喬春連 布仁巴音
(1 信陽(yáng)師范學(xué)院大別山生物農(nóng)業(yè)資源開(kāi)發(fā)與利用研究院,河南信陽(yáng) 464000)
(2 河南大學(xué)河南省全球變化生態(tài)學(xué)國(guó)際聯(lián)合實(shí)驗(yàn)室,河南開(kāi)封 475004)
(3 信陽(yáng)師范學(xué)院分析測(cè)試中心,河南信陽(yáng) 464000)
茶(Camellia sinensisL.Kuntze)作為全球最重要的健康飲品之一,廣泛種植于熱帶和亞熱帶地區(qū),尤其是東亞和南亞等發(fā)展中國(guó)家,具有重要的社會(huì)、經(jīng)濟(jì)和文化價(jià)值[1]。我國(guó)的茶種植歷史悠久,作為世界第一產(chǎn)茶大國(guó),至2013年種植面積已達(dá)2.58×106hm2,產(chǎn)量達(dá)1.92×106t,分別占世界總量的47%和35%[2]。茶樹(shù)為多年生喜銨植物,因采摘用葉使茶樹(shù)組織中氮素消耗很大,為高需氮植物。茶園施氮量通常在N450~1200 kg hm-2a-1[3-5]。隨著工業(yè)合成氮肥施用量的上升,土壤微生物的硝化反應(yīng)加速,以淋溶和氣態(tài)含氮化合物形式流失的活性氮上升,在很大程度上干擾了氮的生物地球化學(xué)循環(huán),引發(fā)全球水體、大氣和土壤方面一系列嚴(yán)重的環(huán)境問(wèn)題[6-8]。我國(guó)約66%的N2O排放是由農(nóng)田氮肥施用引起的,造成了全國(guó)62%的淡水區(qū)域產(chǎn)生嚴(yán)重富營(yíng)養(yǎng)化[9-10],使密集農(nóng)業(yè)區(qū)大氣氮沉降高達(dá)89~104 kg hm-2a-1[11],這進(jìn)一步導(dǎo)致了土壤嚴(yán)重酸化和土壤中鈣鎂等營(yíng)養(yǎng)元素的大量流失。
盡管施用氮肥可顯著提高茶葉產(chǎn)量[12-14],但由于茶樹(shù)多生長(zhǎng)于高熱高濕、透水性良好的酸性土壤,大量施用合成氮肥可能導(dǎo)致土壤pH進(jìn)一步降低[15-16]。我國(guó)南方植茶區(qū)生長(zhǎng)季降水頻率高且降水量大,土壤酸化及養(yǎng)分流失,影響茶樹(shù)根系的生長(zhǎng)及土壤微生物的活性[17]。福建茶園土柱淋濾實(shí)驗(yàn)顯示,隨著氮肥施用量的增加,土壤銨態(tài)氮和硝態(tài)氮的淋溶量均顯著上升[16]。據(jù)估算,中國(guó)的茶園生態(tài)系統(tǒng)N2O排放約占世界茶園N2O排量的85%[18],且隨著茶樹(shù)樹(shù)齡的增加,土壤酸化逐漸加劇,使N2O排放也呈顯著的上升趨勢(shì)[19,4-5],導(dǎo)致茶園生態(tài)環(huán)境的持續(xù)惡化。我國(guó)南方茶樹(shù)種植區(qū)域廣,氮肥施用劑量高,目前就合成氮肥對(duì)茶園生態(tài)系統(tǒng)的影響仍缺乏準(zhǔn)確的認(rèn)識(shí)。因此,本研究搜集茶園模擬合成氮肥實(shí)驗(yàn),開(kāi)展整合分析(Meta-analysis),旨在量化和評(píng)估合成氮肥對(duì)不同茶樹(shù)建植的茶園土壤養(yǎng)分供應(yīng)和活性氮流失的影響,為我國(guó)茶園氮肥的科學(xué)管理和生態(tài)環(huán)境的可持續(xù)發(fā)展提供初步的理論依據(jù)。
本研究在Web of Sciences(2004—2016)、谷歌學(xué)術(shù)、中國(guó)知網(wǎng)上搜集公開(kāi)發(fā)表的中國(guó)茶園開(kāi)展的模擬合成氮肥施用的研究論文。研究必須滿足以下條件:(1)基于茶園生態(tài)系統(tǒng)開(kāi)展的,遵循茶園常規(guī)管理,(2)至少有兩個(gè)氮肥施用劑量,(3)相關(guān)的指標(biāo)在研究中有準(zhǔn)確的測(cè)定。對(duì)滿足條件的研究數(shù)據(jù)進(jìn)行提取,共評(píng)估了合成氮肥對(duì)15個(gè)相關(guān)指標(biāo)的影響:(1)土壤基本情況:土壤pH、土壤有機(jī)碳(SOC)、全氮(TN);(2)土壤速效養(yǎng)分供應(yīng):總無(wú)機(jī)氮(DIN)、有效磷濃度、K+、Ca2+、Mg2+、Al3+濃度;(3)活性氮的流失:N2O 排放、DIN淋溶、淋溶和淋溶。對(duì)于文獻(xiàn)中以圖片形式呈現(xiàn)的數(shù)據(jù)使用Engauge Digitizer(Free Software Foundation,Inc.,Boston,MA,USA)軟件進(jìn)行數(shù)字化處理,并盡量按照同一標(biāo)準(zhǔn)降低人工處理過(guò)程中造成數(shù)據(jù)的誤差。
通過(guò)搜集2004—2016年間的17篇關(guān)于我國(guó)茶園氮肥施用影響茶園土壤養(yǎng)分供應(yīng)和活性氮流失的文獻(xiàn),獲取到246條數(shù)據(jù)記錄。對(duì)于土壤養(yǎng)分,有效磷和K+濃度等用茶樹(shù)每個(gè)茶季的平均值表示。對(duì)于有較大季節(jié)變化的變量,如淋溶、淋溶和DIN的淋溶及N2O的排放等指標(biāo),用整個(gè)茶季的累計(jì)值來(lái)表示。由于整合分析模型要求數(shù)據(jù)的獨(dú)立性,如研究中包含同一地點(diǎn)的多個(gè)茶季的數(shù)據(jù),提取最后一個(gè)茶季的數(shù)據(jù)進(jìn)行整合分析[20]。如果同一個(gè)實(shí)驗(yàn)中設(shè)有不同氮肥類(lèi)型或施氮水平,視為獨(dú)立觀測(cè)值處理。
響應(yīng)比(Response Ratio,RR)用來(lái)衡量施用氮肥對(duì)評(píng)估變量的效應(yīng)[21]。每個(gè)變量響應(yīng)比的自然對(duì)數(shù)用以下公式計(jì)算:lnRR=ln(XT/XC),其中,XC為對(duì)照均值(未施用氮肥組),XT為處理組均值。本研究采用重取樣方法、95%的置信區(qū)間來(lái)估算響應(yīng)比的均值。響應(yīng)比的 95%置信區(qū)間(95%CI)與1沒(méi)有交疊表明變量有顯著的正效應(yīng)或負(fù)效應(yīng),變量間95% CI無(wú)交疊表明差異顯著,反之則認(rèn)為變量間不存在顯著差異。
當(dāng)酸性土壤的pH低于5.5,將制約農(nóng)業(yè)生態(tài)系統(tǒng)的生產(chǎn)力[22]。而作為一種耐酸植物,茶樹(shù)的最適生長(zhǎng)pH范圍是5.0~5.6[23]。已搜集到的茶園數(shù)據(jù)顯示對(duì)照組土壤平均pH為 4.86,低于茶樹(shù)生長(zhǎng)的最適pH范圍,合成氮肥使茶園pH約降低了0.20(-0.27~-0.15),加劇了茶園土壤的酸性。對(duì)于種植綠茶、紅茶和烏龍茶樹(shù)種的3種土壤,合成氮肥均使pH顯著降低(表1),且茶樹(shù)種間無(wú)顯著差異(p>0.05,表1)。茶園土壤的酸化與土壤交換性鋁與鋁絡(luò)合物的增加以及土壤鹽基的淋溶密切相關(guān)[24]。以往研究表明,土壤硝化反應(yīng)的加速,是由于H+作為中間產(chǎn)物大量產(chǎn)生,導(dǎo)致土壤酸化[25];另一方面大量的淋失導(dǎo)致鹽基離子的流失,使土壤緩沖系統(tǒng)中的H+進(jìn)一步釋放出來(lái)[23-26]。
合成氮肥施用對(duì)土壤有機(jī)碳含量無(wú)顯著影響(圖1)。對(duì)于種植不同茶樹(shù)類(lèi)型的土壤,合成氮肥使種植綠茶的土壤中有機(jī)碳顯著升高了15%(7%~24%,表1),而對(duì)烏龍茶茶園土壤有機(jī)碳影響不顯著(表1)。合成氮肥施用情況下,土壤全氮含量顯著升高了18%(10%~27%,圖1)。盡管合成氮肥施用引起的土壤酸化在一定程度上抑制茶樹(shù)的生長(zhǎng),影響茶園生態(tài)系統(tǒng)的健康發(fā)展[27],本研究結(jié)果可見(jiàn),茶樹(shù)產(chǎn)量的升高主要是由土壤中氮供應(yīng)量的上升決定的。由于已有研究文獻(xiàn)數(shù)據(jù)量的限制,本研究尚無(wú)法評(píng)估種植不同類(lèi)型茶樹(shù)的土壤全氮的響應(yīng)差異。
土壤中磷和鉀元素也是茶樹(shù)正常生長(zhǎng)的關(guān)鍵元素[27]。已有研究顯示,施用氮肥可能加劇土壤中磷和鉀元素的匱乏[28-29]。而本研究顯示,施用合成氮肥總體上對(duì)土壤有效磷和K+的供應(yīng)沒(méi)有顯著影響(圖1)。土壤Ca2+和Mg2+濃度分別降低了23%(-30%~-16%)和37%(-48%~-24%),Al3+濃度升高了54%(38%~69%)(圖1)。鈣鎂不僅是植物生長(zhǎng)的必須元素,Ca2+和Mg2+也是重要的緩沖離子。在高氮輸入情況下,隨著土壤的酸化,大量H+將Ca2+和Mg2+置換出來(lái),兩者隨著的淋溶而大量流失[24]。氮肥添加導(dǎo)致的Ca2+和Mg2+濃度顯著降低將直接影響土壤緩沖能力,加劇土壤pH的降低(圖1)。土壤中Al3+對(duì)植物的毒性和生長(zhǎng)抑制作用已被廣泛證明[30-31],外源氮肥添加使茶園土壤Al3+大量累積可能抑制茶樹(shù)的生長(zhǎng),阻礙茶葉產(chǎn)量的形成。
隨著氮肥施用量的上升,土壤微生物的硝化和反硝化反應(yīng)加劇,土壤中活性氮?dú)怏w污染物和水溶性無(wú)機(jī)氮淋溶量上升[32],導(dǎo)致我國(guó)農(nóng)業(yè)生態(tài)系統(tǒng)中大量活性氮以含氮污染物形式流失[11]。合成氮肥被認(rèn)為是N2O排放的主要的貢獻(xiàn)源[33-34]。本研究結(jié)果顯示,合成氮肥使我國(guó)茶園土壤活性氮流失顯著升高,其中N2O排放平均上升292%(140%~575%)。有研究發(fā)現(xiàn),有外源氮添加的茶園生態(tài)系統(tǒng)中土壤硝化反應(yīng)是N2O的主要來(lái)源,土壤酸化程度控制著土壤N2O 排放速率[19]。15N示蹤實(shí)驗(yàn)顯示,當(dāng)林地轉(zhuǎn)化為茶園后,土壤微生物的硝化過(guò)程加速,而微生物對(duì)硝態(tài)氮的固持顯著降低,導(dǎo)致低銨高硝的土壤環(huán)境,不利于茶樹(shù)的生長(zhǎng)[35]。在施氮情況下,茶園土壤的進(jìn)一步酸化將加劇N2O的排放[19]。由于N2O較高的全球增溫潛能[36],持續(xù)增加N2O的排放將極大程度地加快區(qū)域甚至全球尺度的氣候變暖。
氮肥施用使我國(guó)茶園土壤DIN淋溶總體上升高了127%(55%~206%)、淋溶升高了422%(280%~617%)、淋溶升高了92%(31%~161%)(圖2)。淡水及飲用水資源的硝態(tài)氮污染已成為全球共同關(guān)注和面臨的環(huán)境問(wèn)題之一[34,37]。土壤具有較強(qiáng)的移動(dòng)性,是農(nóng)田系統(tǒng)土壤無(wú)機(jī)氮淋溶液的主要成分[38]。已有研究表明,茶園中土壤的淋溶量隨氮肥施用量的升高而增加,淋溶量約占到系統(tǒng)氮流失量70%~90%[19],活性氮的流失將導(dǎo)致毗鄰系統(tǒng)和地表地下水的污染,危機(jī)飲用水資源和水體物種多樣性的安全。本研究中土壤和數(shù)據(jù)量的限制可能會(huì)降低其結(jié)果的可靠性。因此,當(dāng)前我國(guó)茶園生態(tài)學(xué)研究應(yīng)加強(qiáng)氮循環(huán)和氮肥施用引起的環(huán)境效應(yīng)方面的機(jī)理和應(yīng)用研究。
本研究通過(guò)利用整合分析方法對(duì)文獻(xiàn)數(shù)據(jù)進(jìn)行系統(tǒng)的分析,量化和評(píng)估了合成氮肥對(duì)不同茶樹(shù)的茶園土壤養(yǎng)分供應(yīng)和活性氮流失的影響,為我國(guó)茶園氮肥的科學(xué)管理和生態(tài)環(huán)境的可持續(xù)發(fā)展提供了理論依據(jù)。研究結(jié)果表明,施用合成氮肥總體上加劇了我國(guó)茶園土壤的酸化,顯著提高了土壤全氮及速效氮的供應(yīng),對(duì)土壤有機(jī)碳、速效磷和鉀離子濃度無(wú)影響,使土壤鈣鎂等金屬陽(yáng)離子大量流失,毒性鋁離子富集。同時(shí),合成氮肥施用還導(dǎo)致以N2O和淋溶流失的活性氮量顯著上升,對(duì)大氣和淡水系統(tǒng)造成負(fù)面影響。未來(lái)有必要在我國(guó)茶園生態(tài)系統(tǒng)開(kāi)展長(zhǎng)期的野外原位實(shí)驗(yàn),進(jìn)一步探究合成氮肥施用產(chǎn)生的長(zhǎng)遠(yuǎn)影響及潛在機(jī)制。
致 謝 對(duì)本文數(shù)據(jù)庫(kù)涉及的文獻(xiàn)作者表示由衷的感謝!
[1] Chang K. World tea production and trade:Current and future development. A publication by the Food and Agricultural Organization of the United Nations,Rome.(2016-05-29)[2017-09-18]. http://www. fao. org
[2] FAO. Current situation of tea production and marketing in China. Report for the 21st session of fao-igg on tea. (2014)[2017-09-18]. www. fao. org/. . . /IGGtea21/14-CRS4-MarketReportChinaFullReport. pdf
[3] Li S X,Wang Z H,StewartA. Responses of crop plants to ammonium and nitrate//Advances in agronomy. New York:Academic Press,2013:205—397
[4] Tokuda S,Hayatsu M. Nitrous oxide emission potential of 21 acidic tea field soils in Japan. Soil Science and Plant Nutrition,2001,47(3):637—642
[5] Tokuda S,Hayatsu M. Nitrous oxide flux from a tea field amended with a large amount of nitrogen fertilizer and soil environmental factors controlling the flux. Soil Science And Plant Nutrition,2004,50(3):365—374
[6] Davidson E,David M,Galloway J,et al. Excess nitrogen in the US environment:Trends,risks,and solutions. Issues in Ecology,2012,15:1—16
[7] De Vries F T,Hoffland E,van Eekeren N,et al.Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biology & Biochemistry,2006,38(8):2092—2103
[8] Fowler D,Coyle M,Skiba U,et al. The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B—Biological Sciences,2013,368(1621):1—13
[9] Ju X T,Liu X J,Zhang F S,et al. Nitrogen fertilization,soil nitrate accumulation,and policy recommendations in several agricultural regions of China. Ambio:A Journal of the Human Environment,2004,33(6):300—305
[10] Le C,Zha Y,Li Y,et al. Eutrophication of lake waters in china:Cost,causes,and control. Environmental Management,2010,45(4):662—668
[11] Ju X T,Xing G X,Chen X P,et al. Reducing environmental risk by improving Nmanagement in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences,2009,106(9):3041—3046
[12] Owuor P O,Cheruiyot D K A. Effects of nitrogen fertilizers on the aluminium contents of mature tea leaf and extractable aluminium in the soil. Plant and Soil,1989,119(2):342—345
[13] Ruan J,Haerdter R,Gerendás J. Impact of nitrogen supply on carbon/nitrogen allocation:A case study on amino acids and catechins in green tea [Camellia sinensis(L. )o. Kuntze] plants. Plant Biology,2010,12(5):724—734
[14] Venkatesan S,Ganapathy M N K. Impact of nitrogen and potassium fertiliser application on quality of ctc teas. Food Chemistry,2004,84(3):325—328
[15] Alekseeva T,Alekseev A,Xu R,et al. Effect of soil acidification induced by a tea plantation on chemical and mineralogical properties of alfisols in eastern China.Environmental Geochemistry and Health,2011,33(2):137—148
[16] 陳玉真,王峰,尤志明,等. 不同施氮量對(duì)茶園土壤氮淋失的影響. 福建農(nóng)業(yè)學(xué)報(bào),2015,30(4):394—399 Chen Y Z,Wang F,You Z M,et al. Effects of different application levels on nitrogen leaching in tea garden soil(In Chinese). Fujian Journal of Agricultural Sciences,2015,30(4):394—399
[17] 阮建云,馬立鋒,石元值. 茶樹(shù)根際土壤性質(zhì)及氮肥的影響. 茶葉科學(xué),2004,23(2):167—170 Ruan J Y,Ma L F,Shi Y Z,Properties of rhizosphere soil of tea plants and the impact of nitrogen fertilizer(In Chinese). Journal of Tea Science,2004,23(2):167—170
[18] Li Y,Zheng X,F(xiàn)u X,et al. Is green tea still ‘green’?Geo:Geography and Environment,2016,3(2),DOI:10. 1002/geo2. 21
[19] Cheng Y,Wang J,Zhang J,et al. Mechanistic insights into the effects of n fertilizer application on N2O-emission pathways in acidic soil of a tea plantation.Plant and Soil,2015,389(1/2):45—57
[20] Liu L L,Greaver T L. A global perspective on belowground carbon dynamics under nitrogen enrichment.Ecology Letters,2010,13(7):819—828
[21] Hedges L V,Gurevitch J,Curtis P S. The metaanalysis of response ratios in experimental ecology.Ecology,1999,80(4):1150—1156
[22] Kochian L V,Hoekenga O A,Pineros M A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annual Review of Plant Biology,2004,55(1):459—493
[23] Owuor P O,Othieno C O,Robinson J M,et al.Response of tea quality parameters to time of year and nitrogen fertiliser. Journal of the Science of Food and Agriculture,1991,55(1):1—11
[24] 丁瑞興,黃驍. 茶園-土壤系統(tǒng)鋁和氟的生物地球化學(xué)循環(huán)及其對(duì)土壤酸化的影響. 土壤學(xué)報(bào),1991,28(3):229—236 Ding R X,Huang X. Biochemical cycle of aluminium and fluorine in tea garden soil system and its relationship to soil acidification(In Chinese). Acta Pedologica Sinica,1991,28(3):229—236
[25] Li SX,Wang ZH,Stewart BA. Responses of crop plants to ammonium andnitrate N//Donald L. Advances in agronomy. New York:Academic Press,2013:205—397
[26] Bowman W D,Cleveland C C. Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience,2008,1(11):767—770
[27] Ruan J L,Sattelmacher B. Effect of nitrogen form and root-zone pHon growth and nitrogen uptake of tea(Camellia sinensis)plants. Annals of Botany,2007,99(2):301—310
[28] Li Y,Niu S,Yu G. Aggravated phosphorus limitation on biomass production under increasing N addition:A meta-analysis. Global Change Biology,2016,22(2):934—943
[29] Ruan J,Ma L,Shi Y. Potassium management in tea plantations:Its uptake by field plants,status in soils,and efficacy on yields and quality of teas in China.Journal of Plant Nutrition and Soil Science,2013,176(3):450—459
[30] Ma J F,Ryan P R,Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science,2001,6(6):273—278
[31] Shaojian Z. Crop production on acidic soils:Overcoming aluminium toxicity and phosphorus deficiency. Annals of Botany,2010,106(1):183—184
[32] Aber J,McDowell W,Nadelhoffer K,et al. Nitrogen saturation in temperate forest ecosystems. Bioscience,1998,48(11):921—934
[33] Liu L L,Greaver T L. A review of nitrogen enrichment effects on three biogenic GHGs:The CO2sink may be largely offset by stimulated N2O and CH4emission.Ecology Letters,2009,12(10):1103—1117
[34] Sutton M A,Howard C M,Erisman J W,et al. The european nitrogen assessment:Sources,effects and policy perspectives. Cambridge,United Kingdom:Cambridge University Press,2011
[35] Zhu T,Zhang J,Meng T,et al. Tea plantation destroys soil retention ofand increases N2O emissions in subtropical China. Soil Biology & Biochemistry,2014,73:106—114
[36] IPCC. Working group III contribution to the fourth assessment report of the intergovernmental panel on climate change//Climate change 2007:Mitigation of climate change. Cambridge,United Kingdom and New York,USA,Cambridge University Press,2007
[37] Zhang W,Tian Z,Zhang N,et al. Nitrate pollution of groundwater in northern china. Agriculture,Ecosystems and Environment,1996,59(3):223—231
[38] Smil V. Nitrogen in crop production:An account of global flows. Global Biogeochemical Cycles,1999,13(2):647—662