)境脅迫[50]。已有研究表明, 植物抗列當(dāng)?shù)哪芰εcPOD活力的提高有關(guān)[45-46,51]。Akimova等[52]研究表明, 接種根瘤菌后豌豆體內(nèi)POD活力提高; Demirba?等[53]報(bào)道向日葵(L.)的抗列當(dāng)品種在受向日葵列當(dāng)侵染時(shí), 其體內(nèi)POD活力提高; Mabrouk等[11]試驗(yàn)表明接種根瘤菌P. SOM和P. 1236在降低鋸齒列當(dāng)萌發(fā)率和寄生率的同時(shí)也提高了豌豆根系POD的活力。
苯丙氨酸解氨酶(PAL)被認(rèn)為是啟動(dòng)植物體內(nèi)苯丙氨酸合成途徑的關(guān)鍵酶, 與木質(zhì)素、植保素、軟木脂、植物抗毒素(酚類和黃酮類物質(zhì))和水楊酸的生物合成有關(guān), 這些物質(zhì)的合成也有助于加固細(xì)胞結(jié)構(gòu)或增強(qiáng)植物系統(tǒng)獲得性抗性[54]。Goldwasser等[55]試驗(yàn)表明抗瓜列當(dāng)?shù)囊巴愣?Popany)品種體內(nèi)酚類物質(zhì)和木質(zhì)素含量均高于瓜列當(dāng)?shù)囊赘衅贩N, 說明誘導(dǎo)氨基丙酸類合成途徑可能是寄主抗列當(dāng)?shù)臋C(jī)理之一。已有研究表明根瘤菌在防除鋸齒列當(dāng)?shù)耐瑫r(shí)也提高了豌豆根系的PAL活力[11]。
Boari等[56]試驗(yàn)表明尖孢鐮刀菌具有防除列當(dāng)?shù)哪芰? 同時(shí)也具有降解列當(dāng)萌發(fā)誘導(dǎo)物5-脫氧獨(dú)角金醇和4-脫氧列當(dāng)醇的能力。鑒于這些真菌中有些能夠定殖于某些植物的根區(qū)土壤中, 表明這類微生物可能具有通過降低寄主根系周圍獨(dú)腳金內(nèi)酯的濃度從而來減少列當(dāng)?shù)募纳臐撃堋?/p>
一些對(duì)植物有益的微生物也具有防除列當(dāng)?shù)哪芰? 包括根瘤菌[11]、叢枝菌根真菌[12]和假單胞菌[29]等。促進(jìn)植物生長(zhǎng)或抑制植物病原菌生長(zhǎng)的微生物被報(bào)道能夠用于防除列當(dāng)。根瘤菌(P. SOM和P. 1236)被報(bào)道同時(shí)兼具促進(jìn)豌豆生長(zhǎng)和降低鋸齒列當(dāng)寄生率的功能[11]。其他微生物如摩西球囊霉[35]、熒光假單胞菌和芽孢桿菌[29,38]等也均兼具防除植物病害和列當(dāng)?shù)哪芰Α?/p>
土壤中存在多種對(duì)植物土傳病害有防治作用的微生物。這些微生物主要通過與病原菌爭(zhēng)奪養(yǎng)分、水分, 抑制病原菌生長(zhǎng), 增強(qiáng)植物自身抗性來發(fā)揮防治土傳病害的作用[57]。張淑梅等[58]報(bào)道枯草芽孢桿菌能夠增強(qiáng)植物自身的抗病性; Bailey等[59]研究表明木霉菌產(chǎn)生的木聚糖酶具有增強(qiáng)植物抗病性的能力。寄主植物對(duì)列當(dāng)?shù)目剐詸C(jī)理與植物對(duì)病原菌的抗性機(jī)理十分類似。由于植物土傳病害和列當(dāng)均首先通過侵染植物的根系進(jìn)而在地下對(duì)植物造成危害, 因此具有防治植物土傳病害的微生物可能也具有防除列當(dāng)?shù)臐撃?。此? 與其他非土壤中微生物相比, 用來源于土壤中的微生物防除列當(dāng)雜草能夠在列當(dāng)生長(zhǎng)早期階段發(fā)揮作用, 不會(huì)對(duì)土壤及環(huán)境造成污染且可以在土壤中生長(zhǎng)繁殖并持續(xù)發(fā)揮作用[23]。
本團(tuán)隊(duì)前期試驗(yàn)以篩選自健康土壤的上萬株微生物資源庫中對(duì)多種作物病害尤其是土傳病害病原菌有拮抗作用的放線菌和真菌為材料, 從中篩選出強(qiáng)烈抑制向日葵列當(dāng)種子萌發(fā)的放線菌(淡紫褐鏈霉菌,Sveshnikova)和真菌(灰黃青霉,Dierckx)各1株。在盆栽試驗(yàn)中, 淡紫褐鏈霉菌顯著減少了向日葵列當(dāng)?shù)某鐾翑?shù)量和生物量, 促進(jìn)了寄主向日葵的生長(zhǎng)并增加了向日葵的產(chǎn)量[60]?;尹S青霉的發(fā)酵液對(duì)向日葵列當(dāng)和瓜列當(dāng)種子的萌發(fā)均有強(qiáng)烈抑制作用, 本團(tuán)隊(duì)通過進(jìn)一步研究發(fā)現(xiàn)灰黃青霉產(chǎn)生的次級(jí)代謝產(chǎn)物展青霉素能夠抑制列當(dāng)種子的萌發(fā)。產(chǎn)生展青霉素是灰黃青霉發(fā)揮抑制列當(dāng)種子萌發(fā)作用的重要原因[61]。此外, 施加從土傳拮抗微生物中篩選出的拮抗放線菌劑, 既降低了瓜列當(dāng)出土數(shù)量又增加了加工番茄(Miller)的產(chǎn)量。2016年在新疆生產(chǎn)建設(shè)兵團(tuán)第二師二十七團(tuán)加工番茄田間試驗(yàn)中, 施加我們篩選出的農(nóng)作物病害土傳拮抗微生物, 顯著降低了當(dāng)季瓜列當(dāng)?shù)募纳鷶?shù)量, 表現(xiàn)在列當(dāng)出土數(shù)量顯著減少(列當(dāng)出土數(shù)量與對(duì)照相比降低了68.7%), 從而減輕了當(dāng)季列當(dāng)對(duì)加工番茄的危害, 最終使得加工番茄增產(chǎn)57.0%。2017年采用同樣的方式處理, 我們觀察到在育苗階段施加拮抗放線菌劑對(duì)加工番茄幼苗有顯著促生作用。具體試驗(yàn)結(jié)果將于2017年試驗(yàn)結(jié)束后另行報(bào)道。篩選出的微生物對(duì)于瓜列當(dāng)?shù)姆莱饔迷谏陥?bào)國家發(fā)明專利的同時(shí), 已經(jīng)由位于陜西省三原縣的博秦生物工程有限公司完成工廠化菌劑生產(chǎn), 初步具備大面積推廣應(yīng)用的條件。
列當(dāng)雜草已經(jīng)嚴(yán)重制約許多地區(qū)農(nóng)業(yè)的發(fā)展, 尋找有效的防除途徑迫在眉睫。由于列當(dāng)與寄主關(guān)系密切且具有特殊的生活史, 傳統(tǒng)措施難以達(dá)到理想防除效果。目前, 尚無既能有效防除列當(dāng)又不對(duì)寄主造成危害且便于大規(guī)模推廣應(yīng)用的措施。在眾多防除措施中, 農(nóng)作物病害土傳拮抗微生物具有明顯的優(yōu)勢(shì)。在今后的研究中, 建議加強(qiáng)以下幾個(gè)方面的研究:
1)擴(kuò)大篩選范圍, 從農(nóng)作物病害土傳拮抗微生物中篩選列當(dāng)?shù)臐撛谏谰?。農(nóng)作物病害土傳拮抗微生物中存在具有防除列當(dāng)雜草功能的菌株, 但目前仍缺乏農(nóng)作物病害土傳拮抗微生物尤其是放線菌防除列當(dāng)?shù)膱?bào)道。具有防治植物土傳病害功能的土壤微生物很多, 從這類微生物中繼續(xù)篩選列當(dāng)?shù)纳谰暧型业接行Х莱挟?dāng)雜草的微生物。
2)加強(qiáng)農(nóng)作物病害土傳拮抗微生物防除列當(dāng)機(jī)理的研究。目前, 拮抗微生物防除列當(dāng)?shù)臋C(jī)理尚不十分明確。土壤中微生物與植物生長(zhǎng)關(guān)系密切。拮抗微生物是通過直接對(duì)列當(dāng)產(chǎn)生作用還是通過影響寄主的生長(zhǎng)或根系分泌物來間接防除列當(dāng)尚不得而知。研究拮抗微生物防除列當(dāng)?shù)臋C(jī)理有助于將拮抗微生物應(yīng)用于實(shí)際農(nóng)田生產(chǎn)中列當(dāng)?shù)姆莱?/p>
3)強(qiáng)化拮抗微生物與其他列當(dāng)防除措施結(jié)合防除列當(dāng)雜草的研究。單一措施防除列當(dāng)往往難以達(dá)到理想的防除效果, 采用將拮抗微生物與其他措施結(jié)合的方式防除列當(dāng)?shù)男Ч赡軆?yōu)于單一列當(dāng)防除措施。
[1] Joel D M, Hershenhorn J, Eizenberg H, et al. Biology and Management of Weedy Root Parasites[M]. Horticultural Reviews-westport Then New York, 2007, 33: 267
[2] Abang M M, Bayaa B, Abu-Irmaileh B, et al. A participatory farming system approach for sustainable broomrape (spp.) management in the Near East and North Africa[J]Crop Protection, 2007, 26(12): 1723?1732
[3] 龐俊峰, 馬德寧, 王德壽, 等. 向日葵列當(dāng)生物學(xué)特性及抗列當(dāng)向日葵分子育種研究進(jìn)展[J]. 生物技術(shù)進(jìn)展, 2012, 2(6): 391?396 Pang J F, Ma D N, Wang D S, et al. The biological characteristics of sunflower broomrape and research progress on anti-broomrape molecular breeding[J]. Current Biotechnology, 2012, 2(6): 391?396
[4] Cochavi A, Rubin B, Smirnov E, et al. Factors affecting Egyptian Broomrape () control in carrot[J]. Weed Science, 2016, 64(2): 321?330
[5] Fenández-Aparicio M, Sillero J C, Rubiales D. Intercropping with cereals reduces infection byin legumes[J].Crop Protection, 2007, 26(8): 1166?1172
[6] Trabelsi I, Yoneyama K, Abbes Z, et al. Characterization of strigolactones produced byandresistant faba bean (L.) genotypes and effects of phosphorous, nitrogen, and potassium deficiencies on strigolactone production[J]. South African Journal of Botany, 2017, 108: 15?22
[7] Tan A. Sunflower (L.) researches in the Aegean region of Turkey[J]. Helia, 2010, 33(53): 77?84
[8] Klein O, Kroschel J. Biological control ofspp. with, a review[J]. BioControl, 2002, 47(3): 245?277
[9] Hristeva T, Dekalska T, Denev L. Structural and functional of biodiversity of microbial communities in the rhizosphere of plants infected with broomrapes (Orobanchaceae)[J]. Biotechnology and Biotechnological Equipment, 2013, 27(5): 4082?4086
[10] Nemat Alla M M, Shabana Y M, Serag M M, et al. Granular formulation offor biological control of faba bean and tomato[J]. Pest Management Science, 2008, 64(12): 1237?1249
[11] Mabrouk Y, Zourgui L, Sifi B, et al. Some compatiblestrains in peas decrease infections when parasitised by[J]. Weed Research, 2007, 47(1): 44?53
[12] Louarn J, Carbonne F, Delavault P, et alReduced germination ofseeds in the presence of arbuscular mycorrhizal fungi or their exudates[J]PLoS One, 2012, 7(11): e49273
[13] Parker C. Observations on the current status ofandproblems worldwide[J]Pest Management Science, 2009, 65(5): 453?459
[14] Sauerborn J. The economic importance of the phytoparasitesand[C]. Proceedings of the 5th International Symposium of Parasitic Weeds. Nairobi, Kenya, 1991: 137?143
[15] Parker C. The parasitic weeds of the Orobanchaceae[M]. Parasitic Orobanchaceae. Springer, 2013: 313?344
[16] Parker C. The present state of theproblem[C]. Biology and Management of. Proceedings of the third international workshop one and relatedresearch, Amsterdam, Netherlands. Royal Tropical Institute, 1994: 17?26
[17] Ghannam I, Al-Masri M, Barakat R. The effect of herbicides on the Egyptian broomrape () in tomato fields[J]. American Journal of Plant Sciences, 2012, 3(3): 346?352
[18] 段永輝, 張新建, 陳衛(wèi)民. 48%仲丁靈乳油防除向日葵列當(dāng)效果研究[J]. 現(xiàn)代農(nóng)業(yè)科技, 2010, (11): 154?155Duan Y H, Zhang X J, Chen W M. Study on control effect of 48% butralin EC againstLoefling[J]Modern Agricultural Science and Technology, 2010, (11): 154?155
[19] Aly R, Goldwasser Y, Eizenberg H, et al. Broomrape () control in sunflower () with Imazapic 1[J]. Weed Technology, 2001, 15(2): 306?309
[20] Pérez-de-Luque A, Eizenberg H, Grenz J H, et al. Broomrape management in faba bean[J]. FieldCrops Research, 2010, 115(3): 319?328
[21] Fernandez-Aparicio M, Sillero J C, Rubiales D. Intercropping with cereals reduces infection byin legumes[J]. Crop Protection, 2007, 26(8): 1166?1172
[22] Ma Y Q, Jia J N, An Y. Potential of some hybrid maize lines to induce germination of sunflower broomrape[J]. Crop Science, 2013, 53(1): 260?270
[23] Habimana S, Murthy K, Hatti V, et al. Management ofin field crops—A review[J]. Scientific Journal of Crop Science, 2013, 2(11): 144?158
[24] Grenz J, Manschadi A, Uygur F, et al. Effects of environment and sowing date on the competition between faba bean () and the parasitic weed[J]. Field Crops Research, 2005, 93(2): 300?313
[25] Ashrafi Z, Hassan M, Mashhadi H, et al. Applied of soil solarization for control of Egyptian broomrape () on the cucumber () in two growing seasons (in Iran)[J]. Journal of Agricultural Technology, 2009, 5(1): 201?212
[26] Thomas H, Sauerborn J, Müller-St?ver D, et al. The potential off. sp.as a biological control agent forin sunflower[J]. Biological Control, 1998, 13(1): 41?48
[27] Boari A, Vurro M. Evaluation ofspp. and other fungi as biological control agents of broomrape ()[J]. Biological Control, 2004,30(2): 212?219
[28] Dor E, Hershenhorn J, Andolfi A, et al.as a new pathogen of the parasitic weedspp.[J]. Phytoparasitica, 2009, 37(4): 361?370
[29] Zermane N, Souissi T, Kroschel J, et al. Biocontrol of broomrape (Forsk. andPoir.) byisolate Bf7-9 from the faba bean rhizosphere[J]. Biocontrol Science and Technology, 2007, 17(5): 483?497
[30] Müller-St?ver D, Kroschel J. The potential offor biological control ofspp.[J]. Biological Control, 2005, 33(3): 301?306
[31] Aybeke M, ?en B, ?kten S., a new potential biological control of the root parasitic weed[J]. Journal of Basic Microbiology, 2014, 54(S1): S93?S101
[32] Dor E, Hershenhorn J. Evaluation of the pathogenicity of microorganisms isolated from Egyptian broomrape () in Israel[J]. Weed Biology and Management, 2009, 9(3): 200?208
[33] Logrieco A, Mule G, Moretti A, et al. Toxigenicspecies and mycotoxins associated with maize ear rot in Europe[J]. European Journal of Plant Pathology, 2002, 108(7): 597?609
[34] Bouraoui M, Abbes Z, Rouissi M, et al. Effect of rhizobia inoculation, N and P supply onparasitising faba bean (minor) under field conditions[J]. Biocontrol Science and Technology, 2016, 26(6): 776?791
[35] Fernández-Aparicio M, Garcia-Garrido J M, Ocampo J A, et al. Colonisation of field pea roots by arbuscular mycorrhizal fungi reducesandspecies seed germination[J]. Weed Research, 2010, 50(3): 262?268
[36] El-Kassas R, El-Din Z K, Beale M H, et al. Bioassay-led isolation ofand verrucarin A as germination inhibitors of[J]. Weed Research, 2005, 45(3): 212?219
[37] Gonsior G, Buschmann H, Szinicz G,et al. Induced resistance—an innovative approach to manage branched broomrape () in hemp and tobacco[J]. Weed Science, 2004, 52(6): 1050?1053
[38] Barghouthi S, Salman M. Bacterial inhibition ofandradical elongation[J]. Biocontrol Science and Technology, 2010, 20(4): 423?435
[39] Dadon T, Nun N B, Mayer A M. A factor frominhibits germination and radicle growth of[J]. Israel Journal of Plant Sciences, 2004, 52(2): 83?86
[40] Miché L, Bouillant M L, Rohr R, et al. Physiological and cytological studies on the inhibition ofseed germination by the plant growth-promoting bacterium[J]. European Journal of Plant Pathology, 2000, 106(4): 347?351
[41] Cimmino A, Fernández-Aparicio M, Andolfi A, et al. Effect of fungal and plant metabolites on broomrapes (andspp.) seed germination and radicle growth[J]. Journal of Agricultural and Food Chemistry, 2014, 62(43): 10485?10492
[42] Mabrouk Y, Simier P, Arfaoui A, et al. Induction of phenolic compounds in pea (L.) inoculated byand infected with[J]. Journal of Phytopathology, 2007,155(11-12): 728?734
[43] Fernández-Aparicio M, Cimmino A, Evidente A, et al. Inhibition ofseed germination and radicle growth by allelochemicals identified in cereals[J]. Journal of Agricultural and Food Chemistry, 2013, 61(41): 9797?9803
[44] Dor E, Evidente A, Amalfitano C, et al. The influence of growth conditions on biomass, toxins and pathogenicity off. sp., a potential agent for broomrape biocontrol[J].Weed Research, 2007, 47(4): 345?352
[45] Mabrouk Y, Mejri S, Hemissi I, et al. Bioprotection mechanisms of pea plant byagainst[J]. African Journal of Microbiology Research, 2010, 4(23): 2570?2575
[46] Brahmi I, Mabrouk Y, Brun G, et al. Phenotypical and biochemical characterisation of resistance for parasitic weed (Poir.) in radiation-mutagenised mutants of chickpea[J]. Pest Management Science, 2016, 72(12): 2330?2338
[47] Mabrouk Y, Simier P, Delavault P, et al. Molecular and biochemical mechanisms of defence induced in pea byagainst[J]. Weed Research, 2007, 47(5): 452?460
[48] Crews L J, McCully M E, Canny M J. Mucilage production by wounded xylem tissue of maize roots-time course and stimulus[J]. Functional Plant Biology, 2003, 30(7): 755?766
[49] Lewis J, Barksdale T, Papavizas G. Greenhouse and field studies on the biological control of tomato fruit rot caused by[J]. Crop Protection, 1990, 9(1): 8?14
[50] Hammerschmidt R, Nuckles E, Ku? J. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to[J]. Physiological Plant Pathology, 1982, 20(1): 73?82
[51] Pérez-de-Luque A, González-Verdejo C I, Lozano M D, et al. Protein cross-linking, peroxidase and β-1, 3-endoglucanase involved in resistance of pea against[J]. Journal of Experimental Botany, 2006, 57(6): 1461?1469
[52] Akimova G, Sokolova M, Nechayeva L, et al. Peroxidase in the interactions between pea plants and Rhizobium[M]. Doklady Biological Sciences. Springer,2002: 364?366
[53] Demirba? S, Acar O. Superoxide dismutase and peroxidase activities from antioxidative enzymes inL. roots duringWallr. penetration[J]. Fresenius Environmental Bulletin, 2008, 17(8): 1038?1044
[54] Hammond-Kosack K E, Jones J. Resistance gene- dependent plant defense responses[J]. The Plant Cell, 1996, 8(10): 1773?1791
[55] Goldwasser Y, Hershenhorn J, Plakhine D, et al. Biochemical factors involved in vetch resistance to[J]. Physiological and Molecular Plant Pathology, 1999, 54(3): 87?96
[56] Boari A, Ciasca B, Pineda-Martos R, et al. Parasitic weed management by using strigolactones-degrading fungi[J]. Pest Management Science, 2016, 11(72): 2043?2047
[57] Bever J D. Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests[J]. New Phytologist, 2003, 157(3): 465?473
[58] 張淑梅, 王玉霞, 趙曉宇, 等. 生物拌種劑防治大豆根腐病效果和機(jī)制[J]. 大豆科學(xué), 2009, 28(5): 863?868 Zhang S M, Wang Y X, Zhao X Y, et al. Efficacy and mechanism of biological seed coating agent against soybean root rot disease caused byf. sp.[J]Soybean Science, 2009, 28(5): 863?868.
[59] Bailey B, Lumsden R. Direct effects ofandon plant growth and resistance to pathogens[J]. Trichoderma and Gliocladium, 1998, 2: 185?204
[60] Chen J, Xue Q H, McErlean C S P, et al. Biocontrol potential of the antagonistic microorganismagainst[J].BioControl, 2016, 61(6): 781?791
[61] Chen J, Wei J, Gao J M, et al. Allelopathic inhibitory effects ofproduced patulin on the seed germination ofWallr. andPers.[J]. Allelopathy Journal, 2017, 41(1): 65?80
Use of microorganisms in controlling parasitic root weedspp.*
CHEN Jie1,2, MA Yongqing3**, XUE Quanhong1
(1. College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; 2. College of Agriculture, Shanxi Agricultural University, Taigu 030801, China; 3. State Key Laboratory of Soil Erosion and Dryland Farming, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China)
Parasitic root weedspp. has already severely constrained the development of agriculture in many areas around the world and it is therefore urgent to develop effective control measures ofspp. As this parasitic root weed has a specific life cycle and is highly intimate to its host plants, it is difficult to develop an ideal control measure based on traditional practices. Up till now, there has been no measure to effectively controlspp. to make it completely harmless to host plants and easily applicable at large field scale. Among the control measures available, the use of micro-organisms has increased concerns. In this paper, national and global efforts to controlspp. by the use of micro-organisms and the mechanisms of the control measures are summarized. Until now, research on biocontrol ofspp.by the use of micro-organisms has focused on pathogens ofspp., such asspp. and symbiotic bacteria (such asspp.) of host plants. The mechanisms of the use of micro-organisms to controlspp. have involved in two ways: one is to secrete metabolites that directly inhibited the germination and growth ofspp. or to indirectly affect the germination ofspp. by the degradation of the chemical compounds which stimulated the germinationofspp.; another way is to indirectly affect the parasitic behavior and growth ofspp. by enhancing host plant resistance againstspp. Furthermore, the possibility and research advances by the use of soil-borne antagonistic micro-organisms against soil-borne plant pathogens in controlling weedyspp. have been discussed. Both soil-borne plant pathogens andspp. first infected plant roots underground and then damaged normal growth of the plants. Resistances of plants to soil-borne plant diseases were similar to those ofspp. Thus, micro-organisms that isolated from soils and controlled soil-borne plant diseases may also have the potential to control parasitic root weedspp. We screened out one actinomycete strain (Sveshnikova) and one actinomycete strain (Bhuyan B.K.) from soil-borne mic-organisms that against soil-borne plant diseases. These two strains effectively controlledWallr. andPers., respectively, in pot experiments. The application ofinoculum in field experiment reduced the epigaeous number ofand increased the yield of tomato, simultaneously. In conclusion, the use of micro-organisms to control parasitic root weedspp. is an effective measure.
spp.; Parasitic weed; Biocontrol; Micro-organisms; Soil-borne micro-organism; Soil-borne disease
Corresponding author, E-mail: mayongqing@ms.iswc.ac.cn
May 31, 2017; accepted Jul. 26, 2017
10.13930/j.cnki.cjea.170500
Q939.96
A
1671-3990(2018)01-0049-08
通信作者:馬永清, 主要研究方向?yàn)榧纳参锱c植物化感作用。E-mail: mayongqing@ms.iswc.ac.cn 陳杰, 主要研究方向?yàn)橥寥牢⑸铩-mail: chenjie03306@163.com
2017-05-31
2017-07-26
*This study was supported by the Science and Technology Plan for the Field of Agriculture and Social Development by the Xinjiang Production and Construction Corps (2016AC007).
*新疆生產(chǎn)建設(shè)兵團(tuán)農(nóng)業(yè)與社會(huì)發(fā)展領(lǐng)域科技計(jì)劃項(xiàng)目(2016AC007)資助
陳杰, 馬永清, 薛泉宏. 利用微生物防除根寄生雜草列當(dāng)[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào), 2018, 26(1): 49-56
CHEN J, MA Y Q, XUE Q H. Use of microorganisms in controlling parasitic root weedspp.[J]. Chinese Journal of Eco-Agriculture, 2018, 26(1): 49-56