• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Initial Water Content on Synthesis of Silicalite-1 Zeolite

    2018-01-19 08:18:43ZhangHonghanZhangShanheWangHaorenLiChunyi
    中國煉油與石油化工 2017年4期

    Zhang Honghan; Zhang Shanhe; Wang Haoren; Li Chunyi

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580)

    1 Introduction

    Water, one of the most influential factors in the synthesis of ZSM-5 zeolite, can powerfully affect the physicochemical properties of the zeolite[1]. A higher water content of the reaction mixture usually can lead to larger crystals and yield spherical monocrystalline product[2]. Petrik, et al.[3]showed clearly that the water content can significantly affect the acidity and catalytic performance of ZSM-5 zeolite. As the Al-free MFI-type zeolite, silicalite-1 zeolite has weak water affinity, but Turov, et al.[4]indicated that the existence of defect sites,such as hydroxyl groups, may significantly influence the adsorption of water molecules. In addition, it was found that pre-adsorption of water on silicalite-1 zeolite changed the intracrystalline diffusivity of small molecules[5].However, there is little literature talking about the in fl uence of initial water content, especially about the pore size distribution or the generation of hierarchical pores.

    Hierarchical pores zeolites, especially the micro/mesoporous zeolitic composites, have attracted increasing attention because of its good shape selectivity and mass transfer ability[6]. There are many strategies relating to synthesizing the hierarchical silicalite-1 zeolites,which can be divided into two groups, viz.: the bottomup methods and the top-down strategies[7]. The bottom-

    up approaches often unlock new types of synthetic possibilities and yield zeolites with exceptional features,but these methods involve expensive organics, such as tetra-alkylammonium cations, and the cost concerns make them less attractive[8]. The top-down strategies cover dealumination by acid treatment and desilication by base treatment, which have the intrinsic advantage of nonorganic fingerprint. Nevertheless, the top-down strategies have many unfavorable features. Verboekend, et al.[9]used aqueous NaOH on ZSM-22 zeolite to gain mesoporous structure, but it lost much solid. It reported that the mesostructured zeolite can be obtained by NH4OH treatment, but a pore-directing agent is necessary[10].Such methods for synthesizing the ordered or disordered hierarchical pores zeolites have respectively relative merits, however, the cheap and simple strategies to realize the zeolite synthesis are always in the spotlight[11-17].

    As a sort of traditional catalyst applied in MTP reaction,HZSM-5 zeolite catalysts have the uniquely excellent properties because of its uniform channel structure, and superior thermal and hydrothermal stability[18]. Besides,the influence of Si/Al ratio on its catalytic performance isalways the research hotspot as well. It was reported that the massive decrease of Al content in HZSM-5 zeolite could effectively reduce the acid density, which notably enhanced the propylene selectivity and the resistance to coke formation on HZSM-5 zeolite in MTP reaction[18-19].In recent years, the silicalite-1 zeolite possesses a more and more important position in the field of shape selectivity catalytic materials. Although the silicalite-1 zeolite is oleophylic and hydrophobic, its surface can generate a certain amount of defects at a certain temperature, and ulteriorly these defects can yield a plentiful of silicon hydroxyl groups with Br?nsted acid sites[20]. It was reported that the silicon hydroxyl nest could function as the active center of Beckmann rearrangement reaction[21-22]. Meng, et al.[20]indicated that Si-ZSM-11 (silicalite-2) could catalyze the transformation of methanol to propene and the author stated that silanol groups were the active sites. Silicalite-1 has the similar skeleton structure and acid property of silicalite-2. So applying silicalite-1 to the MTP reaction is promising. Besides, we have used Na2SiO3as the silica source to synthesize Ce-silicalite-1 and applied it to the MTP reaction, resulting in promising results[23].

    Up to now, to the best of our knowledge, few studies reported in the literature are related with the influence of initial water content on the synthesis of silicalite-1 zeolite, especially the synthesis of the hierarchical silicalite-1 zeolite by regulating the initial water content.In this work, a series of hierarchical silicalite-1 zeolites were synthesized only through changing the initial water content and studied in the MTP reaction, leading to a highest propene mass yield of 26.81% ( on the CH2basis)at a P/E ratio of 6.28 in 2 h.

    2 Experimental

    2.1 Reagents

    Silica sol (SiO2, 40%), tetrapropylammonium bromide(TPABr, 99.0%), and sodium hydroxide (NaOH, 99.0%)were purchased from the Sinopharm Chemical Reagent Co., Ltd. (China) and used without further purification.

    2.2 Samples preparation

    In a typical run, the zeolite samples were prepared through three steps: firstly, tetrapropylammonium bromide (TPABr)was dissolved in colloidal silica under stirring for 20—30 min to get a mixture A. Then the mixture A was added dropwise to a series of certain amount of deionized water(initial water content, as shown in Table. 1) under stirring for 20—30 min to get a mixture B, to which finally the sodium hydroxide solution and the rest of deionized water were added drop by drop. After vigorous stirring the white homogeneous gel for 3—5 h at room temperature, a mixture with a molar composition of SiO2:0.3TPA+:0.1Na2O:100H2O was obtained and transferred into a static Teflon-lined stainless-steel autoclave for hydrothermal treatment at 170°C under autogenous pressure for 8 h. The obtained solid was washed, filtered and dried at 120 °C overnight. The template was removed by calcination in air at 550 °C for 6 h, and afterwards the obtained Na-ZSM-5 zeolite was turned into the H-form by three consecutive ion-exchange procedures with 1 mol/L NH4NO3solution at 80 °C for 2 h,and the resulting samples were dried at 140 °C for 6 h and calcined again at 550 °C for 3 h to yield the H-silicalite-1 zeolite catalysts.

    Table 1 Initial water content of synthesized silicalite-1 zeolites

    2.3 Samples characterization

    The XRD patterns of the samples were recorded on a Philips X’Pert PRO MPD diffractometer operating at 40 kV and 40 mA, using Cu Kαradiation with a scanning speed of 10(°)/min. The particle size and apparent morphology of the samples were measured by a scanning electron microscope S-4800. The parameters of specific surface area and pore structure of the catalyst samples were measured by nitrogen adsorption–desorption isotherms at 77 K on a Quadrasorb SI apparatus. Prior to the measurements, the samples were degassed at 300 °C under vacuum for 12 h to remove the adsorbed moisture.Pyridine Fourier transform infrared spectroscopy (Py-FTIR) measurements were conducted on a Tensor 27

    FTIR spectrometer. The spectra were recorded with a resolution of 4 cm?1and 64 scans.

    2.4 Catalysis test

    The MTP reaction was carried out at 450 °C in a fixedbed tubular reactor under atmospheric pressure. For each test, 1.0 g of catalyst with a particle size of 40—60 mesh was loaded into the center of the reactor. The mass balance was above 95 %.

    The methanol conversion is calculated through Eq. 1

    The product selectivity on the carbon basis is defined as:where m is the weight and n is the number of carbon atoms. The superscripts i and o refer to the components at the inlet and outlet of the reactor, respectively. It should be noticed that the major by-product water is not considered in this way as it does not contain carbon atoms.

    3 Results and Discussion

    3.1 Effect of initial water content on physicochemical properties of silicalite-1 zeolite

    Figure 1a shows the XRD patterns of silicalite-1 zeolites with different initial water content. Evidently, each sample has an obvious MFI topological structure, because the peaks at 2θ= 7.9°, 8.79°, 23.03°, 23.24°, and 23.87° are strong without obvious impurity peak, but the peak at 2θ=8.79° is erratic. The results indicate that different initial water content can impact insignificantly on the skeleton structure of silicalit-1 zeolite, but it can influence the crystal face growth orientation of silicalite-1 zeolite (assigned to (200))[24]. The relative crystallinity, as assessed by XRD techniques, is exhibited in Figure 1b, which reveals that there is no apparent connection between the initial water content and the matching rate of the as-synthesized silicalite-1 zeolite samples and the standard sample.

    Figure 1 XRD patterns (a) and relative crystallinity (b) of all the samples

    Figure 2 shows the SEM images of S-1, S-2, S-4, S-6,and S-8 samples. Obviously, the crystal size of silicalite-1 zeolites synthesized at a lower initial water content is bigger than that synthesized at a higher water content,but their morphology shows little difference, since all samples are smooth-faced cuboid monolith. On the contrary, Suzuki, et al.[2]made a point that the bigger crystal size of zeolite was synthesized at higher water content. As a result, the suppositional idea is as follows.The less initial water percentage means that more water was added to the reaction mixture in the later process, and consequentially it could change the original concentration of the composition. Upon taking into consideration the initial water content, the concentration change would be increasingly smaller until it disappeared. Perhaps this is the bigger change of concentration that can lead to the change in crystal growth.

    The difference of the pore structure in S-1, S-2, S-4,S-6 and S-8 samples is evidenced by the N2adsorptiondesorption isotherms presented in Figure 3, in which S-1 and S-2 show a type I isotherm and the other three samples show a type IV isotherm but with different hysteresis loops, revealing different pore structure. The steep increase of the five samples at p/p0< 0.1 illustrates their perfect microporous structure. At a high relative pressure of p/p0=0.4-1.0, the S-1 and S-2 samples show a typical characteristic of microporous adsorption without a hysteresis loop and the other three samples show the type-H4hysteresis loops with a jump on the desorption branch around p/p0=0.42. The special hysteresis loops are attributed to the cavitation effect of an ink-bottle type mesopores, in which desorption of the N2is suddenly removed from the pore body after emptying its neck (with either micropores or entrances < 4 nm).

    Figure 3 N2 adsorption–desorption isotherms of the assynthesized silicalite-1 catalysts

    By combining with the SEM images, we can disclose that after adding the initial water content beyond 15%, the particle size become smaller and appearing mesoporous.In addition, these mesopores are intracrystalline pores with its pore diameter equating to 3.2 nm (Figure 4). Li,et al.[25]used the gel including a type of structure directing agent as the seed to synthesize the hierarchical silicalite-1 zeolite. Fernandez, et al.[26]obtained the target zeolite via the NaOH or HCl treatment. Indeed, these approaches avoided the import of expensive mesoporous template agent, but the secondary operation process is quite complicated.

    The detailed information about pore textural properties of the five samples was calculated, with the results listed in Table 2. Notably, after adding initial water content to15%, the mesoporous volume (Vmeso) increased but the particle size and BET surface area (SBET) decreased. As regards the relationship between the particle size and the surface area, it is widely accepted that the crystal size is negatively correlated to the surface area[27-28]. However,there is another appearance that the external surface area gradually increased with the reduction of particle size, and the microporous surface area is lessening.The addition of external surface area is attributed to particle size reduction, and the emergence of mesopores is accomplished at the expense of micropores with the exception of the sample S-6, because it is speculated that the mesopores in S-6 may emanate from self-assembly.

    Figure 4 Pore size distribution of the five silicalite-1 samples

    Table 2 Textural properties of the five silicalite-1 samples

    If the initial water content is increased, the rest of water addition should be accordingly reduced, which means that the concentration difference is smaller. In other words, the lower initial water amount means the larger concentration difference. Upon combining Figure 2 and Table 2, we can speculate that larger concentration difference is good for crystal size growth, and furthermore, in a fairly homogeneous system, the pore size of silicalite-1 zeolite is easier to expand.

    3.2 Effect of silicalite-1 on catalytic performance of MTP reaction

    The nature of hydroxyls of silicalite-1 has been widely studied by IR spectroscopy[29-31]. Table 3 lists the frequencies and tentative assignments of hydroxyls bands(3800—3400 cm-1). The literature[22]pointed out the isolated silanols at the outer silicalite-1 zeolite surface including the terminal H-bonded silanols and silanols inside the chains and hydrogen nests (Figure 5), and the latter one functioned as weak Br?nsted acid sites, which were the active sites of methanol conversion[20,23].

    Figure 6 shows the FTIR spectra in the OH-stretching region (a) and pyridine adsorption (b) of the five silicalite-1 samples, which are compared with those of the standard H-ZSM-5 sample (Si/Al=100, purchased from the Nankai Catalysts Company). Obviously, the wavenumber of 3740 cm-1is vested in the isolated sillanols that can indwell in every specimen, but the silanol nests (at 3500 cm-1) are not evident in samples S-8 and S-4, and only H-ZSM-5 has distinct terminal silanols (at 3690 cm-1). Upon combining Figure 6b, it is known that samples S-4 and S-8 have nearly no Br?nsted acid (1540 cm-1), whereas the other samples have weak Br?nsted acid, and furthermore, the Lewis acid and strong Lewis acid (SL) are distributed irregularly, while the weak Lewis acid (WL) amount is almost constant in all samples. This result is consistent with the relative crystallinity (RC) data (Figure 1b). In other words, the samples S-1, S-2 and S-6 have relatively low RC, which is in agreement with the SEM images (showing all samples to be well crystallized without the amorphous form), and it can be inferred that the above-mentioned three samples are rich in defects. So these three samples have a definite amount of silanol nests and possess acid sites.

    To investigate the effect of initial water content addition on the catalytic performance in the MTP reaction, a series of silicalite-1 catalysts with varying initial water content ranging from 7.14% to 100% were prepared.Figure 7 displays the conversion of methanol with the time on stream (TOS) over silicalite-1 catalysts in the MTP reaction. Based on the RC-related discussion,it can be preliminary concluded that a high methanol conversion is attributed to the major defects. Besides,the samples S-4 and S-8 have less microporous surfacearea, denoting to the fewer active sites loaded, and the active sites of MTP reaction are concentrated mainly on the internal surface area. So the methanol conversion over these two samples S-4 and S-8 is not as high as other samples. Furthermore, carbon deposition can cause deactivation of the catalyst, leading to low methanol conversion in MTP reaction, and carbon is deposited on the external surface of catalyst[34-36]. Besides, the mesopores ensure an optimal accessibility and transport of reactants and products[37-38], so the methanol conversion over samples S-1 and S-2 decreases rapidly, and as the reaction proceeds, the methanol conversion over samples S-4, S-6 and S-8 gradually levels off.

    Figure 7 Methanol conversion with time on stream of thefive silicalite-1 catalysts

    More meaningfully, the selectivity to light olefins (C2=–C4=), especially propylene, is greatly enhanced by the reduction of initial water content (Figure 8). Propylene selectivity decreases with different proportion of initial water content ranging from 7.14% (S-1) to 100% (S-8) within 2 h of reaction. Likewise, the ethylene and butene selectivity decreases with higher initial water adjunction. There is a general agreement that zeolite can only be accessible to molecules, the size of which is approximately equal to the pore size of the zeolite. In other words, micropore can only sieve small molecules,but mesopore or macropore allows macromolecular substance passing through[37]. Besides, it is widely believed that weak acid strength or low acid density is good to enhance the propylene selectivity[38], but the acidity of silicalite-1 is so weak and the presence of mesopores reduces the acid density of silicalite-1 catalyst.Upon combining the acid property and channel structure,it can be concluded that silicalite-1 zeolite catalysts synthesized by a range of initial water content have a great influence on product distribution. The lesser water can result in more light olefins and fewer macromolecular product, but the conversion drops quickly. However,this is nearly opposite to the zeolite catalysts, the initial water content of which is beyond 15%. Upon taking into consideration the methanol conversion and propylene selectivity, the sample S-6 (prepared at an initial water content of 71.43%) is the best fit catalyst.

    Figure 8 The light olefins selectivity and P/E ratio versus TOS over silicalite-1 zeolite catalysts■—S-1; ●—S-2; ▲—S-4; ▼—S-6; ◆—S-8

    4 Conclusions

    The effect of initial water content on the catalytic performance of silicalite-1 zeolite catalysts in MTP reaction was studied. The main changes induced by initial water addition are the reduction of the particle size and the BET surface area, albeit with a rise of pore diameter.The S-6 catalyst prepared with an initial water content of 71.43% has the most excellent catalytic performance in the MTP reaction, while excess initial water content(>71.43%) causes lower catalytic activity because of the loss of acid density, while insufficient initial water content(<42.86%) leads to lower catalyst stability. The influence of BET surface area and intracrystalline mesopores on the catalyst used in the MTP reaction deduces that the hierarchical silicalite-1 zeolite with nano-sized intergranular accumulation is the fittest catalyst thanks to its huge BET surface area, tiny intracrystalline pores, and major intergranular pores.

    [1]Grieken R V, Sotelo J L, Menéndez J M, et al.Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5[J]. Microporous & Mesoporous Materials, 2000, 39(1/2): 135-147

    [2]Suzuki K, Kiyozumi Y, Matsuzaki K, et al. Influence of the synthesis conditions of H-ZSM-5 on its physical properties and catalytic activity in methanol conversion: The water content of the reaction mixture[J]. Applied Catalysis, 1987,35(2): 401-409

    [3]Petrik L. The influence of cation, anion and water content on the rate of formation and pore size distribution of zeolite ZSM-5[J]. South African Journal of Science. 2010,105(7/8): 251-257

    [4]Turov V V, Brei V V, Khomenko K N, et al.1H NMR studies of the adsorption of water on silicalite[J]. Microporous &Mesoporous Materials, 1998, 23(3/4): 189-196

    [5]Bussai C, Vasenkov S, Liu H, et al. On the diffusion of water in silicalite-1: MD simulations using ab initio fitted potential and PFG NMR measurements[J]. Applied Catalysis A: General, 2002, 232(1/2): 59-66

    [6]Xuan V, Armbruster U, Martin A. Micro/mesoporous zeolitic composites: Recent developments in synthesis and catalytic applications[J]. Catalysts, 2016, 6(12):183

    [7]Verboekend D, Nuttens N, Locus R, et al. Synthesis,characterization, and catalytic evaluation of hierarchical faujasite zeolites: Milestones, challenges, and future directions[J]. Chem Soc Rev, 2016, 45(12): 3331-3352

    [8]Inayat A, Knoke I, Spiecker E, et al. Assemblies of mesoporous FAU-type zeolite nanosheets.[J]. Angewandte Chemie, 2012, 51(8):1962-1965

    [9]Verboekend D, Chabaneix A M, Thomas K, et al.Mesoporous ZSM-22 zeolite obtained by desilication:Peculiarities associated with crystal morphology and aluminium distribution[J]. Cryst Eng Comm, 2011, 13(10):3408-3416

    [10]Garcíamartínez J, Johnson M, Valla J, et al. Mesostructured zeolite Y—high hydrothermal stability and superior FCC catalytic performance[J]. Catalysis Science & Technology,2012, 2(5): 987-994

    [11]Chen H, Wydra J, Zhang X, et al. Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporousimprinted structure[J]. Journal of the American Chemical Society, 2011, 133(32):12390-12393

    [12]Choi M, Na K, Kim J, et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature, 2009, 461(7261): 246-249

    [13]Fan W, Snyder M A, Kumar S, et al. Hierarchical nanofabrication of microporous crystals with ordered mesoporosity[J]. Nature Materials, 2008, 7(12): 984-991

    [14]Lopezorozco S, Inayat A, Schwab A, et al. Zeolitic materials with hierarchical porous structures[J]. Advanced Materials, 2011, 23(22/23): 2602-2615

    [15]Na K, Choi M, Ryoo R. Recent advances in the synthesis of hierarchically nanoporous zeolites[J]. Microporous &Mesoporous Materials, 2013, 166(2): 3-19

    [16]Na K, Jo C, Kim J, et al. Directing zeolite structures into hierarchically nanoporous architectures.[J]. Science, 2011,333(6040): 328-32

    [17]Pérezramírez J, Christensen C H, Egeblad K, et al.Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design[J].Chem Soc Rev, 2008, 37(11): 2530-2542

    [18]St?cker M. Methanol-to-hydrocarbons: Catalytic materials and their behavior 1[J]. Microporous & Mesoporous Materials, 1999, 29(1/2): 3-48

    [19]Liu J, Zhang C, Shen Z, et al. Methanol to propylene:Effect of phosphorus on a high silica HZSM-5 catalyst[J].Catalysis Communications, 2009, 10(11): 1506-1509

    [20]Meng X, Yu Q, Gao Y, et al. Enhanced propene ethene selectivity for methanol conversion over pure silica zeolite:Role of hydrogen-bonded silanol groups[J]. Catalysis Communications, 2015, 61: 67-71

    [21]Heitmann G P, Dahlhoff G, H?lderich W F. Catalytically active sites for the Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam[J]. Journal of Catalysis, 1999, 186(1): 12-19

    [22]Bonelli B, Forni L, Aloise A, et al. Beckmann rearrangement reaction: About the role of defect groups in high silica zeolite catalysts[J]. Microporous & Mesoporous Materials, 2007, 101(1): 153-160

    [23]Huang H W, Zhang M X, Chen C, et al. Catalytic performance of cerium modified silicalite-1 molecular sieves in the conversion of methanol to propene[J]. Journal of Fuel Chemistry & Technology, 2016, 44(12): 1485-1493[24]Ishii R, Kiyozumi Y, Mizukami F. Re-crystallization of silicalite-1 crystals from a crystalline layered silicate using nanosized seeds[J]. Materials Letters, 2008, 62(19): 3465-3467

    [25]Chen L, Wang Y M, He M Y. Hydrothermal synthesis of hierarchical titanium silicalite-1 using single template[J].Materials Research Bulletin, 2011, 46(5): 698-701

    [26]Fernandez C, Stan I, Gilson J P, et al. Hierarchical ZSM-5 zeolites in shape-selective xylene isomerization: role of mesoporosity and acid site speciation[J]. Chemistry(Weinheim an der Bergstrasse, Germany), 2010, 16(21):6224-6233

    [27]Colombo F, Alberti G D. Conversion of linear butenes to propylene on H-ZSM-5 zeolites: Effect of reaction parameters and zeolite morphology on catalytic activity[J].Studies in Surface Science & Catalysis, 1984, 18: 233-240[28]Firoozi M, Baghalha M, Asadi M. The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction[J]. Catalysis Communications, 2009, 10(12):1582-1585

    [29]Astorino E, Peri J B, Willey R J, et al. Spectroscopic characterization of silicalite-1 and titanium silicalite-1[J].Journal of Catalysis, 1995, 157(2): 482-500

    [30]Vikulov K, Martra G, Coluccia S, et al. FTIR spectroscopic investigation of the active sites on different types of silica catalysts for methane partial oxidation to formaldehyde[J].Catalysis Letters, 1996, 37(3): 235-239

    [31]Wovchko E A, Camp J C, Jr. Glass J A, et al. Active sites on SiO2: Role in CH3OH decomposition[J]. Langmuir,1995, 11(7): 2592-2599

    [32]Bolis V, Busco C, Bordiga S, et al. Calorimetric and IR spectroscopic study of the interaction of NH3with variously prepared defective silicalites: Comparison with ab initio computational data[J]. Applied Surface Science,2002, 196(1–4): 56-70

    [33]Bordiga S, Ugliengo P, Damin A, et al. Hydroxyls nests in defective silicalites and strained structures derived upon dehydroxylation: Vibrational properties and theoretical modelling[J]. Topics in Catalysis, 2001, 15(1): 43-52

    [34]Kim J, Choi M, Ryoo R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanolto-hydrocarbon conversion process[J]. Journal of Catalysis,2010, 269(1): 219-228

    [35]Bj?rgen M, Svelle S, Joensen F, et al. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the ole fi nic species[J]. Journal of Catalysis, 2007,249(2): 195-207

    [36]Gilson J P, Derouane E G. On the external and intracrystalline surface catalytic activity of pentasil zeolites[J]. Journal of Catalysis, 1984, 88(2): 538-541

    [37]Janssen A H. Generation, characterization, and impact of mesopores in zeolite catalysts[J]. Catalysis Reviews, 2003,45(2): 297-319

    [38]Schneider D M C, Burgfels D G C, Buchold H C. Process for preparing lower olefins: EP, EP0448000[P]. 1994-05-25

    久久天堂一区二区三区四区| 男女免费视频国产| 婷婷丁香在线五月| 久久久国产成人免费| a级毛片在线看网站| 纵有疾风起免费观看全集完整版| 一夜夜www| 母亲3免费完整高清在线观看| 亚洲av日韩在线播放| 久久久久久久久久久久大奶| 电影成人av| 午夜福利在线观看吧| 欧美成狂野欧美在线观看| 国产欧美日韩一区二区精品| 色婷婷av一区二区三区视频| 一区二区三区乱码不卡18| 欧美亚洲日本最大视频资源| 老汉色av国产亚洲站长工具| 国产精品美女特级片免费视频播放器 | 久久精品亚洲av国产电影网| 色视频在线一区二区三区| 精品福利观看| 国产不卡av网站在线观看| 夜夜爽天天搞| 正在播放国产对白刺激| 老司机深夜福利视频在线观看| 免费在线观看影片大全网站| 日韩熟女老妇一区二区性免费视频| 制服诱惑二区| 一级毛片精品| 丝瓜视频免费看黄片| 亚洲精品美女久久av网站| 久久午夜亚洲精品久久| 99精品在免费线老司机午夜| 乱人伦中国视频| 久久久国产精品麻豆| 亚洲人成电影免费在线| 9191精品国产免费久久| 丁香欧美五月| 99国产综合亚洲精品| 午夜老司机福利片| 又黄又粗又硬又大视频| h视频一区二区三区| 久久久久久久精品吃奶| 亚洲欧洲精品一区二区精品久久久| 欧美日韩精品网址| 人妻 亚洲 视频| 精品福利永久在线观看| 国产高清国产精品国产三级| 美女视频免费永久观看网站| 欧美日韩中文字幕国产精品一区二区三区 | svipshipincom国产片| 下体分泌物呈黄色| 亚洲av美国av| 欧美成狂野欧美在线观看| 国产在线精品亚洲第一网站| 亚洲五月色婷婷综合| 久久精品熟女亚洲av麻豆精品| 亚洲精品美女久久久久99蜜臀| 日本欧美视频一区| 国产成人精品久久二区二区91| 欧美变态另类bdsm刘玥| 欧美老熟妇乱子伦牲交| 高清视频免费观看一区二区| 午夜老司机福利片| 国产精品亚洲av一区麻豆| 亚洲情色 制服丝袜| 国产高清videossex| 男女高潮啪啪啪动态图| 成人免费观看视频高清| cao死你这个sao货| 久久久久久久精品吃奶| 欧美日韩一级在线毛片| 狂野欧美激情性xxxx| 午夜久久久在线观看| 欧美大码av| 精品久久久精品久久久| 午夜两性在线视频| 亚洲精品在线观看二区| 一本一本久久a久久精品综合妖精| 久久久国产精品麻豆| 久久精品成人免费网站| 精品一区二区三区四区五区乱码| 亚洲国产中文字幕在线视频| xxxhd国产人妻xxx| 曰老女人黄片| 飞空精品影院首页| 国产又色又爽无遮挡免费看| av有码第一页| 最新的欧美精品一区二区| 欧美久久黑人一区二区| 精品一区二区三区视频在线观看免费 | 蜜桃国产av成人99| 精品久久久久久久毛片微露脸| 日本撒尿小便嘘嘘汇集6| 香蕉久久夜色| 另类亚洲欧美激情| 国产亚洲精品久久久久5区| 在线看a的网站| av线在线观看网站| 久久国产精品男人的天堂亚洲| 亚洲国产毛片av蜜桃av| a级片在线免费高清观看视频| 国产精品自产拍在线观看55亚洲 | 大型av网站在线播放| 亚洲成a人片在线一区二区| 亚洲欧洲日产国产| 热re99久久国产66热| 日韩一区二区三区影片| 91成人精品电影| 久久久欧美国产精品| 欧美日韩亚洲综合一区二区三区_| 99riav亚洲国产免费| 国产成人欧美在线观看 | 国产精品久久久久成人av| 欧美在线黄色| 色精品久久人妻99蜜桃| 一区二区三区国产精品乱码| 国产精品香港三级国产av潘金莲| 欧美人与性动交α欧美精品济南到| 成人精品一区二区免费| 一区二区日韩欧美中文字幕| 在线观看免费午夜福利视频| 国产精品国产高清国产av | 免费少妇av软件| 国产精品一区二区在线不卡| 亚洲avbb在线观看| 欧美中文综合在线视频| 久久午夜综合久久蜜桃| 男男h啪啪无遮挡| 成年版毛片免费区| av天堂在线播放| 日本精品一区二区三区蜜桃| 天堂中文最新版在线下载| 国产欧美日韩综合在线一区二区| 久久久精品94久久精品| 日韩免费高清中文字幕av| 国产无遮挡羞羞视频在线观看| h视频一区二区三区| 99国产精品一区二区蜜桃av | 黄片大片在线免费观看| 777米奇影视久久| 国精品久久久久久国模美| 日韩一区二区三区影片| 黄色视频,在线免费观看| 精品午夜福利视频在线观看一区 | 免费观看av网站的网址| 黑人欧美特级aaaaaa片| 免费看a级黄色片| 大型av网站在线播放| 精品第一国产精品| 男人舔女人的私密视频| 亚洲国产欧美一区二区综合| 黄色毛片三级朝国网站| 久久精品国产亚洲av香蕉五月 | 一级毛片女人18水好多| 国产又爽黄色视频| a在线观看视频网站| 真人做人爱边吃奶动态| 亚洲视频免费观看视频| 一本色道久久久久久精品综合| 九色亚洲精品在线播放| 欧美黑人欧美精品刺激| 可以免费在线观看a视频的电影网站| 国产精品国产高清国产av | 日韩三级视频一区二区三区| 十八禁人妻一区二区| 欧美中文综合在线视频| 乱人伦中国视频| 欧美精品一区二区大全| 91精品国产国语对白视频| 欧美av亚洲av综合av国产av| 美女主播在线视频| 手机成人av网站| 99国产精品免费福利视频| 夜夜夜夜夜久久久久| 变态另类成人亚洲欧美熟女 | 国产精品二区激情视频| 成人三级做爰电影| 免费在线观看影片大全网站| 18禁美女被吸乳视频| 欧美另类亚洲清纯唯美| 成人国产一区最新在线观看| 十八禁人妻一区二区| 色播在线永久视频| 亚洲成人国产一区在线观看| 国产区一区二久久| 亚洲成人免费电影在线观看| 成在线人永久免费视频| 9色porny在线观看| 国产一区有黄有色的免费视频| 桃红色精品国产亚洲av| 丰满迷人的少妇在线观看| 国产精品免费视频内射| 国产欧美日韩一区二区三| 交换朋友夫妻互换小说| 久久久久久亚洲精品国产蜜桃av| 午夜日韩欧美国产| 80岁老熟妇乱子伦牲交| 99热网站在线观看| 成人av一区二区三区在线看| 久久天躁狠狠躁夜夜2o2o| 成人精品一区二区免费| 人人妻人人爽人人添夜夜欢视频| 国产激情久久老熟女| 国产成人欧美| 麻豆av在线久日| 精品国产国语对白av| 久久精品aⅴ一区二区三区四区| 最黄视频免费看| 在线十欧美十亚洲十日本专区| 国产91精品成人一区二区三区 | 美女午夜性视频免费| 香蕉国产在线看| 成人永久免费在线观看视频 | 99九九在线精品视频| 久久精品国产亚洲av香蕉五月 | 精品卡一卡二卡四卡免费| 久久久精品免费免费高清| 日韩有码中文字幕| av免费在线观看网站| 人人妻人人澡人人爽人人夜夜| 老司机午夜福利在线观看视频 | 99久久人妻综合| 日韩免费高清中文字幕av| 成人永久免费在线观看视频 | 欧美日韩中文字幕国产精品一区二区三区 | 国产精品国产av在线观看| 精品福利永久在线观看| 午夜成年电影在线免费观看| 国产精品一区二区精品视频观看| av在线播放免费不卡| 久久天躁狠狠躁夜夜2o2o| 制服人妻中文乱码| 一区二区三区激情视频| 99re6热这里在线精品视频| 后天国语完整版免费观看| av国产精品久久久久影院| 9热在线视频观看99| avwww免费| 天天操日日干夜夜撸| 中文字幕av电影在线播放| h视频一区二区三区| 日本wwww免费看| 又紧又爽又黄一区二区| 国产欧美日韩精品亚洲av| 婷婷丁香在线五月| 亚洲少妇的诱惑av| 一进一出抽搐动态| 美女视频免费永久观看网站| 丝袜人妻中文字幕| 精品福利观看| 男女免费视频国产| 久久精品亚洲精品国产色婷小说| 90打野战视频偷拍视频| 男女高潮啪啪啪动态图| 不卡一级毛片| 久久久精品免费免费高清| 自线自在国产av| 日韩熟女老妇一区二区性免费视频| 亚洲人成电影免费在线| 国产成人免费无遮挡视频| 男人舔女人的私密视频| 日韩视频一区二区在线观看| svipshipincom国产片| 婷婷成人精品国产| 国产精品免费一区二区三区在线 | 99精品欧美一区二区三区四区| 黄色片一级片一级黄色片| 亚洲欧美精品综合一区二区三区| av有码第一页| 色综合欧美亚洲国产小说| 亚洲精品中文字幕在线视频| 俄罗斯特黄特色一大片| 热99re8久久精品国产| 99久久99久久久精品蜜桃| 韩国精品一区二区三区| 亚洲性夜色夜夜综合| 中文字幕色久视频| 久久国产精品影院| 十八禁网站网址无遮挡| 国产成人一区二区三区免费视频网站| 欧美乱码精品一区二区三区| 国产不卡一卡二| 嫁个100分男人电影在线观看| 久久 成人 亚洲| 丁香六月天网| a级毛片在线看网站| 91老司机精品| 好男人电影高清在线观看| 日本a在线网址| 黄色丝袜av网址大全| 日韩欧美国产一区二区入口| 精品国产乱码久久久久久小说| 中文亚洲av片在线观看爽 | 亚洲国产欧美在线一区| 亚洲国产毛片av蜜桃av| 国产一区二区在线观看av| 亚洲精品在线美女| 精品福利永久在线观看| 国产精品一区二区在线不卡| 日韩 欧美 亚洲 中文字幕| 性少妇av在线| 少妇粗大呻吟视频| 久久香蕉激情| 一边摸一边抽搐一进一出视频| 久久精品aⅴ一区二区三区四区| 亚洲成a人片在线一区二区| 国产精品免费视频内射| 女人久久www免费人成看片| 亚洲欧洲精品一区二区精品久久久| 巨乳人妻的诱惑在线观看| 菩萨蛮人人尽说江南好唐韦庄| 激情视频va一区二区三区| 国产精品久久久久久人妻精品电影 | 免费黄频网站在线观看国产| 亚洲国产av新网站| 黄色 视频免费看| 又大又爽又粗| 亚洲欧美激情在线| 桃红色精品国产亚洲av| 天堂俺去俺来也www色官网| 亚洲av欧美aⅴ国产| 王馨瑶露胸无遮挡在线观看| 国产精品一区二区在线观看99| 免费在线观看日本一区| 国产欧美日韩精品亚洲av| 国产日韩一区二区三区精品不卡| 亚洲第一青青草原| 丰满迷人的少妇在线观看| 少妇被粗大的猛进出69影院| www.精华液| 国产又爽黄色视频| 欧美成人免费av一区二区三区 | 80岁老熟妇乱子伦牲交| 久久久精品94久久精品| 国产免费av片在线观看野外av| 2018国产大陆天天弄谢| 国产精品麻豆人妻色哟哟久久| 两人在一起打扑克的视频| 成人国产一区最新在线观看| 久久这里只有精品19| 久久久久久久国产电影| 人人妻人人澡人人看| 飞空精品影院首页| 国产极品粉嫩免费观看在线| 国产深夜福利视频在线观看| 日本wwww免费看| 999久久久国产精品视频| 欧美人与性动交α欧美精品济南到| 妹子高潮喷水视频| 久9热在线精品视频| 另类精品久久| 亚洲天堂av无毛| 中文亚洲av片在线观看爽 | av天堂久久9| 日韩欧美一区二区三区在线观看 | 最新美女视频免费是黄的| 他把我摸到了高潮在线观看 | 国产欧美日韩精品亚洲av| 天堂8中文在线网| 欧美黑人欧美精品刺激| av国产精品久久久久影院| 亚洲精品美女久久久久99蜜臀| 国产在线精品亚洲第一网站| 捣出白浆h1v1| 中文字幕av电影在线播放| 黄色视频不卡| 国产成人精品久久二区二区免费| 99精国产麻豆久久婷婷| av不卡在线播放| av有码第一页| 法律面前人人平等表现在哪些方面| 丁香六月欧美| 日本av手机在线免费观看| videos熟女内射| 夜夜爽天天搞| 亚洲欧美日韩高清在线视频 | 日韩人妻精品一区2区三区| 黄色毛片三级朝国网站| 日韩欧美一区视频在线观看| 在线观看免费午夜福利视频| 国产精品久久久久久精品电影小说| 亚洲熟妇熟女久久| 大片电影免费在线观看免费| 欧美 日韩 精品 国产| 老鸭窝网址在线观看| 亚洲av片天天在线观看| 在线永久观看黄色视频| 国产精品秋霞免费鲁丝片| 国产精品亚洲一级av第二区| 国产成人精品在线电影| 伦理电影免费视频| 两个人免费观看高清视频| 色尼玛亚洲综合影院| 在线永久观看黄色视频| 黄色a级毛片大全视频| 99re6热这里在线精品视频| 免费在线观看日本一区| 国产成人精品在线电影| 免费在线观看视频国产中文字幕亚洲| 亚洲av第一区精品v没综合| 在线十欧美十亚洲十日本专区| 国产成人精品无人区| 激情在线观看视频在线高清 | 久久久国产一区二区| 亚洲国产看品久久| 国产高清国产精品国产三级| 捣出白浆h1v1| 99九九在线精品视频| 欧美激情高清一区二区三区| 五月天丁香电影| 男女下面插进去视频免费观看| 黄色视频在线播放观看不卡| 超色免费av| 国产亚洲一区二区精品| 在线观看免费午夜福利视频| 丁香六月天网| 国产激情久久老熟女| 亚洲视频免费观看视频| 日日夜夜操网爽| 90打野战视频偷拍视频| 亚洲va日本ⅴa欧美va伊人久久| 欧美精品一区二区大全| 成人特级黄色片久久久久久久 | 国产精品亚洲一级av第二区| 久久久国产成人免费| www.自偷自拍.com| 大码成人一级视频| 国产免费av片在线观看野外av| 搡老熟女国产l中国老女人| 国产三级黄色录像| 夜夜骑夜夜射夜夜干| 亚洲一码二码三码区别大吗| 侵犯人妻中文字幕一二三四区| 久久久久国内视频| 欧美日韩亚洲高清精品| 亚洲免费av在线视频| 99re在线观看精品视频| 最近最新中文字幕大全电影3 | 91av网站免费观看| 国产精品一区二区精品视频观看| 制服诱惑二区| 午夜免费成人在线视频| 欧美另类亚洲清纯唯美| 人人妻人人爽人人添夜夜欢视频| 国产成人精品久久二区二区免费| 男女免费视频国产| 一区二区三区激情视频| 精品国产一区二区久久| 亚洲国产看品久久| 久久人人爽av亚洲精品天堂| 女性生殖器流出的白浆| 欧美国产精品va在线观看不卡| 久久精品91无色码中文字幕| 欧美日韩亚洲高清精品| 一本色道久久久久久精品综合| 日韩成人在线观看一区二区三区| 午夜老司机福利片| 色播在线永久视频| 国产欧美日韩一区二区三区在线| 91国产中文字幕| 国产精品亚洲一级av第二区| 久久亚洲真实| 国产精品一区二区精品视频观看| 欧美精品一区二区大全| a级毛片黄视频| 欧美在线一区亚洲| 亚洲一区中文字幕在线| 91精品三级在线观看| 久久久久视频综合| 免费少妇av软件| 亚洲一区二区三区欧美精品| 亚洲午夜理论影院| 成人免费观看视频高清| 亚洲中文日韩欧美视频| 99精品欧美一区二区三区四区| 男女高潮啪啪啪动态图| 亚洲美女黄片视频| 精品久久久久久电影网| 自线自在国产av| 别揉我奶头~嗯~啊~动态视频| 午夜两性在线视频| 欧美日韩成人在线一区二区| 在线观看66精品国产| 亚洲一区二区三区欧美精品| 免费看十八禁软件| 亚洲精品一卡2卡三卡4卡5卡| 欧美在线一区亚洲| 国产老妇伦熟女老妇高清| 天堂中文最新版在线下载| 夜夜骑夜夜射夜夜干| 日韩欧美免费精品| 午夜91福利影院| 精品久久久久久久毛片微露脸| 午夜福利视频精品| 成年人免费黄色播放视频| 看免费av毛片| 国产欧美亚洲国产| 国产免费视频播放在线视频| 成人免费观看视频高清| 91精品国产国语对白视频| videosex国产| 色综合婷婷激情| 黑丝袜美女国产一区| 一区二区三区乱码不卡18| 国产精品av久久久久免费| 黑人操中国人逼视频| 中文字幕人妻丝袜制服| av不卡在线播放| 18禁美女被吸乳视频| 国产精品久久久久久精品电影小说| 亚洲九九香蕉| 老熟妇乱子伦视频在线观看| 久久久国产成人免费| 国产精品久久久av美女十八| 国产成人av激情在线播放| 久久人妻福利社区极品人妻图片| 中文亚洲av片在线观看爽 | 国产成人啪精品午夜网站| 99在线人妻在线中文字幕 | 美女午夜性视频免费| 天堂8中文在线网| 精品国产乱码久久久久久男人| 国产日韩欧美视频二区| 热99re8久久精品国产| 久久亚洲精品不卡| 国产成人免费无遮挡视频| 69av精品久久久久久 | 精品欧美一区二区三区在线| 亚洲成av片中文字幕在线观看| 国产成+人综合+亚洲专区| 一区二区三区精品91| 国产野战对白在线观看| 欧美久久黑人一区二区| 免费观看av网站的网址| 国产一区二区三区视频了| 首页视频小说图片口味搜索| 人人妻人人爽人人添夜夜欢视频| 欧美人与性动交α欧美软件| 亚洲色图 男人天堂 中文字幕| 国产精品久久久av美女十八| 看免费av毛片| 欧美精品一区二区大全| 久久人人97超碰香蕉20202| 国产亚洲午夜精品一区二区久久| 国产免费现黄频在线看| 变态另类成人亚洲欧美熟女 | 国产高清激情床上av| 99国产精品99久久久久| 久久久久久久久久久久大奶| 丝瓜视频免费看黄片| 色尼玛亚洲综合影院| 免费高清在线观看日韩| 麻豆乱淫一区二区| 一本—道久久a久久精品蜜桃钙片| 美女高潮喷水抽搐中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 美女午夜性视频免费| 国精品久久久久久国模美| 欧美精品人与动牲交sv欧美| 在线亚洲精品国产二区图片欧美| 一级片'在线观看视频| 国产三级黄色录像| 一二三四在线观看免费中文在| 精品久久久久久电影网| 国产伦理片在线播放av一区| 无限看片的www在线观看| 男人操女人黄网站| avwww免费| 色播在线永久视频| 黄片大片在线免费观看| 免费少妇av软件| 啦啦啦视频在线资源免费观看| 最近最新免费中文字幕在线| 女人高潮潮喷娇喘18禁视频| 淫妇啪啪啪对白视频| 亚洲七黄色美女视频| 久久久久久人人人人人| 高清在线国产一区| 亚洲性夜色夜夜综合| 不卡一级毛片| 亚洲国产中文字幕在线视频| 午夜福利在线免费观看网站| 在线观看www视频免费| 老司机午夜福利在线观看视频 | 久久影院123| 18禁美女被吸乳视频| 三上悠亚av全集在线观看| 久久久久精品国产欧美久久久| 久久人妻福利社区极品人妻图片| 999精品在线视频| 国产成人啪精品午夜网站| 成在线人永久免费视频| 不卡一级毛片| √禁漫天堂资源中文www| 99精国产麻豆久久婷婷| 蜜桃国产av成人99| 国产精品欧美亚洲77777| 免费高清在线观看日韩| 超碰97精品在线观看| 高清av免费在线| 免费高清在线观看日韩| 老汉色∧v一级毛片| 免费av中文字幕在线| 精品国产乱码久久久久久男人| 女人被躁到高潮嗷嗷叫费观| 国产片内射在线| 国产有黄有色有爽视频| 中文字幕制服av| av一本久久久久| 亚洲av第一区精品v没综合| 久久人人97超碰香蕉20202| 成人18禁在线播放| 国产午夜精品久久久久久|