• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Effects of Ultrasonic Treatment on the Molecular Structure of Residual Oil

    2018-01-19 08:18:53PelayoEnvoEsonoMayeYangJingyiYanTaoyanXuXinru
    中國煉油與石油化工 2017年4期
    關鍵詞:壯藥抗炎黃酮

    Pelayo Envo Esono Maye; Yang Jingyi; Yan Taoyan; Xu Xinru

    (State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237)

    1 Introduction

    The oil industry today faces tremendous challenges due to the increasing demand for gasoline and diesel fuel along with more stringent environmental regulations.The gradual decline of conventional petroleum resources has forced refiners to process residual oil[1]. However,the use of residual oil causes other serious problems such as the deactivation of catalysts caused by the formation of coke.

    To provide optimal processing conditions for the effective conversion of residual oil, it is essential to elucidate their structural characteristics. Residual oil is an extremely complex mixture of various compounds[2-4].Thus, ultrasonic treatment is considered an effective way to transform residual oil to facilitate secondary processing in oil refineries. It is also an energy-efficient method of intensifying the effects of physicochemical processing[5]. Ultrasonic treatment produces the thermal scission of the bonds of heavy oil and the generation of hydrogen atoms, which are significant for upgrading heavy molecules. Moreover, carbon residue is correlated with unstable hydrocarbons, condensed aromatic hydrocarbons, non-hydrocarbons in oils, and especially asphaltenes and resins, reflecting the tendency of coke formation during residual oil processing. In catalytic cracking, carbon residue, as an important control index for feedstock, can affect the distribution of products: the more the carbon residue, the more the coke deposition along with lower liquid yields. Fortunately, ultrasonic treatment can reduce asphaltene and resin content, so that the carbon residue is reduced[6]. This measure can change the resin and asphaltene content and the structure of residual oil after ultrasonic treatment and affect the content of carbon residue and processing performance of oil, which are mainly derived from compounds with condensed rings and heterocyclic structure in resins and asphaltenes[7]. Ultrasonic treatment can also improve the stability of the colloidal system of asphaltenes to a certain extent[8].

    The effects of ultrasonic treatment in upgrading residual oil are gaining growing attention[9-10]. The studies of Sun,et al.[11]showed that ultrasonic treatment has a significant impact on changes in residual oil properties. Gopinath,et al.[12]adopted fl ow tests and displacement experiments in order to treat heavy gas oil with ultrasonic energy for producing lighter gaseous hydrocarbons. Wang, et al.[13]studied the effects of ultrasonic treatment on the properties of petroleum coke oil slurry and discovered that the apparent viscosity was reduced as the duration of ultrasonic treatment increased.

    The investigation performed by Mousavi, et al.[14]regarding the effect of ultrasonic treatment on the rheological properties of residual oil showed that the viscosity of residual oil was reduced by 10.98%. It also showed that the frequency and power of ultrasonic radiation at different controlled temperatures decreased oil viscosity and reduced the asphaltene content through dehydrogenation and cracking reactions[6,15]. The significance of frequency, power, and temperature is unclear. Although the applications of ultrasonic treatment for heavy oil have been widely studied, their effects on the physicochemical properties and structural parameters of residual oil remain unclear.

    Therefore, the goal of this paper is to study the effects of ultrasonic radiation on the structural changes and physical properties of vacuum residue by1H-NMR, FT-IR, with the changes in SARA fraction and structural parameters calculated. The upgrading of residual oil was conducted at different duration of ultrasonic radiation with an ultrasonic horn reactor, while the pyrolysis kinetics was calculated by means of the activation energy, and the pyrolysis kinetics of heavy oils was also observed.

    2 Experimental

    2.1 Feedstock

    The residual oil used in this study was obtained from the PetroChina’s Urumqi Petrochemical Company. Some important properties of the residual oil are shown in Table 1. Neutral aluminum oxide (FCP) was purchased from the Sinopharm Chemical Reagent Co., Ltd. Petroleum ether(AR), xylene (AR), toluene (AR), normal heptane (AR)and ethanol (AR) were purchased from the Shanghai Lingfeng Reagent Co., Ltd.

    Table 1 Properties of the feedstock

    2.2 Experimental procedure

    The upgrading of residual oil was done with an ultrasonic horn reactor over different time intervals (0, 5, 7, 9, and 11 minutes, respectively). The reactor consisted of an ultrasonic generator with a frequency of 40 kHz and a total supplied power input of 800 W at 70 °C. 150 mL of vacuum residue were placed in a 250-mL breaker and directly exposed to ultrasonic waves. After ultrasonic treatment, the oil sample was cooled down to ambient temperature (25 °C) and prepared for the following experiments.

    2.3 Characterization of the residual oil sample

    Residual oil analysis was performed according to the American Society for Testing and Materials (ASTM)Standards. The density, viscosity, and carbon residue were determined according the ASTM D5002-99, ASTM D445, and ASTM D189-06e1 methods, respectively.The contents of SARA fractions for the residual oil were determined by column chromatographic separation technology based on the ASTM D4124-01 method.

    The presence of functional groups in the residual oil was characterized by a Nicolet Magna 550 FT-IR instrument according to the manufacturer's instruction. The detection wave numbers ranged from 500—4 000 cm-1with an accuracy of 2 cm-1.

    1H-NMR analysis of the residual oil was conducted with an Avance III 500 superconducting Fourier transform NMR spectrometer (Bruker, Switzerland) to determine the various H ratios in the components.

    壯藥戰(zhàn)骨總黃酮提取物經(jīng)皮給藥對大鼠/小鼠的抗炎、鎮(zhèn)痛作用研究 ……………………………………… 葉 勇等(15):2090

    The thermogravimetric analysis of the residual oil was performed with a thermogravimetry analyzer (TG/DTGSTD Q 600, TA Instruments, USA) at a heating rate of 40°C/min under a N2fl ow of 150 mL/min.

    3 Results and Discussion

    3.1 Effects of ultrasound cavitation on the properties of residual oil

    The experiment was carried out to investigate the effects of ultrasonic radiation on the physical properties of residual oil. As shown in Figure 1, in the time interval ranging from 0 to 7 minutes, as the time increased, the oil viscosity decreased at a slightly faster pace over 3 to 5 minutes of radiation. After 7 minutes of ultrasonic treatment the oil viscosity had decreased by 14.1%.Longer interval of radiation had no apparent effect on the viscosity. The experiment thereby demonstrated that the ultrasonic treatment could reduce the viscosity of the studied residual oil sample[14,16-17].

    Carbon residue could condense to become coke[16]. Residual oil contains not only a large number of aromatics but also many resins and asphaltenes, among which there are many polycyclic aromatic hydrocarbons and heterocyclic aromatic hydrocarbons. The reduction of carbon residue content after different ultrasonic exposure time as displayed in Figure 2 shows that when the ultrasonic treatment time increased, the carbon residue content gradually decreased to reach a reduction of 7.4% after 7 minutes. Beyond 7 minutes of ultrasonic treatment no further big change in the carbon residue content was observed. It was obvious that ultrasonic treatment could effectively reduce the carbon residue content in the residual oil.

    Figure 2 Effect of ultrasonic exposure time on carbon residue

    3.2 Effects of different ultrasonic exposure time on SARA fractions of residual oil

    The changes in the SARA fractions of the oil after different ultrasonic exposure times are displayed in Figure 3.

    Figure 3 Effect of ultrasonic exposure time on SARA fractions

    It was observed that as the ultrasonic exposure time increased, the saturate content of the residual oil also increased, while the aromatic, resins, and asphaltenes content decreased, which was in agreement with the literature description[6,18]. In detail, when the ultrasonic exposure time varied from 0 to 7 minutes, the saturate content increased by up to 28.25%, while the aromatics,resins, and asphaltenes content decreases by up to 21.50%, 5.80%, and 82.23%, respectively. Beyond 7 minutes of exposure, the content of SARA fractions was stabilized. The decrease in carbon residue content indicates that the process of ultrasonic treatment not only can decrease viscosity and carbon residue, but also changes the contents of SARA fractions through weakening the bonds between the molecular structural units in residual oil, and reducing the number of bonds between structural units and the degree of aromaticity.

    3.3 Effects of ultrasound cavitation on the average molecular structure parameters for residual oil

    The average molecular structure parameters for the residual oil were calculated based on the analytical data from FT-IR and1H-NMR, while the average relative molecular mass was obtained by using the improved Brown-Ladner method (B-L method)[12].

    FT-IR spectrometry was applied to characterize the residual oil to further confirm the effects of ultrasonic radiation on the chemical structure of the residual oil sample. According to Figure 4, the absorption peak at 1 600 cm-1, 1 454 cm-1and 1 370 cm-1, and the absorption peak intensity at 690 cm-1to 870 cm-1were significantly changed after ultrasonic treatment, and the intensity of strong absorption peak at 2 850 cm-1was not obvious in 6 min and 7 min of ultrasonic treatment, and the intensity of adsorption peaks at 1 600 cm-1, 1 454 cm-1,1 370 cm-1, 690 cm-1to 870 cm-1was gradually decreased,while after being subjected to ultrasonic treatment in 9 min and 11 min, the peak area of residue samples remained essentially unchanged. The results show that the ultrasonic wave has some influences on the functional groups of the residual oil in a certain treatment time,which can destroy the weak bonds such as hydrogen bonds and C-C bonds to some extent, resulting in the decomposition of fused aromatic hydrocarbons and the cleavage of alkyl side chains. The role of ultrasound on the C = C bonds can also have a strong impact.HA,Hα,Hβ, andHγgenerally represent the number of hydrogen atoms on naphthenic and aromatic rings and alkyl side chains of the dense aromatic nuclei in the unit structures of residual oil. The changes in the different categories of hydrogen atoms can, to some extent,indicate the changes in the aromatic ring structures in the residue.

    Table 2 Relative contents of hydrogen atoms in different positions of molecules in residual oil

    Figure 5 1H-NMR spectra of residual oil

    As shown in Table 2 and Figure 5, after the ultrasonic treatment, the proportion ofHα(hydrogen which is connected to α carbons connected to aromatic rings in the residual oil) in the total amount of hydrogen atoms decreased, while the proportion ofHA(hydrogen directly connected to an aromatic nucleus) in the total amount of hydrogen atoms,Hβ(hydrogen attached to carbon atoms in the β position relative to aromatic rings), andHγ(hydrogen attached to carbon atoms in the γ position) in the molecular structure increased.

    The decrease inHαand the increase inHAafter ultrasonic treatment indicate that the number of side chains on aromatic rings reduced. A possible explanation for the increase inHβandHγis that the aromatic side chain length increased, or the degree of branching of side chains increased[19-20]. In short, after ultrasonic treatment, the aromatic ring structures in the residual oil were altered.

    Upon calculating the parameters of the average molecular structure in residual oil, it is assumed that the residue is associated with several structural units with a fused aromatic ring system serving as their core. A simple average structure model is used to approximately express the structural characteristics of the residual oil in order to obtain the changes in the molecular structure of the residue after exposure to ultrasonic treatment.

    In this work, the B-L method was used to calculate the average molecular structural parameters based on

    1H-NMR analysis spectrograms[12]. By using the FTIR spectroscopy, the relative amount of methyl and methylene groups and the parameters of the average molecular structure of the residue samples can be calculated, combined with a proposed formula. The average molecular structure parameters for the residue after different ultrasonic exposure times are given in Table 3.

    Table 3 Average molecular structure parameters obtained after different ultrasonic treatment time

    According to Table 3, the average molecular structure parameters, including the aromatic-carbon ratio (fA),naphthenic-carbon ratio (fN), alkyl-carbon ratio (fP),total number of rings (RT), number of aromatic rings(RA), and number of naphthenic rings (RN) in the residue,presented regular changes, with ultrasonic exposure realized between 0 and 7 minutes. Beyond 7 minutes,the ultrasonic treatment time had almost no effect on the molecular parameters. This means that after ultrasonic treatment, some condensed aromatics in the residual oil experienced scission, and some aromatic rings underwent ring-opening reactions[21]. Over time, with an increase in ultrasonic radiation time, the number of molecular structural units (n) decreased, and the average relative molecular mass of the structural units (usw) increased.Moreover, the aromatic-carbon ratio (fA) and the naphthenic-carbon ratio (fN) gradually decreased, while the alkyl-carbon ratio (fP) increased slightly.

    Meanwhile, the total number of rings (RT) and number of aromatic rings (RA) slightly decreased. The naphthenic rings (RN) did not change significantly. The degree of condensation (HAU/CA) in the aromatic ring systems and the rate of replacement (σ) of the hydrogen surrounding the aromatic ring systems decreased, whereas the average length of side chains (L) increased. The structural units in some condensed aromatics underwent separation, and some aromatic and cycloalkane rings underwent ringopening reactions, resulting in longer alkyl side chains,which caused decrease infA,RAandRT, and increase inLandfP. The rate of replacement (σ) of the hydrogen surrounding the aromatic ring systems was associated with the ratiosHAandHα, which can be expressed asσ=Hα/ (2HA+Hα). When Hα sharply decreased, the rate of replacement (σ) of the hydrogen surrounding the aromatic ring systems decreased as well.

    3.4 Effects of different ultrasonic exposure time on thermal reaction kinetics of residual oil

    As shown in the measurements above, after the ultrasonic treatment of the residual oil, the average molecular structure of the residual oil changed, which is shown by the decrease in aromatic properties (fA,RA) and the increase in alkyl properties (fP,L). This kind of change in molecular structures indicates the relative change in thermal reaction properties.

    This section used thermogravimetry analysis to investigate the effects of ultrasonic treatment on the properties of residual oil.

    As can be observed in Figure 6 and Figure 7, the pyrolysis of the residual oil mainly occurred at temperatures ranging from 350 °C to 510 °C. After ultrasonic treatment, the initial weight-loss temperature, the final weight-loss temperature, and the derivative thermogravimetry peak temperature all showed a declining trend, among which the derivative temperature and the pyrolysis kinetics of residual oil can be described by in finite parallel reaction models, as shown in Table 4. When the pyrolysis reaction order was 1,the pyrolysis activation energy of the residual oil decreased as the ultrasonic exposure time increased. Thus, it can be seen that the residual oil can more easily undergo pyrolysis reactions after ultrasonic treatment, as evidenced by the changes in the colloid structure of vacuum residue and the average molecular structure after the treatment.

    Figure 6 TG curve of residual oil

    Figure 7 DTG curve of residual oil

    Table 4 Thermal reaction kinetics parameters of residual oil

    4 Conclusions

    Throughout this study, the consistent data have been gathered concerning the effect of ultrasonic treatment on the different properties and structural parameters of residual oil. Insights have been gained into the mechanisms by which ultrasound cavitation acts on such samples. The results show that the carbon residue content, viscosity, and average molecular weight decrease after ultrasonic treatment.

    The content of asphaltenes, resins, and aromatics decreased, whereas that of saturates increased.

    As for the structural parameters relating to the number of structural units (n), the fraction of carbon atoms in aromatic structures (fA) and naphthenic structures (fN),and the number of naphthenic rings (RN) decreased, while the fraction of carbon atoms in alkyl structures (fP) and unit structure weights (usw) increased.

    By applying the thermogravimetry method to analyze the changes in thermal performance, the results showed that with an increase in ultrasonic processing time, the apparent activation energy and the temperature needed for pyrolysis reactions decreased gradually.

    [1]Gary J H, Handwerk G E, Kaiser M J. Petroleum Re fi ning:Technology and Economics [M]. CRC Press, 2007

    [2]Volkova G I, Anufriev R V, Yudina N V. Effect of ultrasonic treatment on the composition and properties of waxy high-resin oil [J]. Petroleum Chemistry, 2016, 56(8):683–689

    [3]Boduszynski M M, Altgelt K H. Composition of heavy petroleum’s: 4. Signi fi cance of the extended atmospheric equivalent boiling point (AEBP) scale [J]. Energy & Fuels,1992, 6(1): 72–76

    [4]Banda-Cruz E E, Padrón-Ortega S I, Gallardo-Rivas. Crude oil UV spectroscopy and light scattering characterization[J]. Petroleum Science and Technology, 2016, 34(8): 732–738

    [5]Gogate P R. Cavitation reactors for process intensification of chemical processing applications: A critical review[J]. Chemical Engineering and Processing: Process Intensification, 2008, 47(4): 515–527

    [6]Kaushik P, Kumar A, Bhaskar T, et al. Ultrasound cavitation technique for up-gradation of vacuum residue [J].Fuel Processing Technology, 2012, 93(1): 73–77

    [7]Pelayo E E M, Yang J Y, Yan T Y, et al. Study on the modification of vacuum residue by ultrasonic radiation [J].China Petroleum Processing & Petrochemical Technology,2017, 19(1): 114–122

    [8]Shedid S A. An ultrasonic irradiation technique for treatment of asphaltene deposition [J]. Journal of Petroleum Science and Engineering, 2004, 42(1): 57–70

    [9]Naderi K, Tayfun B. Influence of intensity and frequency of ultrasonic waves on capillary interaction and oil recovery from different rock types [J]. Ultrasonic Sonochemistry,2010, 17(3): 500–508

    [10]Mohammadian E, Junin R, Rahmani O, et al. Effects of sonication radiation on oil recovery by ultrasonic waves stimulated water-flooding [J]. Ultrasonics, 2013, 53(2):607–614

    [11]Sun Y D, Zhang Q, Shi H H, et al. Effects of ultrasonic treatment on residue properties [J]. China Petroleum Processing and Petrochemical Technology, 2013, 15(4):14–19

    [12]Gopinath R, Dalai A K, Adjaye J. Effects of ultrasound treatment on the upgradation of heavy gas oil [J]. Energy& Fuels, 2006, 20(1): 271–277

    [13]Wang Z Q, Wang H F, Guo Q J. Effect of ultrasonic treatment on the properties of petroleum coke oil slurry [J].Energy & Fuels, 2006, 20(5): 1959–1964

    [14]Mousavi S M, Ahmad R S A, Najafi I, et al. Effect of ultrasonic irradiation on rheological properties of asphaltene crude oils [J]. Petroleum Science, 2012, 9(1): 82–88

    [15]Yang Z, Zhang C, Gu S, et al. Upgrading vacuum residuum by combined sonication and treatment with a hydrogen donor [J]. Chemistry and Technology of Fuels and Oils,2013, 48(6): 426–435

    [16]Hamidi H, Mohammadian E, Junin R, et al. A technique for evaluating the oil/heavy-oil viscosity changes under ultrasound in a simulated porous medium [J]. Ultrasonics,2014, 54(2): 655–662

    [17]Chakma A, Berruti F. The effects of ultrasonic treatment on the viscosity of Athabasca bitumen and bitumen-solvent mixtures [J]. Journal of Canadian Petroleum Technology,1993, 32(5): 48–53

    [18]Mushrush G. Petroleum Products: Instability and Incompatibility[M]. CRC Press, 1995

    [19]Shui H F, Shen B X, Gao J S. Study on the structure of heavy oils with1H NMR/IR [J]. Journal-East China University of Metallurgy, 1999, 16(3): 224–229 (in Chinese)

    [20]Betancourt C, Ferney E, Avella M, et al. Structural Characterization of Unfractionated Asphalts by1H NMR and13C NMR [J]. Energy & Fuels, 2016, 30(4): 2729–2740

    [21]Hasan M U, Ali M F, Bukhari A. Structural characterization of Saudi Arabian heavy crude oil by NMR spectroscopy [J].Fuel, 1983, 62(5): 518–523

    猜你喜歡
    壯藥抗炎黃酮
    壯藥莪術(shù)油對卵巢癌miR-223-3p的調(diào)控機制研究
    秦艽不同配伍的抗炎鎮(zhèn)痛作用分析
    牛耳楓提取物的抗炎作用
    中成藥(2017年9期)2017-12-19 13:34:20
    HPLC法同時測定固本補腎口服液中3種黃酮
    中成藥(2017年8期)2017-11-22 03:19:40
    MIPs-HPLC法同時測定覆盆子中4種黃酮
    中成藥(2017年10期)2017-11-16 00:50:13
    短柱八角化學成分及其抗炎活性的研究
    中成藥(2017年10期)2017-11-16 00:50:09
    DAD-HPLC法同時測定龍須藤總黃酮中5種多甲氧基黃酮
    中成藥(2017年4期)2017-05-17 06:09:50
    壯藥兩面針化學成分及其臨床應用研究進展
    壯藥假煙葉急性毒性試驗研究
    熏硫與未熏硫白芷抗炎鎮(zhèn)痛作用的對比研究
    中藥與臨床(2015年5期)2015-12-17 02:39:30
    免费看不卡的av| 高清av免费在线| 免费观看av网站的网址| 欧美老熟妇乱子伦牲交| 精品福利永久在线观看| e午夜精品久久久久久久| 看免费av毛片| 久久精品久久久久久久性| 欧美黑人精品巨大| 香蕉丝袜av| 亚洲国产av新网站| 黄色a级毛片大全视频| 午夜91福利影院| 91国产中文字幕| 亚洲国产精品国产精品| 亚洲少妇的诱惑av| 亚洲精品国产区一区二| 老司机影院成人| av不卡在线播放| 五月天丁香电影| 9191精品国产免费久久| 欧美乱码精品一区二区三区| 男女国产视频网站| 啦啦啦在线观看免费高清www| 日韩一卡2卡3卡4卡2021年| 日本午夜av视频| 香蕉国产在线看| 亚洲激情五月婷婷啪啪| 亚洲一区二区三区欧美精品| 大陆偷拍与自拍| 19禁男女啪啪无遮挡网站| 岛国毛片在线播放| 香蕉丝袜av| 嫁个100分男人电影在线观看 | 80岁老熟妇乱子伦牲交| 亚洲成人免费电影在线观看 | 性色av乱码一区二区三区2| 精品福利永久在线观看| 国产精品人妻久久久影院| 99九九在线精品视频| 亚洲av在线观看美女高潮| 精品久久久久久久毛片微露脸 | 精品国产一区二区久久| 亚洲成人手机| 91成人精品电影| 精品久久久久久久毛片微露脸 | 久久久精品94久久精品| 久久久久国产精品人妻一区二区| 国产欧美日韩一区二区三 | 亚洲色图 男人天堂 中文字幕| 伦理电影免费视频| 狂野欧美激情性bbbbbb| 亚洲人成网站在线观看播放| 欧美成狂野欧美在线观看| 国产日韩一区二区三区精品不卡| 飞空精品影院首页| 国产欧美亚洲国产| 亚洲精品日韩在线中文字幕| 国产成人av激情在线播放| 亚洲成人免费电影在线观看 | av国产久精品久网站免费入址| 久久人人97超碰香蕉20202| 19禁男女啪啪无遮挡网站| 操出白浆在线播放| 午夜日韩欧美国产| 国产淫语在线视频| 国产精品国产三级专区第一集| av一本久久久久| 亚洲精品一卡2卡三卡4卡5卡 | av有码第一页| av又黄又爽大尺度在线免费看| 我要看黄色一级片免费的| 精品亚洲成国产av| 国产亚洲精品久久久久5区| 少妇的丰满在线观看| 婷婷色综合www| 免费黄频网站在线观看国产| 精品福利永久在线观看| 国产精品一区二区在线不卡| 国产高清视频在线播放一区 | 亚洲欧美成人综合另类久久久| 真人做人爱边吃奶动态| 免费黄频网站在线观看国产| 亚洲一区二区三区欧美精品| 啦啦啦视频在线资源免费观看| 午夜精品国产一区二区电影| 久久精品人人爽人人爽视色| 成人三级做爰电影| 亚洲三区欧美一区| 久久久久精品人妻al黑| e午夜精品久久久久久久| 免费在线观看视频国产中文字幕亚洲 | 乱人伦中国视频| 天天添夜夜摸| 日韩av免费高清视频| 精品福利观看| 熟女av电影| 欧美成狂野欧美在线观看| 亚洲精品一二三| 十八禁人妻一区二区| 制服人妻中文乱码| 亚洲精品一区蜜桃| 色网站视频免费| 亚洲成国产人片在线观看| 婷婷色综合www| 日韩精品免费视频一区二区三区| 亚洲精品自拍成人| 中国国产av一级| 晚上一个人看的免费电影| av有码第一页| 午夜久久久在线观看| 一二三四在线观看免费中文在| 国产精品久久久人人做人人爽| 18在线观看网站| 丰满迷人的少妇在线观看| 妹子高潮喷水视频| 国产高清不卡午夜福利| 日韩中文字幕视频在线看片| 亚洲欧美激情在线| 日本黄色日本黄色录像| 亚洲免费av在线视频| 国产精品久久久久成人av| 精品一区二区三卡| 国产精品成人在线| 午夜91福利影院| 精品国产一区二区三区四区第35| 大香蕉久久成人网| 亚洲国产欧美网| 波多野结衣av一区二区av| 国产成人精品无人区| 日本猛色少妇xxxxx猛交久久| 一级黄色大片毛片| 天天添夜夜摸| 亚洲精品国产一区二区精华液| 97精品久久久久久久久久精品| 国产精品二区激情视频| 久久久精品国产亚洲av高清涩受| 欧美人与性动交α欧美软件| 熟女av电影| 99热国产这里只有精品6| 夜夜骑夜夜射夜夜干| 日韩电影二区| 亚洲欧洲国产日韩| 五月天丁香电影| 免费在线观看完整版高清| 黄色片一级片一级黄色片| 天天躁日日躁夜夜躁夜夜| 国产成人系列免费观看| 一区二区三区精品91| 亚洲 欧美一区二区三区| 亚洲伊人色综图| 亚洲国产精品一区二区三区在线| 亚洲,一卡二卡三卡| 亚洲精品一区蜜桃| 视频在线观看一区二区三区| 亚洲中文日韩欧美视频| 80岁老熟妇乱子伦牲交| 久久精品久久久久久噜噜老黄| 精品久久久精品久久久| 另类亚洲欧美激情| 久久99精品国语久久久| 亚洲 欧美一区二区三区| tube8黄色片| 男的添女的下面高潮视频| 搡老乐熟女国产| 欧美日韩亚洲高清精品| 亚洲黑人精品在线| 91精品伊人久久大香线蕉| 美女中出高潮动态图| 嫁个100分男人电影在线观看 | 国产精品久久久久久人妻精品电影 | 久久免费观看电影| 丁香六月欧美| 国产成人系列免费观看| 国产一区二区三区av在线| 王馨瑶露胸无遮挡在线观看| 国产欧美日韩一区二区三 | 美女扒开内裤让男人捅视频| 亚洲熟女毛片儿| 国产亚洲欧美在线一区二区| av又黄又爽大尺度在线免费看| 性色av一级| av有码第一页| 两个人看的免费小视频| 精品亚洲成a人片在线观看| 欧美精品人与动牲交sv欧美| av在线播放精品| 无遮挡黄片免费观看| 天天躁夜夜躁狠狠久久av| 久久精品久久精品一区二区三区| 美女午夜性视频免费| 国产色视频综合| 亚洲精品国产av成人精品| 熟女av电影| 桃花免费在线播放| 久久国产精品影院| 欧美日韩综合久久久久久| 一级毛片电影观看| 亚洲av成人不卡在线观看播放网 | 亚洲欧洲日产国产| 亚洲成人免费av在线播放| 国产黄色免费在线视频| 亚洲欧美清纯卡通| 亚洲久久久国产精品| 日韩一卡2卡3卡4卡2021年| 亚洲五月色婷婷综合| 亚洲成av片中文字幕在线观看| 色婷婷av一区二区三区视频| 激情视频va一区二区三区| 日韩熟女老妇一区二区性免费视频| 别揉我奶头~嗯~啊~动态视频 | 中国美女看黄片| 热re99久久精品国产66热6| 每晚都被弄得嗷嗷叫到高潮| 亚洲第一青青草原| 一级毛片黄色毛片免费观看视频| 久久国产精品大桥未久av| 天天躁夜夜躁狠狠久久av| 久久天躁狠狠躁夜夜2o2o | 国产片特级美女逼逼视频| 久久久久国产精品人妻一区二区| 亚洲精品久久成人aⅴ小说| 久久亚洲国产成人精品v| 蜜桃在线观看..| 又大又爽又粗| 99久久精品国产亚洲精品| 国产精品一区二区免费欧美 | 午夜精品国产一区二区电影| 欧美亚洲 丝袜 人妻 在线| 亚洲国产欧美网| 欧美老熟妇乱子伦牲交| 国产成人啪精品午夜网站| 少妇粗大呻吟视频| 国产成人系列免费观看| 69精品国产乱码久久久| 秋霞在线观看毛片| 国产成人精品久久久久久| 亚洲精品久久午夜乱码| 久热这里只有精品99| 精品国产一区二区久久| 久久久精品区二区三区| 高清黄色对白视频在线免费看| 久久国产亚洲av麻豆专区| 一区二区日韩欧美中文字幕| 老司机午夜十八禁免费视频| 18禁观看日本| 国产熟女午夜一区二区三区| 高清欧美精品videossex| 国产欧美日韩精品亚洲av| 各种免费的搞黄视频| 亚洲精品在线美女| 日韩av在线免费看完整版不卡| 日日摸夜夜添夜夜爱| kizo精华| 国产一区亚洲一区在线观看| 婷婷色av中文字幕| 人成视频在线观看免费观看| 丝袜美足系列| 精品一品国产午夜福利视频| 国产麻豆69| 一级黄片播放器| 天天添夜夜摸| 国产99久久九九免费精品| 赤兔流量卡办理| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜激情av网站| 免费高清在线观看日韩| 国产成人a∨麻豆精品| 久久精品aⅴ一区二区三区四区| 国产成人91sexporn| a级毛片黄视频| 黑丝袜美女国产一区| 久久久久精品国产欧美久久久 | 精品人妻在线不人妻| 国产极品粉嫩免费观看在线| 亚洲熟女毛片儿| 欧美在线一区亚洲| www日本在线高清视频| 国产精品二区激情视频| 黑人猛操日本美女一级片| 国产野战对白在线观看| 99热网站在线观看| 午夜免费成人在线视频| 麻豆国产av国片精品| 老司机在亚洲福利影院| 波野结衣二区三区在线| 久久影院123| 国产精品麻豆人妻色哟哟久久| 麻豆国产av国片精品| 国产亚洲av高清不卡| 国产亚洲精品久久久久5区| 精品高清国产在线一区| videosex国产| 脱女人内裤的视频| 国产av一区二区精品久久| 国产成人免费观看mmmm| 涩涩av久久男人的天堂| 国产国语露脸激情在线看| 狂野欧美激情性bbbbbb| 日韩av不卡免费在线播放| 亚洲国产最新在线播放| 久久女婷五月综合色啪小说| av在线播放精品| 免费在线观看完整版高清| 欧美国产精品一级二级三级| 少妇精品久久久久久久| 久久久久久亚洲精品国产蜜桃av| videos熟女内射| 国产成人av教育| 一区二区三区激情视频| 亚洲五月婷婷丁香| 九色亚洲精品在线播放| 国产成人精品无人区| 无限看片的www在线观看| 夫妻性生交免费视频一级片| 真人做人爱边吃奶动态| 久久精品人人爽人人爽视色| 亚洲av片天天在线观看| 黑丝袜美女国产一区| 国产免费视频播放在线视频| 欧美日本中文国产一区发布| 天堂8中文在线网| 国产精品久久久人人做人人爽| 一级片'在线观看视频| 男女午夜视频在线观看| 操美女的视频在线观看| 午夜免费成人在线视频| 日韩一卡2卡3卡4卡2021年| 天天躁夜夜躁狠狠躁躁| 国产麻豆69| 亚洲 国产 在线| 亚洲人成电影免费在线| www.自偷自拍.com| 亚洲欧洲国产日韩| 亚洲国产精品国产精品| 最新在线观看一区二区三区 | 国产精品成人在线| 国产精品久久久久久精品古装| 一级片免费观看大全| 在现免费观看毛片| 高清黄色对白视频在线免费看| 我要看黄色一级片免费的| 99精国产麻豆久久婷婷| 婷婷色综合www| 国产精品av久久久久免费| 久久精品久久精品一区二区三区| 亚洲中文av在线| 中文字幕av电影在线播放| 中文字幕人妻丝袜一区二区| 青春草亚洲视频在线观看| 91麻豆精品激情在线观看国产 | 久久久久国产精品人妻一区二区| 中国美女看黄片| 亚洲专区国产一区二区| 大香蕉久久成人网| 飞空精品影院首页| 少妇人妻 视频| www.自偷自拍.com| 一级毛片 在线播放| 新久久久久国产一级毛片| 色婷婷av一区二区三区视频| 国产精品麻豆人妻色哟哟久久| 一本—道久久a久久精品蜜桃钙片| 亚洲av成人不卡在线观看播放网 | 天天躁日日躁夜夜躁夜夜| 欧美日韩综合久久久久久| 亚洲国产最新在线播放| 久久人妻熟女aⅴ| 欧美国产精品va在线观看不卡| 亚洲,欧美,日韩| 2018国产大陆天天弄谢| 性色av一级| 新久久久久国产一级毛片| 国产三级黄色录像| 制服诱惑二区| 丝袜美足系列| 美女中出高潮动态图| 亚洲熟女精品中文字幕| 免费在线观看视频国产中文字幕亚洲 | 午夜视频精品福利| 中文字幕人妻丝袜制服| av天堂久久9| 女人高潮潮喷娇喘18禁视频| 免费人妻精品一区二区三区视频| 9191精品国产免费久久| 国产精品二区激情视频| 一级片'在线观看视频| 丝瓜视频免费看黄片| 亚洲人成电影观看| 女人爽到高潮嗷嗷叫在线视频| 一区二区日韩欧美中文字幕| 亚洲免费av在线视频| 免费在线观看影片大全网站 | 久久99热这里只频精品6学生| 人人妻人人爽人人添夜夜欢视频| 久久久久久久精品精品| 大香蕉久久网| 午夜福利影视在线免费观看| 国产精品久久久久久人妻精品电影 | 国产男女内射视频| 少妇被粗大的猛进出69影院| 国产日韩一区二区三区精品不卡| 亚洲黑人精品在线| 亚洲国产精品成人久久小说| 中国美女看黄片| 韩国高清视频一区二区三区| 如日韩欧美国产精品一区二区三区| 欧美成人精品欧美一级黄| 69精品国产乱码久久久| 女人高潮潮喷娇喘18禁视频| 爱豆传媒免费全集在线观看| 国产一区有黄有色的免费视频| 国产精品秋霞免费鲁丝片| 国产亚洲一区二区精品| 精品福利永久在线观看| 亚洲中文日韩欧美视频| 久久鲁丝午夜福利片| 国产av国产精品国产| 国产精品九九99| 精品高清国产在线一区| 日本a在线网址| a级毛片黄视频| 免费看十八禁软件| 久久久久久人人人人人| 成人国语在线视频| 成年动漫av网址| www.熟女人妻精品国产| 欧美人与善性xxx| 丁香六月欧美| 久久人妻熟女aⅴ| 黄色视频在线播放观看不卡| 香蕉国产在线看| 嫩草影视91久久| 国产成人欧美在线观看 | 我的亚洲天堂| 国产一区二区三区综合在线观看| 精品卡一卡二卡四卡免费| 叶爱在线成人免费视频播放| 成年人午夜在线观看视频| 免费看十八禁软件| 三上悠亚av全集在线观看| 日韩av不卡免费在线播放| 最近手机中文字幕大全| 亚洲国产毛片av蜜桃av| 成人手机av| 一级a爱视频在线免费观看| 国产亚洲精品久久久久5区| 亚洲 欧美一区二区三区| 国产一区二区激情短视频 | 精品亚洲成国产av| 多毛熟女@视频| 91麻豆精品激情在线观看国产 | 亚洲欧洲精品一区二区精品久久久| 老司机靠b影院| 亚洲五月婷婷丁香| 欧美日韩av久久| 少妇裸体淫交视频免费看高清 | 最近手机中文字幕大全| 色94色欧美一区二区| 欧美日韩视频高清一区二区三区二| 日韩视频在线欧美| 日本vs欧美在线观看视频| 91字幕亚洲| 99精品久久久久人妻精品| 蜜桃国产av成人99| 只有这里有精品99| 久久久久国产精品人妻一区二区| 99国产精品一区二区蜜桃av | 免费看不卡的av| 久久ye,这里只有精品| 啦啦啦 在线观看视频| av电影中文网址| 久久免费观看电影| 999久久久国产精品视频| 在线av久久热| 另类亚洲欧美激情| 热re99久久国产66热| 亚洲一码二码三码区别大吗| 黄网站色视频无遮挡免费观看| 国产欧美日韩综合在线一区二区| av线在线观看网站| 一边亲一边摸免费视频| 亚洲,欧美,日韩| 丰满少妇做爰视频| 这个男人来自地球电影免费观看| 在线亚洲精品国产二区图片欧美| 自拍欧美九色日韩亚洲蝌蚪91| 国产伦理片在线播放av一区| 99国产精品99久久久久| 欧美精品一区二区大全| 少妇粗大呻吟视频| 又粗又硬又长又爽又黄的视频| 国产主播在线观看一区二区 | 日本欧美视频一区| 青春草视频在线免费观看| 久9热在线精品视频| 老司机在亚洲福利影院| 男女下面插进去视频免费观看| 亚洲欧美一区二区三区久久| 黄色一级大片看看| 久久 成人 亚洲| 国产免费现黄频在线看| 咕卡用的链子| 肉色欧美久久久久久久蜜桃| 五月天丁香电影| 亚洲av欧美aⅴ国产| 国产老妇伦熟女老妇高清| 大型av网站在线播放| 亚洲专区国产一区二区| 婷婷色麻豆天堂久久| 国产精品久久久久久精品电影小说| 色精品久久人妻99蜜桃| 亚洲五月色婷婷综合| 久久性视频一级片| 欧美成人精品欧美一级黄| 国产麻豆69| 少妇精品久久久久久久| 一级毛片 在线播放| 精品亚洲成国产av| 国产男人的电影天堂91| 人妻 亚洲 视频| 青春草亚洲视频在线观看| 欧美黑人欧美精品刺激| 我的亚洲天堂| www.av在线官网国产| 国精品久久久久久国模美| 久久精品人人爽人人爽视色| 啦啦啦在线免费观看视频4| 99国产精品免费福利视频| 中文字幕最新亚洲高清| 午夜福利,免费看| 久久午夜综合久久蜜桃| 亚洲,欧美精品.| 久久热在线av| 人人妻人人爽人人添夜夜欢视频| 亚洲,一卡二卡三卡| 免费高清在线观看日韩| 欧美国产精品va在线观看不卡| 高清黄色对白视频在线免费看| 亚洲欧美中文字幕日韩二区| 纵有疾风起免费观看全集完整版| 水蜜桃什么品种好| 超色免费av| 少妇粗大呻吟视频| 极品人妻少妇av视频| 波多野结衣av一区二区av| 777米奇影视久久| 日韩电影二区| 精品一区在线观看国产| 欧美人与善性xxx| 精品少妇内射三级| 大香蕉久久网| 精品国产乱码久久久久久小说| 在线亚洲精品国产二区图片欧美| 人人妻人人澡人人看| 无遮挡黄片免费观看| 日本一区二区免费在线视频| 午夜影院在线不卡| 日本猛色少妇xxxxx猛交久久| 18禁国产床啪视频网站| 校园人妻丝袜中文字幕| 国产一区二区激情短视频 | 欧美精品av麻豆av| 在线亚洲精品国产二区图片欧美| 可以免费在线观看a视频的电影网站| 亚洲欧美日韩另类电影网站| 国产黄色免费在线视频| 悠悠久久av| 免费在线观看黄色视频的| 在线观看www视频免费| 国产麻豆69| 午夜免费观看性视频| 日韩制服骚丝袜av| 亚洲精品国产av成人精品| 五月开心婷婷网| 国语对白做爰xxxⅹ性视频网站| av有码第一页| 国产精品久久久久成人av| 人成视频在线观看免费观看| 欧美成人午夜精品| 日本av免费视频播放| 999久久久国产精品视频| 久久久久久亚洲精品国产蜜桃av| 人人妻,人人澡人人爽秒播 | 丝袜脚勾引网站| 交换朋友夫妻互换小说| 老汉色∧v一级毛片| 最黄视频免费看| 美女视频免费永久观看网站| 十分钟在线观看高清视频www| 久热这里只有精品99| 91精品国产国语对白视频| 51午夜福利影视在线观看| 一区二区三区激情视频| 免费不卡黄色视频| 精品一品国产午夜福利视频| 日本av手机在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧美一区二区三区国产| 亚洲精品自拍成人| 纯流量卡能插随身wifi吗| 国产精品人妻久久久影院| 日韩视频在线欧美| 成人影院久久| 老汉色av国产亚洲站长工具| 又黄又粗又硬又大视频| 亚洲激情五月婷婷啪啪| 国产亚洲一区二区精品| 精品一区二区三区四区五区乱码 | 亚洲av日韩在线播放| 日韩一区二区三区影片| 69精品国产乱码久久久| 国产又爽黄色视频| 黄色a级毛片大全视频| 国产亚洲精品久久久久5区|