劉 宸,楊桂燕,王慶艷,黃文倩,王曉彬,陳立平
?
線掃描式拉曼高光譜成像技術無損檢測奶粉三聚氰胺
劉 宸1,2,3,4,楊桂燕2,3,4,王慶艷2,3,4,黃文倩2,3,4,王曉彬2,3,4,陳立平1,2,3,4※
(1. 西北農(nóng)林科技大學機械與電子工程學院,楊凌 712100;2. 國家農(nóng)業(yè)智能裝備工程技術研究中心,北京 100097; 3. 農(nóng)業(yè)部農(nóng)業(yè)信息技術重點實驗室,北京 100097;4. 農(nóng)業(yè)智能裝備技術北京市重點實驗室,北京 100097)
為了實現(xiàn)顆粒狀樣本的大面積無損快速檢測,該研究結合拉曼光譜和高光譜技術搭建了一套線掃描式拉曼高光譜檢測系統(tǒng),對奶粉和三聚氰胺顆粒混合樣本進行了檢測研究。研究通過高斯窗平滑法和airPLS基線校正方法分別消除了拉曼光譜中的噪聲信號和熒光背景,選取三聚氰胺主要特征峰(671.71 cm-1)處的單波段圖像作為是否含有三聚氰胺顆粒的判斷依據(jù)。研究首先對三聚氰胺產(chǎn)生的拉曼信號在奶粉顆粒中的穿透深度進行了檢測,隨后完成了10種不同濃度的三聚氰胺奶粉混合樣本的拉曼高光譜采集,對特征單波段圖像中各像素點的拉曼強度平均值進行一元線性分析,并對單波段圖像進行二值化處理。結果顯示,在三聚氰胺特征單波段圖像中,感興趣區(qū)域內(nèi)所有像素點的拉曼強度平均值與三聚氰胺濃度之間線性度較高,其決定系數(shù)2達到了0.995 4。在二值圖像中,三聚氰胺顆粒的位置信息能夠直觀的展現(xiàn)。研究結果表明,拉曼高光譜成像技術具有快速、無損和大面積檢測的特點,在實際應用中具有巨大潛力。
無損檢測;圖像處理;光譜分析;拉曼光譜;高光譜成像技術;線掃描式;脫脂奶粉;三聚氰胺
三聚氰胺屬于化工原料,是食品非法添加劑的一種,用來虛擬提升奶粉或飼料中的蛋白質含量指標[1]。目前,國內(nèi)外學者應用高效液相色譜法(HPLC)和表面增強拉曼光譜法(SERS)均實現(xiàn)了奶粉中的三聚氰胺的快速檢測[2-5]。但在這2種方法中,奶粉樣本都需要先局部取樣,再轉化成液態(tài)形式方能進行下一步操作,檢測過程中還需借助一些化學分析純或增強試劑[6-8]。這2種常用的檢測方法均影響了奶粉顆粒的使用性能,屬于破壞性檢測。此外,經(jīng)此2種方法得出的檢測結果只能代表局部取樣的平均情況,無法反映整體樣本的濃度信息和三聚氰胺顆粒的具體分布。顆粒狀樣本與液態(tài)樣本不同,三聚氰胺顆粒在奶粉中的分布可能并不均勻,局部采樣的單點檢測方式結果并不準確。拉曼光譜作為一種散射光譜在無損檢測方面具有一定優(yōu)勢[9-11]。高光譜成像技術不僅可以獲得樣本的圖像信息,圖像中每個像素點均包含了一條完整的光譜譜線。在食品的品質安全檢測中,高光譜成像技術已經(jīng)應用于果蔬、肉制品、乳制品等多個領域,常用來展示樣本中某一特定成分的空間分布信息[12-15]。因此,結合拉曼光譜和高光譜成像技術有望實現(xiàn)對奶粉樣本的大面積直接檢測。目前,Dhakal等對點掃描式拉曼高光譜檢測中顆粒狀樣本的最優(yōu)厚度進行了研究,結果顯示三聚氰胺的拉曼信號能穿透至多3 mm厚度的淀粉顆粒,在面粉顆粒中的穿透深度最高為1 mm,在奶粉顆粒中的穿透深度尚不明確[16]。Qin等分別選取點掃描式和線掃描式,結合拉曼光譜和高光譜成像技術對奶粉中的幾種非法添加劑檢測進行了相關研究[17-18]。結果表明采用點掃描式的二值圖像中,識別為添加劑的像素點的個數(shù)與添加劑的濃度呈明顯線性關系,而在線掃描方式中,二者之間的關系尚不明確。點掃描式的掃描方式需要花費大量時間,無法實現(xiàn)樣本的現(xiàn)場快速檢測[19]。因此,本研究搭建了一套線掃描式拉曼高光譜成像系統(tǒng),針對奶粉中三聚氰胺顆粒的檢測優(yōu)化試驗參數(shù),探索拉曼高光譜圖像與三聚氰胺顆粒之間的關系,用以實現(xiàn)大面積混合樣本的快速無損檢測。
線掃描拉曼高光譜成像系統(tǒng)由拉曼成像光譜儀(ImSpector R10E,Specim,F(xiàn)inland)、線陣CCD相機(iKon-M 934,Andor Technology plc.,N. Ireland)、一字線激光器(innovative photonic solutions,USA)、成像鏡頭、二向色鏡及濾光片、樣品升降臺、移動軌道、步進電機、電源以及計算機組成,如圖1所示。拉曼成像光譜儀的采集范圍是770~980 nm(?261~2539 cm-1),光譜分辨率是0.6 nm,線陣CCD相機的分辨率是512× 1 024 pixels,系統(tǒng)空間分辨率是0.25 mm/pixel。線激光的波長為785 nm,空間線寬2 mm,張角為31°[20]。線激光由半導體激光器產(chǎn)生,具有體積小、壽命長的特點,此外可以有效抑制奶粉產(chǎn)生的熒光背景。采集時線激光通過二向色鏡反射到樣本表面,線陣CCD相機采集狹縫范圍內(nèi)樣本的高光譜圖像,然后通過電動位移臺水平移動完成整個樣本的掃描。
圖1 拉曼高光譜成像系統(tǒng)原理圖
試驗用奶粉共3種,分為全脂奶粉(全脂奶粉,伊利)、低脂奶粉(學生高鋅高鈣奶粉,伊利)和脫脂奶粉(高蛋白脫脂高鈣奶粉,伊利),均購買于北京超市發(fā)超市;三聚氰胺分析純(99%)來自上海晶純生化科技股份有限公司。
在奶粉樣本最佳厚度的試驗中,研究制備如圖2a所示的雙層樣本。雙層樣本上半部為1—5個鋁環(huán)厚度的奶粉層,高度從1.0 mm至5.0 mm可調,其中鋁環(huán)尺寸為外徑40 mm,內(nèi)徑28 mm;下半部為裝滿三聚氰胺的培養(yǎng)皿,高度為5.0 mm,培養(yǎng)皿直徑35 mm。檢測時首先放置5個鋁環(huán)厚度的奶粉顆粒進行高光譜采集,然后依次去除1個鋁環(huán)厚度的奶粉層,每次奶粉層的上表面沿鋁環(huán)外圍刮平,重復此步驟直至鋁環(huán)全部移除完成一組采集。試驗依照此流程分別選取全脂奶粉、低脂奶粉和脫脂奶粉填充奶粉層,共完成了3組檢測。
在三聚氰胺濃度檢測試驗中,為了減少脂肪含量的影響,試驗選取脫脂奶粉制備不同濃度的三聚氰胺奶粉混合樣本共10份,每份10 g,質量濃度范圍從0.01%至2.00%。制備過程中先在電子天平上分別稱量每份樣本所需質量的脫脂奶粉顆粒和三聚氰胺顆粒,隨即倒入50 mL離心管中,將離心管放置于旋渦振蕩器上運行20 min至二者充分混合,混合均勻后將離心管放置于試管架上。此外,脫脂奶粉和三聚氰胺的純物質樣本也經(jīng)相同過程制備。在圖像采集時,將混合樣本顆粒填滿于如圖2b中的鋁合金容器中,沿容器上邊面進行刮平。該容器的外部尺寸為100 mm×55 mm×10 mm,內(nèi)部的凹陷部分尺寸為90 mm×45 mm×2 mm。試驗中相同濃度的混合樣本重復取樣共采集3次。根據(jù)之前的試驗結果,試驗參數(shù)設置為激光強度100 mW,曝光時間1 000 ms。
圖2 樣本制備示意圖
在采集的高光譜圖像中,研究首先進行感興趣區(qū)域選取。在奶粉顆粒樣本最佳厚度的試驗中,研究選取鋁環(huán)中心點附近面積為15 mm×15 mm區(qū)域作為感興趣區(qū)域,該區(qū)域包含60 pixels×60 pixels共3 600個像素點。在三聚氰胺濃度檢測試驗中,研究從鋁合金容器中心區(qū)域選取40 mm×80 mm面積范圍作為感興趣區(qū)域,該面積內(nèi)包含160 pixels×320 pixels共51 200個像素點。對于感興趣區(qū)域內(nèi)每個像素點的拉曼光譜,研究首先采用高斯窗平滑法消除噪聲信號,然后采用airPLS基線校正法消除熒光背景[21-24]。預處理后,研究挑選三聚氰胺的特征單波段圖像,統(tǒng)計所有像素點的拉曼強度平均值并進行一元線性分析,通過二值化法獲取了相應的二值圖像[25-26]。高光譜圖像的預處理過程在ENVI 5.2(Exelis Visual Information Solutions,Boulder, CO, USA)軟件和MATLAB(R2014a, Math Works, Natick, MA, USA)軟件中完成。
脫脂奶粉和三聚氰胺純物質的平均拉曼光譜如圖3所示,圖中光譜均為純物質樣本感興趣區(qū)域(40 mm× 80 mm)內(nèi)51 200個像素點的平均光譜。
圖3 三聚氰胺純物質和脫脂奶粉的平均拉曼光譜圖
在預處理后的校正光譜中,三聚氰胺主要的拉曼特征峰分別在577.93、671.71、979.01、1 440.82和1 553.86 cm-1位移處。其中577.93和979.01 cm-1處的拉曼特征峰分別由C-N-C鍵的彎曲振動和對稱伸縮振動引起[27];1 440.82和1 553.86 cm-1處拉曼特征峰的由C=N鍵的伸縮振動以及N-H鍵的彎曲振動引起;在671.71 cm-1處的為最強拉曼特征峰,形成原因是三嗪環(huán)的剪式振動[28-29]。由于脫脂奶粉在671.71 cm-1處并沒有明顯的特征峰存在,因此研究選取671.71 cm-1位移處的特征單波段圖像作為是否能夠檢測到三聚氰胺顆粒的判斷依據(jù)。
圖4以三聚氰胺1.00%濃度時混合樣本的采集結果為例,對特征單波段圖像的處理過程進行說明。在671.71 cm-1處的原始圖像中,由于受到熒光背景的干擾,每個像素點之間的拉曼強度值差異并不明顯。經(jīng)過光譜預處理后,校正圖像中部分像素點的亮度較高,說明該像素點區(qū)域含有三聚氰胺顆粒。此時選取純奶粉樣本在671.71 cm-1處出現(xiàn)的最大值作為閾值,對圖像進行二值化處理,所獲二值圖像中含有三聚氰胺顆粒的像素點能夠更清晰的展現(xiàn)。研究依照此方法對采集的每張拉曼高光譜圖像進行圖像處理。
圖4 三聚氰胺濃度為1.00%時特征單波段圖像的熒光校正和二值化處理結果
在顆粒狀樣本的高光譜圖像采集中,保證光能穿透整個樣本厚度是十分必要的[30]。上節(jié)已經(jīng)得出三聚氰胺的最強拉曼特征峰出現(xiàn)在671.71 cm-1處,為了降低奶粉中三聚氰胺顆粒的檢測限,在穿透深度試驗中研究依然以671.71 cm-1處的拉曼信號強度作為是否能夠采集到底層三聚氰胺產(chǎn)生拉曼信號的判定依據(jù)。在穿透深度檢測結果中,不同奶粉層厚度下校正圖像內(nèi)的拉曼光譜平均值如圖5所示。
圖5中可以看出,三聚氰胺純物質在671.71 cm-1處的拉曼強度值均為最大,隨著奶粉層厚度的增加,可采集到的拉曼信號強度逐漸變小。當奶粉層厚度為5 mm時,3組中671.71 cm-1處仍存在微弱的拉曼特征峰,說明三聚氰胺產(chǎn)生的拉曼信號均能穿透5 mm厚度的3種奶粉層顆粒。通過對比,3種類型奶粉的檢測結果基本一致。進一步,研究對671.71 cm-1處的校正圖像進行了二值化處理,閾值選取為各組純奶粉樣本在該單波段圖像中出現(xiàn)的最大值。若有像素點的拉曼信號強度超過了閾值,說明該點檢測到了三聚氰胺的拉曼信號,該像素點被標記為黑色;反之說明該像素點只含有奶粉顆粒,像素點被標記為白色,最終的二值圖像結果如圖6所示。結果顯示,當奶粉層厚度在3 mm范圍內(nèi),3組二值圖像中所有像素點均可以采集到三聚氰胺產(chǎn)生的拉曼信號,此時三聚氰胺像素點的占比達到了100 %。但當奶粉層厚度達到4 mm時,3組中均有部分像素點無法采集到三聚氰胺的拉曼信號。當奶粉層達到5 mm時,低脂奶粉組中三聚氰胺像素點的個數(shù)最少,占比僅為37 %。考慮到奶粉顆粒之間容易聚集成團,顆粒的密集程度具有一定的隨機性,實際中三聚氰胺顆粒的濃度比較低。因此,為了保證混合樣本底部的三聚氰胺顆粒能夠100 %的檢測出,試驗制定混合樣本的厚度為2 mm。
圖5 3種類型奶粉在不同厚度時感興趣區(qū)域內(nèi)的拉曼光譜平均值對比
圖6 不同奶粉層厚度時雙層樣本在特征波段處的二值圖像
研究根據(jù)10種混合樣本在671.71 cm-1位移處的校正圖像,計算出了同種濃度下3次采集結果中感興趣區(qū)域內(nèi)所有像素點的拉曼強度平均值,根據(jù)對應的三聚氰胺濃度進行了一元線性回歸分析,結果如圖7所示。由圖7可以看出,隨著三聚氰胺濃度的升高,校正圖像中各像素點的拉曼強度平均值呈線性增長。擬合直線的決定系數(shù)達到了0.995 4,說明回歸直線對三聚氰胺濃度的擬合程度較高。因此,根據(jù)校正圖像中各像素點的拉曼強度可以對所選區(qū)域內(nèi)三聚氰胺的濃度進行預測。對于不均勻的混合樣本,應用此方法可以獲得整體樣本在不同區(qū)域的三聚氰胺濃度含量。
圖7 在671.71 cm-1處拉曼強度平均值與三聚氰胺濃度的關系
進一步,研究對每張校正圖像進行二值化處理,閾值選取與上節(jié)相同,即脫脂奶粉樣本在671.71 cm-1處校正圖像中出現(xiàn)的拉曼強度最大值。當某一像素點的拉曼強度值大于閾值時,判定該像素點檢測到了三聚氰胺,此時稱該像素點為三聚氰胺像素點,顯示為黑色;反之,當像素點的拉曼強度小于閾值時,視該像素點內(nèi)只含有脫脂奶粉顆粒,稱該點為奶粉像素點,顯示為白色。試驗中10種濃度混合樣本分3次重復取樣,圖8展示了幾種不同濃度混合樣本的二值圖像結果。當三聚氰胺濃度為0.01%時,3次取樣結果中均檢測到了若干三聚氰胺像素點,說明在該試驗參數(shù)下,奶粉樣本中三聚氰胺濃度的檢測限達到了0.01%。隨著三聚氰胺顆粒的不斷增加,二值圖像中三聚氰胺像素點的個數(shù)逐漸變多。檢測結果表明應用此方法獲取的二值圖像能夠直觀的顯示出奶粉樣本中三聚氰胺顆粒的多少和具體的位置分布。
圖8 不同濃度脫脂奶粉樣本的二值圖像結果
研究進一步統(tǒng)計了同濃度3張二值圖像中三聚氰胺像素點的總數(shù),它們與三聚氰胺濃度的關系如圖9所示。
圖9 二值圖像中三聚氰胺像素點總數(shù)與三聚氰胺濃度的關系
在圖9中,當三聚氰胺濃度增加時,三聚氰胺像素點的總數(shù)呈非線性增長。也就是說,三聚氰胺像素點在感興趣區(qū)域內(nèi)(3次采集共153 600 pixels)的占比與三聚氰胺的濃度并不一致。造成這種結果的原因可能與拉曼信號在奶粉層中的穿透深度有關。在上節(jié)的試驗結果中,當奶粉層厚度為2 mm時,三聚氰胺產(chǎn)生的拉曼信號能夠100%的穿透奶粉層被系統(tǒng)采集到。由此可見,本章節(jié)中混合樣本的二值圖像代表的是多層樣本的采集結果。在低濃度時,檢測結果以表層三聚氰胺顆粒為主,深層三聚氰胺顆粒產(chǎn)生的拉曼信號較弱無法被采集到。隨著三聚氰胺濃度的升高,越來越多的處在深層的三聚氰胺顆粒被采集到,此時對應的二值圖像中三聚氰胺像素點個數(shù)會成倍的增加??梢灶A見的是,當三聚氰胺像素點幾乎占滿整個感興趣區(qū)域時,其增長速率必定會放緩。綜上所述,基于線掃描式拉曼高光譜技術對奶粉中三聚氰胺濃度進行檢測時,可以根據(jù)671.71 cm-1處的校正圖像中所選區(qū)域內(nèi)拉曼強度平均值對該區(qū)域三聚氰胺濃度進行預測,對應的二值圖像中可以直觀地觀測到三聚氰胺顆粒的多少和位置分布信息。
本研究結合拉曼光譜與高光譜成像技術,搭建了一套線掃描式拉曼高光譜檢測系統(tǒng),對大面積奶粉樣本中的三聚氰胺濃度進行了無損檢測研究。研究結果表明:1)奶粉和三聚氰胺混合樣本的厚度不宜超過2 mm,以此確?;旌蠘颖镜撞康娜矍璋奉w粒能夠被檢出。2)校正圖像中671.71 cm-1處各像素點的拉曼強度平均值與三聚氰胺濃度呈明顯線性關系,擬合結果中決定系數(shù)達到了0.995 4。3)對應的二值圖像中,三聚氰胺像素點的總數(shù)呈非線性增長,三聚氰胺顆粒的位置分布可以直觀的展現(xiàn)。4)在該試驗參數(shù)下,奶粉樣本中三聚氰胺的檢測限可達0.01%,單次檢測總面積達到40 mm×80 mm。與傳統(tǒng)的檢測方法相比,該系統(tǒng)可直接對顆粒狀樣本進行檢測,無需轉化成液態(tài)形式,也不必借助任何化學試劑,具有更高的時效性和更簡單的操作,在實際應用中具有巨大潛力。
[1] 任東升,周志俊. 三聚氰胺毒理學研究進展[J]. 環(huán)境與職業(yè)醫(yī)學,2008,25(6):595-598.
Ren Dongsheng, Zhou Zhijun. Updated information on toxicology of melamine[J]. Journal of Environmental and Occupational Medicine, 2008, 25(6): 595-598. (in Chinese with English abstract)
[2] Venkatasami G, Jr J R S. A rapid, acetonitrile-free, HPLC method for determination of melamine in infant formula[J]. Analytica Chimica Acta, 2010, 665(2): 227-230.
[3] Domingo E, Tirelli A A, Nunes C A, et al. Melamine detection in milk using vibrational spectroscopy and chemometrics analysis: A review[J]. Food Research International, 2014, 60(6): 131-139.
[4] 楊洋,徐春祥,車文軍. 高效液相色譜法測定奶粉中的三聚氰胺及其不確定度分析[J]. 食品科學,2010,31(4):250-253.
Yang Yang, Xu Chunxiang, Che Wenjun. Uncertainty evaluation of HPLC determination of melamine in milk powder chromatography[J]. Food Science, 2010, 31(4): 250-253. (in Chinese with English abstract)
[5] 曾甜,陳錢,江茜,等. PVDF微孔濾膜負載金納米粒子用于牛奶中三聚氰胺的SERS快速檢測[J]. 光散射學報,2016,28(3):209-213.
Zeng Tian, Chen Qian, Jiang Qian, et al. Rapid detection of melamine in milk by surface-enhanced Raman spectroscopy with PODF membranes as supports[J]. The Journal of Light Scattering, 2016, 28(3): 209-213. (in Chinese with English abstract)
[6] Craig A P, Franca A S, Irudayaraj J. Surface-enhanced Raman spectroscopy applied to food safety[J]. Annual Review of Food Science & Technology, 2013, 4(1): 369-380.
[7] 湯俊琪,田超,曾崇毅,等. 堿性銀膠的表面增強拉曼效應及對牛奶中三聚氰胺的檢測[J]. 光譜學與光譜分析,2013,33(3):709-713.
Tang Junqi, Tian Chao, Zeng Chongyi, et al. Alkaline silver colloid for surface enhanced Raman scattering and application to detection of melamine doped milk[J]. Spectroscopy and Spectral Analysis, 2013, 33(3): 709-713. (in Chinese with English abstract)
[8] Wen Y, Liu H, Han P, et al. Determination of melamine in milk powder, milk and fish feed by capillary electrophoresis: A good alternative to HPLC[J]. Journal of the Science of Food & Agriculture, 2010, 90(13): 2178-2182.
[9] 劉燕德,靳曇曇. 拉曼光譜技術在農(nóng)產(chǎn)品質量安全檢測中的應用[J]. 光譜學與光譜分析,2015, 35(9):2567-2572.
Liu Yande, Jin Tantan. Application of raman spectroscopy technique to agricultural products quality and safety determination[J]. Spectroscopy and Spectral Analysis, 2015, 35(9): 2567-2572. (in Chinese with English abstract)
[10] 劉宸,黃文倩,王慶艷,等. 拉曼光譜在食品無損檢測中的應用[J]. 食品安全質量檢測學報,2015, 6(8):2981-2987.
Liu Chen, Huang Wenqian, Wang Qinyan, et al. Application of Raman spectroscopy technique in food non-destructive determination[J]. Journal of Food Safety and Quality, 2015, 6(8): 2981-2987. (in Chinese with English abstract)
[11] Yang Danting, Ying Yibin. Applications of Raman spectroscopy in agricultural products and food analysis: A review[J]. Applied Spectroscopy Reviews, 2011, 46(7): 539-560.
[12] 金瑞,李小昱,顏伊蕓,等. 基于高光譜圖像和光譜信息融合的馬鈴薯多指標檢測方法[J]. 農(nóng)業(yè)工程學報,2015,31(16):258-263.
Jin Rui, Li Xiaoyu, Yan Yiyun, et al. Detection method of multi-target recognition of potato based on fusion of hyperspectral imaging and spectral information[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 258-263. (in Chinese with English abstract)
[13] 李江波,饒秀勤,應義斌,等. 基于高光譜成像技術檢測臍橙潰瘍[J]. 農(nóng)業(yè)工程學報,2010,26(8):222-228.
Li Jiangbo, Rao Xiuqin, Ying Yibin, et al. Detection of navel oranges canker based on hyperspectral imaging technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(8): 222-228. (in Chinese with English abstract)
[14] Wang N N, Sun D W, Yang Y C, et al. Recent advances in the application of hyperspectral imaging for evaluating fruit quality[J]. Food Analytical Methods, 2015, 9(1): 1-14.
[15] 黎靜,韓魯佳,楊增玲. 豆粕中三聚氰胺顯微近紅外成像檢測的掃描條件優(yōu)化[J]. 農(nóng)業(yè)工程學報,2013,29(13):244-254.
Li Jing, Han Lujia, Yang Zengling. Optimization of scanning conditions on near-infrared microscopic imaging for melamine detection in soybean meal[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(13): 244-254. (in Chinese with English abstract)
[16] Dhakal S, Chao K, Qin J, et al. Parameter selection for Raman spectroscopy-based detection of chemical contaminants in food powders[J]. Transactions of the Asabe, 2016, 59(2): 751-763.
[17] Qin J, Chao K, Kim M S. Raman chemical imaging system for food safety and quality inspection[J]. Transactions of the ASABE, 2010, 53(6): 1873-1882.
[18] Qin J, Chao K, Kim M S. Simultaneous detection of multiple adulterants in dry milk using macro-scale Raman chemical imaging[J]. Food Chemistry, 2013, 138(2/3): 998-1007.
[19] Zhang B, Huang W, Li J, et al. Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review[J]. Food Research International, 2014, 62(62): 326-343.
[20] Qin J, Chao K, Kim M S, et al. Line-scan macro-scale Raman chemical imaging for authentication of powdered foods and ingredients[J]. Food & Bioprocess Technology, 2015, 9(1): 1-11.
[21] 鄭詠梅,張鐵強,張軍,等. 平滑、導數(shù)、基線校正對近紅外光譜PLS定量分析的影響研究[J]. 光譜學與光譜分析,2004,24(12):1546-1548.
Zheng Yongmei, Zhang Tieqiang, Zhang Jun, et al. Influence of smooth, 1st derivative and baseline correction on the near-infrared spectrum analysis with PLS[J]. Spectroscopy and Spectral Analysis, 2004, 24(12): 1546-1548. (in Chinese with English abstract)
[22] Marquez C, Lopez M I, Ruisanchez I, et al. FT-Raman and NIR spectroscopy data fusion strategy for multivariate qualitative analysis of food fraud[J]. Talanta, 2016, 161:80-86.
[23] Xu M L, Gao Y, Han X X, et al. Detection of pesticide residues in food using surface-enhanced Raman spectroscopy: A review[J]. Journal of Agricultural & Food Chemistry, 2017, 65(32): 6719-6726.
[24] Zhang Z M, Chen S, Liang Y Z. Baseline correction using adaptive iteratively reweighted penalized least squares[J]. Analyst, 2010, 135(5): 1138-1146.
[25] Zhang C, Zhao C, Huang W, et al. Automatic detection of defective apples using NIR coded structured light and fast lightness correction[J]. Journal of Food Engineering, 2017, 203: 69-82.
[26] Guo Z, Huang W, Peng Y, et al. Color compensation and comparison of shortwave near infrared and long wave near infrared spectroscopy for determination of soluble solids content of ‘Fuji’ apple[J]. Postharvest Biology & Technology, 2016, 115: 81-90.
[27] Prabhaharan M, Prabakaran A R, Gunasekaran S, et al. Molecular structure and vibrational spectroscopic investigation of melamine using DFT theory calculations[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2014, 123(7): 392-401.
[28] Mircescu N E, Oltean M, Chi? V, et al. FTIR, FT-Raman, SERS and DFT study on melamine[J]. Vibrational Spectroscopy, 2012, 62(9): 165-171.
[29] 郭沫然,任玉,張?zhí)炷?,? 基于密度泛函理論的三聚氰胺結構及振動光譜研究[J]. 光譜學與光譜分析,2012,32(3):703-707.
Guo Moran, Ren Yu, Zhang Tianmu, et al. Optimization of melamine structure using density functional theory and vibrational spectra studies[J]. Spectroscopy and Spectral Analysis, 2012, 32(3): 703-707. (in Chinese with English abstract)
[30] Huang M, Kim M S, Chao K, et al. Penetration depth measurement of near-infrared hyperspectral imaging light for milk powder[J]. Sensors, 2016, 16(4): 441-451.
Non-destructive detection of melamine in milk powder using Raman hyperspectral imaging technology combined with line-scanning
Liu Chen1,2,3,4, Yang Guiyan2,3,4, Wang Qingyan2,3,4, Huang Wenqian2,3,4, Wang Xiaobin2,3,4, Chen Liping1,2,3,4※
(1.712100,; 2.100097,; 3.100097,4.100097,)
As a scattering spectrum, Raman spectroscopy has some advantages in non-invasive detecting. The hyperspectral data contain not only conventional image but also spectral information in each pixel. In this study, a line-scanning Raman hyperspectral imaging system was built to detect and quantify the melamine mixed in the milk powder with large sample areas in a fast and nondestructive way. The Gaussian filter smoothing and an adaptive iteratively reweighted penalized least squares (air PLS) method were used to remove noise signal and fluorescence interference. The corrected images at 671.71 cm-1waveband were extracted for detecting the melamine in the milk powder. Firstly, the penetration depth of Raman signal produced by melamine in the milk powder was measured. A designed two-layer sample was applied to measure the Raman signals after passing through milk layers of different thicknesses. According to the results, the optimum thickness of mixed samples was set to be 2 mm. Then, melamine-milk mixtures with 10 different concentrations were prepared for the experiment. Each mixture was collected by a designed aluminium alloy container with a sample thickness of 2 mm. In this case, the melamine particles at the bottom of mixed sample could be collected. After data preprocessing, a linear analysis of the averaged Raman intensity of each pixel was performed, and the concentration and distribution information of the melamine particles were finally obtained using a simple binarization arithmetic in the single-band image of mixtures at 671.71 cm-1waveband. The results showed that there was a linear relationship between the melamine concentration and the average Raman intensity of all pixels in the region of interest of the corrected image at 671.71 cm-1waveband, and the coefficient of determination was 0.995 4. In the binary images, the number and spatial location information of melamine particles could be visually displayed. Meanwhile, the total number of the additive pixels increased nonlinearly. It meant that the binary images from this research represented the accumulation of multiple layers in sample. At low concentrations, the Raman signal generated from the additive particles at the sub-surface is too weak to detect. When the additive concentration increases to a certain degree, the Raman signal generated from the additive particles at the sub-surface can be collected. In these areas, the pixels are identified as additive pixels even if there is no additive particle at corresponding surface. This situation led to a significant increase in the number of additive pixels. The research demonstrates that the Raman intensity in single-band corrected images can be used for quantitative analysis of melamine, and the binary images can reveal the identification and the distribution of melamine particles in the skim milk powder. More Raman active additives in powdered food could be detected in the same way. In our research, the milk powder samples can be scanned directly without any chemical reagents. The process of converting to liquid is dispensable. The limit of detection for melamine concentration was estimated as 0.01% with a total detection area of 40 mm × 80 mm each time. The results show that the line-scanning Raman hyperspectral imaging system has shown a great potential for rapid and non-invasive measurement of samples with large areas.
nondestructive detection; image processing; spectrum analysis; Raman spectroscopy; hyperspectral imaging technology; line scanning; skimmed milk powder; melamine
10.11975/j.issn.1002-6819.2017.24.036
O657.37
A
1002-6819(2017)-24-0277-06
2017-08-22
2017-12-11
國家自然科學基金項目(61605009)
劉 宸,男,黑龍江哈爾濱人,博士研究生,研究方向是農(nóng)產(chǎn)品品質安全無損檢測。Email:xmyliuchen@126.com
陳立平,女,研究員,研究方向為農(nóng)業(yè)信息技術和農(nóng)業(yè)智能裝備研究開發(fā)和示范推廣。Email:chenlp@nercita.org.cn
劉 宸,楊桂燕,王慶艷,黃文倩,王曉彬,陳立平. 線掃描式拉曼高光譜成像技術無損檢測奶粉三聚氰胺[J]. 農(nóng)業(yè)工程學報,2017,33(24):277-282. doi:10.11975/j.issn.1002-6819.2017.24.036 http://www.tcsae.org
Liu Chen, Yang Guiyan, Wang Qingyan, Huang Wenqian, Wang Xiaobin, Chen Liping. Non-destructive detection of melamine in milk powder using Raman hyperspectral imaging technology combined with line-scanning[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 277-282. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.24.036 http://www.tcsae.org