• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Surface-Based Morphometry of Human Brain: Intra-Individual Comparison Between 3T and 7T High Resolution Structural MR Imaging△

    2018-01-08 07:21:43ZhiyeChenMengqiLiuLinMa
    Chinese Medical Sciences Journal 2017年4期

    Zhiye Chen, Mengqi Liu, Lin Ma*

    1Department of Radiology, Hainan Branch of Chinese PLA General Hospital,Sanya 572013, China

    2Department of Radiology, Chinese PLA General Hospital,Beijing 100853, China

    Surface-Based Morphometry of Human Brain: Intra-Individual Comparison Between 3T and 7T High Resolution Structural MR Imaging△

    Zhiye Chen1,2, Mengqi Liu1,2, Lin Ma2*

    1Department of Radiology, Hainan Branch of Chinese PLA General Hospital,Sanya 572013, China

    2Department of Radiology, Chinese PLA General Hospital,Beijing 100853, China

    MRI; ultra high field; morphometry; brain; cortex

    M AGNETIC resonance imaging (MRI) can reveal the development of normal human brain and abnormal changes of brain with high resolution. The high resolution structural imaging can further evaluate brain structural changes (eg. brain volume, cortical thickness, sulcus convexity, etc.) in vivo.1Assessment of structural difference mainly includes visual observation, voxel-based cortical thickness analysis, and voxel-based morphometry, which could reflect macroscopical structural characteristics.2,3Fine structural imaging of brain could reveal the intrinsic changes in brain development and brain disorders, which warrants further evaluation.

    Ultrahigh field (7T) MRI has been used to study multiple sclerosis in recent years. It was thought to be a more valuable tool in assessing cortical damage because it detected much more cortical lesions than other MRI systems.4,5Cortical lesions were evaluated by visual observation of T2* and T2 turbo spin-echo (TSE) images and white matter attenuation (WHAT) images. Combined with computational neuroimaging, clinical functional MRI(fMRI) demonstrated that ultrahigh field MR systems provided a clinically relevant increase in sensitivity, although 7T images inevitably suffer from significant increases in ghosting artifacts, and artifacts from head motion.6A recent study revealed that there was a small difference in the mean cortical thickness among five healthy volunteers between 3T and 7T MRI system.7However, the sensitivity of structural imaging on 7T MRI has not been fully investigated.

    Methods using MRI to evaluate brain structural changes include voxel-based morphometry, cortical thickness mapping and region-of-interest-based volumetry.1,8,9These methods could be used to detect changes of brain structure in a variety of brain disorders. However,for detection of subtle changes in brain structure over the whole brain, these methods were relatively insufficient.

    Surface-based morphometry (SBM) analysis represents a group of brain morphometry techniques, which was used to construct and analyze surface attribute for brain structure.10,11It had been widely used to evaluate brain structural changes in mild cognitive impairment, Alzheimer's disease, attention-deficit hyperactivity disorder, etc.12,13Theoretically, image resolution is closely associated with magnetic field strength, and high field strength could improve the spatial resolution and signal noise ratio (SNR).However, ultrahigh field strength could also be apt to produce ghosting, head motion artifacts and heterogeneous signal intensity,6which could affect the evaluation of subtle structures. There haven’t been enough data on using 7T MRI for evaluation of structural imaging. Therefore, the aim of this study was to investigate the brain structural differences of 7T MRI compared with 3T MRI using surfacedbased morphometry technique.

    MATERIALS AND METHODS

    Subjects

    This study was approved by the ethics committee of our institutional review board. Written informed consent was obtained from all participants. Twelve healthy Chinese volunteers were recruited in the study, including 11 females and 1 male, aged 18 to 46 (mean 32±7.5) years old. No subjects had any history of neurodegeneration,psychiatric disorder, cranium trauma, inflammatory disease of central nervous system, using psychoactive drugs or hormonotherapy.

    MRI acquisition

    Images were acquired by a GE 3T MR system (SIGNA EXCITE, GE Healthcare) and a SIEMENS 7T MR system(SIEMENS MAGNETOM Investigational Device 7T syngo MR B15). For 3T MR system, we used a conventional eight channel quadrature head coil and a high resolution 3D T1-weighted fast spoiled gradient recalled echo (3D T1-FSPGR) sequence [repetition time (TR)=6.3 ms, echo time (TE)=2.8 ms, Flip angle=15°, field of view(FOV) =24cm×24cm, Matrix=256×256, number of acquisition(NEX)=1]. For 7T MR system, we used a 24 channel quadrature head coil, and 3D T1-weighted magnetizationprepared rapid gradient echo (3D T1-MPRAGE) sequence[TR=2.2 ms, TE=3.2 ms, Flip angle=7°, FOV=22cm×32cm,Matrix =320×320, NEX=1]. The scan protocol was identical for all subjects.

    MR image data processing

    All MR structural image data were processed using FreeSurfer (V5.3.0, http://surfer.nmr.mgh.harvard.edu).The cortical surface was automatically segmented from high resolution structural images; gyral anatomy was aligned to the standard spherical template using surface convexity and curvature measures; the cortical thickness,white matter surface area, gray matter surface area,convexity, and curvature were estimated.10,14,15

    In this study, we used different Gaussian smoothing kernel to evaluate the effect of full width at half maximum(FWHM) on statistics. Because the significant clusters became more concentrated with the increase of FWHM size(Fig. 1), and FWHM 5 mm made the significant clusters look like normal distribution, FWHM 5mm was selected and applied to statistical surface mapping.

    Statistical analysis

    The mean cortical thickness, white matter surface area,gray matter surface area, convexity, and curvature on structural images were compared between 3T and 7T by paired t-test using SPSS (version 19.0) software. The structural differences between 3T and 7T were analyzed by paired t-test with false discovery rate (FDR) corrected using FreeSurfer (Version 6.0, http://www. freesurfer.net). P<0.05 was considered statistically significant.

    Figure 1. Changes of mean cortical thickness at 7T compared to 3T using 0 mm, 5 mm, and 10 mm FWHM width.The distribution of clusters of FHWM 0 mm was evidently more disperse than that of FHWM 5mm (4 clusters) and that of FWHM 10 mm (1 cluster) in the left inferior parietal lobe.

    RESULTS

    Comparison of mean structural variables between 3T and 7T

    Table 1 demonstrated that the measurements of mean cortical thickness, total white matter surface area and total gray matter surface area of each hemisphere of 3T were significantly larger than those of 7T (left: P=0.000,0.006, 0.02 respectively; right: P=0.000, 0.000, 0.000 respectively). The mean cortical thickness of 7T was reduced by 12.44% in the left hemisphere and 14.04%in the right hemisphere compared with that of 3T. Total white and gray matter surface area of 7T were reduce by 15.00% and 11.46% respectively in the left hemisphere,and 24.05% and 21.88% respectively in the right hemisphere, as compared with those of 3T.

    In the left hemisphere, measurements of mean convexity and mean curvature showed no significant difference between 3T and 7T (P=0.461, 0.134 respectively). In the right hemisphere, the mean convexity (0.48±0.01 mm-1) at 3T was larger than that at 7T (0.47±0.02 mm-1,P=0.04); the mean curvature (0.15±0.00 mm-1) at 3T was smaller than that at 7T (0.15±0.00 mm-1, P= 0.00).

    Surface-based morphometry over the whole brain of 3T and 7T

    Cortical thickness analysis over the whole brain demonstrated that the regions with reduced cortical thickness at 7T compared with 3T were mainly located in bilateral frontal and temporal lobes, and the regions with increased cortical thickness mainly in the medial cortex of left hemisphere and right precentral gyrus. The right medial cortex had no increase in cortical thickness (Fig. 2).

    Table 1. Comparison of the mean cortical thickness, total gray/white surface area, mean convexity and mean curvature between 3T and 7T (n=12)§

    Figure 2. The increased (blue clusters) and decreased (red clusters) mean cortical thickness of bilateral cerebral cortex at 7T compared with 3T. LH, left hemisphere;RH, right hemisphere.

    Compared with 3T, the regions with reduced white surface area at 7T were demonstrated in left parietal and occipital lobes, right perisylvian region, cuneus, and precuneus. Two clusters with increased cortical thickness were detected in the precentral and middle temporal gyri (Fig. 3A). The distribution of reduced gray surface area mainly involved bilateral frontal, parietal and occipital region, especially the parietal lobe (Fig. 3B).The reduced convexity distributed widely in bilateral cerebrum (Fig. 4A), and only several clusters showed increase convexity at 7T compared with 3T. The whole brain analysis also demonstrated that the curvature decreased in some regions and increased in other regions (Fig. 4B).

    Figure 3. The increased (blue clusters) and decreased (red clusters) surface area of white matter (A) and gray matter (B) of bilateral cerebrum at 7T compared with 3T.

    Figure 4. The increased (blue clusters) and decreased (red clusters) convexity (A) and curvature (B) of bilateral cerebrum at 7T compared with 3T.

    DISCUSSION

    This study provided the insight into the effects of magnetic field strength on measurements of brain structures. A study demonstrated that cortical thickness in 7T images reduced by approximately one sixth to one third compared with that in 3T images, which suggested that the true cortical thickness may be overestimated by most current MR studies.7In this study, the reduction of mean cortical thickness was detected at 7T, and surface-based morphometry over the whole brain analysis demonstrated the reduction of cortical thickness in some specific brain regions compared with 3T, which was partially consistent with the previous study.7However, some brain regions in medial cortex of left hemisphere and right precentral gyrus presented increased cortical thickness at 7T compared with 3T. Therefore, the effect of ultrahigh magnetic field strength of MRI on brain structural characteristics was heterogeneous.

    Other structural attributes (including white surface area, gray surface area, convexity and curvature)presented subtle differences in 7T MRI compared with 3T MRI. With different magnetic field strength, the observed structural differences may be related to the difference of signal intensity distribution. In ultrahigh field MR system, it is easier to distinguish gray/white matter and CSF/gray matter to achieve a fine segment, from which the generated gray/white matter interface is different from that of 3T, and consequently induces the different cortical attributes.Therefore, special caution is needed when interpreting imaging findings generated from MRI modalities with different magnetic field strength, especially with ultrahigh magnetic field.

    The results of mean structural attribute analysis in current study showed that underestimation of cortical thickness may exist at 7T compared to 3T. However, some studies reported that the cortical thickness could be overestimated at 3T compared with 1.5T.16,17The main reason for this discrepancy may be associated with signal intensity of images. Data of 1.5T and of 3T were similar in homogeneity of intensity; data of 3T had a relatively higher gray/white contrast in clinical observation; data of 7T had a heterogeneous intensity compared with 3T, and had a higher gray/white contrast than that of 3T. The other reason that influence the evaluation of cortical thickness was imaging sequence. The MRRAGE sequence presented a different contrast of gray/white matter compared with FSPGR sequence, which may constitute to the difference in measurements of cortical thickness between 3T and 7T MRI system.

    For the imaging processing, we used the same workstation (operating system) and software in order to avoid the influence of the methodology.18Additionally, in this study, multiple Gaussian smoothing kernels were applied to investigate the effect of smoothing on the cortical thickness. The results suggested that with the increase of Gaussian smoothing kernel, the amount of clusters decreased, and the size of clusters increased(Fig. 1). Therefore, the same Gaussian smoothing kernel (5 mm) was used to reduce noise in the cortical thickness measurements.

    This study confirmed that, compared with other brain structural attributes, surface areas of the white matter and gray matter of 7T were liable to be different from those of 3T (Fig.3-4). Therefore, it should be cautious when evaluating the surface area of brain structural changes with ultra high field MRI.

    There were limitations in this study. Firstly, as an in vivo study, we did not perform pathological correlation.Secondly, the sample of 12 subjects was relatively small.Lastly, different manufacturers of the MR scanner and imaging sequences we used may affect image quality and brain structural measurements.

    In conclusion, the inconsistency between 3T and 7T MR system in evaluating brain structural attribute was confirmed in this study. Researchers should be cautious in interpreting data when using ultrahigh field MRI system to investigate brain structural changes.

    Conflict of interest statement

    All authors have no conflict of interest to disclose.

    1. Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 2000; 97:11050-5. doi: 10.1073/pnas.200033797.

    2. Hutton C, De Vita E, Ashburner J, Deichmann R, Turner R.Voxel-based cortical thickness measurements in MRI.Neuroimage 2008; 40: 1701-10. doi: 10.1016/j. neuroimage.2008.01.027.

    3. Chen Z, Li L, Sun J, Ma L. Mapping the brain in type II diabetes: Voxel-based morphometry using DARTEL. Eur J Radiol 2012; 81: 1870-6. doi: 10.1016/j.ejrad.2011. 04.025.

    4. Mainero C, Benner T, Radding A, van der Kouwe A, Jensen R, Rosen BR, et al. In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI. Neurology 2009; 73: 941-8. doi: 10.1212/WNL.0b013e3181b64bf7.

    5. Bluestein KT, Pitt D, Sammet S, Zachariah CR, Nagaraj U,Knopp MV, et al. Detecting cortical lesions in multiple sclerosis at 7T using white matter signal attenuation.Magn Reson Imaging 2012; 30: 907-15. doi: 10.1016/j.mri.2012.03.006.

    6. Beisteiner R, Robinson S, Wurnig M, Hilbert M, Merksa K,Rath J, et al. Clinical fMRI: evidence for a 7T benefit over 3T. Neuroimage 2011; 57: 1015-21. doi: 10.1016/j.neuroimage.2011.05.010.

    7. Lüsebrink F, Wollrab A, Speck O. Cortical thickness determination of the human brain using high resolution 3T and 7T MRI data. Neuroimage 2013; 70: 122-31. doi:10.1016/j.neuroimage.2012.12.016.

    8. Pinkhardt EH, van Elst LT, Ludolph AC, Kassubek J.Amygdala size in amyotrophic lateral sclerosis without dementia: an in vivo study using MRI volumetry. BMC Neurol 2006; 6:48. doi: 10.1186/1471-2377-6-48.

    9. Ashburner J, Friston KJ. Voxel-based morphometry-the methods. Neuroimage 2000; 11(6 Pt 1): 805-21. doi:10.1006/nimg.2000.0582.

    10. Turken AU, Herron TJ, Kang X, O'Connor LE, Sorenson DJ,Baldo JV, et al. Multimodal surface-based morphometry reveals diffuse cortical atrophy in traumatic brain injury. BMC Med Imaging 2009; 9: 20. doi: 10.1186/1471-2342-9-20.

    11. Van Essen DC, Drury HA. Structural and functional analyses of human cerebral cortex using a surface-based atlas. J Neurosci 1997; 17: 7079-102.

    12. Lebedev AV, Westman E, Beyer MK, Kramberger MG,Aguilar C, Pirtosek Z,et al. Multivariate classification of patients with Alzheimer's and dementia with Lewy bodies using high-dimensional cortical thickness measurements:an MRI surface-based morphometric study. J Neurol 2013;260: 1104-15. doi: 10.1007/s00415-012-6768-z.

    13. Wang L, Goldstein FC, Veledar E, Levey AI, Lah JJ, Meltzer CC,et al. Alterations in cortical thickness and white matter integrity in mild cognitive impairment measured by whole-brain cortical thickness mapping and diffusion tensor imaging. AJNR Am J Neuroradiol 2009; 30: 893-9.doi: 10.3174/ajnr. A1484.

    14. Fischl B, Sereno MI, Tootell RB, Dale AM. High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 1999; 8: 272-84. doi:10.1002/(SICI)1097-0193(1999)8: 4<272: AID-HBM10>3.0.CO;2-4.

    15. Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. Ⅱ: Inflation, flattening, and a surface-based coordinate system. Neuroimage 1999; 9:195-207. doi:10.1006/nimg.1998.0396.

    16. Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B,Czanner S, et al. Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage 2006; 32: 180-94. doi: 10.1016/j.neuroimage.2006.02.051.

    17. Dickerson BC, Fenstermacher E, Salat DH, Wolk DA,Maguire RP, Desikan R, et al. Detection of cortical thickness correlates of cognitive performance: Reliability across MRI scan sessions, scanners, and field strengths.Neuroimage 2008; 39: 10-8. doi: 10.1016/j.neuroimage.2007.08.042.

    18. Gronenschild EH, Habets P, Jacobs HI, Mengelers R,Rozendaal N, van Os J, et al. The effects of FreeSurfer version, workstation type, and Macintosh operating system version on anatomical volume and cortical thickness measurements. PLoS One 2012; 7: e38234. doi:10.1371/journal.pone.0038234.

    ObjectiveHigh resolution structural MR imaging can reveal structural characteristics of cerebral cortex and provide an insight into normal brain development and neuropsychological diseases. The aim of this study was to compare cortical structural characteristics of normal human brain between 3T and 7T MRI systems using surface-based morphometry based on high resolution structural MR imaging.

    MethodsTwelve healthy volunteers were scanned by both 3T with 3D T1-weighted fast spoiled gradient recalled echo (3D T1-FSPGR) sequence and 7T with 3D T1-weighted magnetization-prepared rapid gradient echo (3D T1-MPRAGE) sequence. MRI data were processed with FreeSurfer. The cortical thickness,white and gray matter surface area, convexity, and curvature from data of 3T and 7T were measured and compared by pairedt-test.

    ResultsMeasurements of mean cortical thickness, total white matter surface area and gray matter surface area of 3T were larger than those of 7T (left hemisphere:P=0.000, 0.006, 0.020 respectively; right hemisphere:P=0.000, 0.000, 0.000 respectively). Surface-based morphometry over the whole brain demonstrated both reduced and increased measurements of cortical thickness, white and gray surface area,convexity, and curvature at 7T compared to 3T.

    ConclusionsInconsistency of brain structural attribute between 3T and 7T was confirmed, and researchers should be cautious about data when using ultrahigh field MR system to investigate brain structural changes.

    10.24920/J1001-9294.2017.031

    October 5, 2016.

    *Corresponding author Tel: 86-10-66939592, E-mail: cjr.malin@vip.163.com

    △Fund supported by National Natural Science Foundation of China (81171319), the Foundation for Medical and Health Sci & Tech Innovation Project of Sanya (2016YW37) and the Special Financial Grant from China Postdoctoral Science Foundation (2014T70960).

    最黄视频免费看| 国产精品一区二区在线观看99| 女性被躁到高潮视频| 亚洲av福利一区| 波多野结衣一区麻豆| 大香蕉久久成人网| 亚洲一区二区三区欧美精品| 亚洲av欧美aⅴ国产| 电影成人av| 久久天躁狠狠躁夜夜2o2o | 男女床上黄色一级片免费看| 免费看不卡的av| 又大又黄又爽视频免费| 18禁裸乳无遮挡动漫免费视频| 国产麻豆69| 纵有疾风起免费观看全集完整版| 国产欧美日韩综合在线一区二区| 一边亲一边摸免费视频| 综合色丁香网| 啦啦啦在线免费观看视频4| 日韩免费高清中文字幕av| 色婷婷久久久亚洲欧美| 国产亚洲av高清不卡| 久久久精品区二区三区| 国产亚洲精品第一综合不卡| tube8黄色片| av有码第一页| 制服诱惑二区| 成人国产av品久久久| 国产 一区精品| 中文字幕色久视频| 91老司机精品| 丰满少妇做爰视频| 欧美 亚洲 国产 日韩一| 国产日韩欧美视频二区| 亚洲精品国产av蜜桃| 免费少妇av软件| 亚洲精品美女久久av网站| 日韩av不卡免费在线播放| 亚洲熟女精品中文字幕| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美一区二区三区国产| 99久国产av精品国产电影| 曰老女人黄片| 我要看黄色一级片免费的| 精品国产国语对白av| 老司机在亚洲福利影院| 精品少妇一区二区三区视频日本电影 | 激情五月婷婷亚洲| 欧美少妇被猛烈插入视频| 免费在线观看完整版高清| 久久久久国产精品人妻一区二区| 一级黄片播放器| 日韩制服丝袜自拍偷拍| 国产深夜福利视频在线观看| 精品国产一区二区三区四区第35| 人人妻人人爽人人添夜夜欢视频| 国产男女超爽视频在线观看| 亚洲激情五月婷婷啪啪| 精品一区二区三区四区五区乱码 | 免费av中文字幕在线| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人欧美在线观看 | 大香蕉久久成人网| 人人妻人人添人人爽欧美一区卜| 性色av一级| 午夜福利乱码中文字幕| 亚洲精品自拍成人| 青春草亚洲视频在线观看| 少妇人妻精品综合一区二区| 欧美激情 高清一区二区三区| 18在线观看网站| 亚洲国产精品一区三区| 啦啦啦啦在线视频资源| 精品人妻熟女毛片av久久网站| 成人黄色视频免费在线看| 综合色丁香网| 女人被躁到高潮嗷嗷叫费观| 久久亚洲国产成人精品v| 欧美精品一区二区免费开放| 最近中文字幕高清免费大全6| 女的被弄到高潮叫床怎么办| 国产成人精品福利久久| 菩萨蛮人人尽说江南好唐韦庄| 一区二区三区四区激情视频| 老熟女久久久| 黄频高清免费视频| 亚洲欧洲日产国产| 国产精品国产三级国产专区5o| 亚洲精品一二三| 国产精品成人在线| 天堂8中文在线网| 黄色 视频免费看| 啦啦啦 在线观看视频| 99热国产这里只有精品6| 亚洲成人手机| 欧美精品高潮呻吟av久久| 制服丝袜香蕉在线| 男女高潮啪啪啪动态图| 亚洲精品在线美女| 亚洲成色77777| 女人精品久久久久毛片| 亚洲精品日本国产第一区| 一区福利在线观看| 91国产中文字幕| 久久97久久精品| 国产在线一区二区三区精| 欧美日韩亚洲综合一区二区三区_| 久久久久视频综合| 一级a爱视频在线免费观看| 亚洲,欧美精品.| 日本色播在线视频| 亚洲国产欧美网| 波多野结衣av一区二区av| 久久精品国产亚洲av高清一级| 午夜久久久在线观看| 在线免费观看不下载黄p国产| av视频免费观看在线观看| 十八禁人妻一区二区| 天美传媒精品一区二区| 亚洲伊人色综图| 亚洲欧美一区二区三区黑人| 亚洲欧洲精品一区二区精品久久久 | 成年动漫av网址| 汤姆久久久久久久影院中文字幕| 一区二区三区四区激情视频| 精品亚洲成a人片在线观看| 男女免费视频国产| 成人漫画全彩无遮挡| 如何舔出高潮| 一级毛片黄色毛片免费观看视频| 夫妻午夜视频| 亚洲成人一二三区av| 久久精品人人爽人人爽视色| 亚洲综合色网址| 久久久久国产精品人妻一区二区| 欧美激情极品国产一区二区三区| 18禁裸乳无遮挡动漫免费视频| 国产精品99久久99久久久不卡 | 99九九在线精品视频| 国产xxxxx性猛交| 超色免费av| 国产1区2区3区精品| 高清在线视频一区二区三区| 伊人亚洲综合成人网| 成人18禁高潮啪啪吃奶动态图| 妹子高潮喷水视频| 久久国产精品大桥未久av| 色综合欧美亚洲国产小说| 日韩一区二区三区影片| 色94色欧美一区二区| 狂野欧美激情性xxxx| 亚洲精品成人av观看孕妇| 老汉色av国产亚洲站长工具| 七月丁香在线播放| 少妇 在线观看| 十八禁网站网址无遮挡| 成人国语在线视频| 建设人人有责人人尽责人人享有的| 看免费成人av毛片| 各种免费的搞黄视频| 一二三四在线观看免费中文在| 深夜精品福利| 操美女的视频在线观看| 一级黄片播放器| 女人久久www免费人成看片| 少妇的丰满在线观看| 欧美日韩精品网址| 岛国毛片在线播放| 久久久久视频综合| 国产精品久久久久久精品古装| 欧美日韩综合久久久久久| 一边亲一边摸免费视频| 纯流量卡能插随身wifi吗| av.在线天堂| 中文字幕最新亚洲高清| 亚洲少妇的诱惑av| 亚洲国产欧美一区二区综合| 亚洲色图综合在线观看| 国产精品香港三级国产av潘金莲 | 亚洲av欧美aⅴ国产| 国产乱人偷精品视频| 精品一区二区三卡| 不卡视频在线观看欧美| 精品免费久久久久久久清纯 | 国产精品久久久av美女十八| 欧美最新免费一区二区三区| 日本一区二区免费在线视频| 啦啦啦视频在线资源免费观看| 亚洲精品国产区一区二| 亚洲在久久综合| 亚洲人成电影观看| 欧美精品av麻豆av| 国产黄色视频一区二区在线观看| 精品一区二区三卡| 国产福利在线免费观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 最近2019中文字幕mv第一页| 在线观看免费视频网站a站| 男女免费视频国产| 久久国产亚洲av麻豆专区| 精品人妻一区二区三区麻豆| 黄片无遮挡物在线观看| 亚洲国产最新在线播放| 人妻一区二区av| 亚洲精品乱久久久久久| 久久久久久免费高清国产稀缺| 欧美日韩亚洲综合一区二区三区_| 又粗又硬又长又爽又黄的视频| 婷婷色av中文字幕| 国产女主播在线喷水免费视频网站| 久久99热这里只频精品6学生| 久久国产精品男人的天堂亚洲| 国产精品无大码| 婷婷色综合www| 欧美黑人欧美精品刺激| 午夜激情久久久久久久| 在线亚洲精品国产二区图片欧美| 欧美精品一区二区大全| 嫩草影院入口| 亚洲精华国产精华液的使用体验| 爱豆传媒免费全集在线观看| 国产精品蜜桃在线观看| 电影成人av| 色播在线永久视频| 黄片小视频在线播放| 七月丁香在线播放| 国产精品蜜桃在线观看| 日韩一本色道免费dvd| 亚洲国产欧美网| 亚洲欧美成人精品一区二区| 可以免费在线观看a视频的电影网站 | 男女免费视频国产| 热re99久久国产66热| 国产又色又爽无遮挡免| 亚洲国产av新网站| 亚洲熟女毛片儿| 欧美日韩亚洲综合一区二区三区_| 久久久久久久久免费视频了| 欧美97在线视频| 又大又黄又爽视频免费| 欧美成人午夜精品| 久久99一区二区三区| 啦啦啦在线免费观看视频4| 两个人免费观看高清视频| 亚洲伊人久久精品综合| 欧美亚洲日本最大视频资源| a级毛片在线看网站| 亚洲国产欧美网| 人妻一区二区av| av网站在线播放免费| 熟妇人妻不卡中文字幕| 国产精品偷伦视频观看了| 免费在线观看视频国产中文字幕亚洲 | 秋霞在线观看毛片| 你懂的网址亚洲精品在线观看| xxxhd国产人妻xxx| 亚洲欧美成人精品一区二区| xxx大片免费视频| 国产爽快片一区二区三区| 亚洲国产欧美一区二区综合| 亚洲四区av| 性高湖久久久久久久久免费观看| 亚洲av电影在线观看一区二区三区| 国产亚洲av片在线观看秒播厂| 制服诱惑二区| 国产日韩欧美视频二区| 国产精品久久久久久人妻精品电影 | 国产不卡av网站在线观看| 十分钟在线观看高清视频www| 妹子高潮喷水视频| 这个男人来自地球电影免费观看 | 久久99精品国语久久久| 下体分泌物呈黄色| 精品国产乱码久久久久久男人| 校园人妻丝袜中文字幕| 日韩精品免费视频一区二区三区| 亚洲精品乱久久久久久| 亚洲av在线观看美女高潮| 91国产中文字幕| a 毛片基地| 欧美日韩一区二区视频在线观看视频在线| 亚洲 欧美一区二区三区| 另类亚洲欧美激情| xxx大片免费视频| 久久精品国产a三级三级三级| 国产一区二区三区av在线| 色婷婷久久久亚洲欧美| 天天添夜夜摸| 国产av国产精品国产| 午夜免费男女啪啪视频观看| 亚洲国产中文字幕在线视频| 欧美精品高潮呻吟av久久| 久久这里只有精品19| 欧美亚洲日本最大视频资源| 丝袜人妻中文字幕| 欧美精品亚洲一区二区| 国产女主播在线喷水免费视频网站| 久久精品国产综合久久久| 久久av网站| 多毛熟女@视频| 波多野结衣av一区二区av| 午夜老司机福利片| 在线亚洲精品国产二区图片欧美| 亚洲色图 男人天堂 中文字幕| 国产黄色视频一区二区在线观看| 男女免费视频国产| 99久国产av精品国产电影| 色网站视频免费| 久久国产亚洲av麻豆专区| 99国产精品免费福利视频| 国产精品三级大全| 秋霞伦理黄片| 亚洲精品国产一区二区精华液| 极品少妇高潮喷水抽搐| 久久久精品国产亚洲av高清涩受| 999久久久国产精品视频| 一区二区三区精品91| 亚洲,一卡二卡三卡| 纯流量卡能插随身wifi吗| 另类亚洲欧美激情| 免费人妻精品一区二区三区视频| 日本爱情动作片www.在线观看| 日韩制服丝袜自拍偷拍| 制服丝袜香蕉在线| 国产高清国产精品国产三级| 午夜精品国产一区二区电影| 免费女性裸体啪啪无遮挡网站| 伦理电影免费视频| 男人舔女人的私密视频| 一级毛片黄色毛片免费观看视频| 久久午夜综合久久蜜桃| 伊人久久大香线蕉亚洲五| 亚洲av欧美aⅴ国产| 中文字幕av电影在线播放| 亚洲第一av免费看| 中文欧美无线码| av卡一久久| 人妻 亚洲 视频| bbb黄色大片| 在线免费观看不下载黄p国产| 国产高清不卡午夜福利| 免费av中文字幕在线| 男女无遮挡免费网站观看| 久久久久视频综合| 国产免费又黄又爽又色| 高清av免费在线| 国产免费又黄又爽又色| 久久久国产一区二区| 国产一区有黄有色的免费视频| 亚洲免费av在线视频| 亚洲精品一区蜜桃| 亚洲免费av在线视频| av在线app专区| 午夜老司机福利片| av在线app专区| 性少妇av在线| 国产亚洲精品第一综合不卡| 狂野欧美激情性xxxx| 亚洲国产毛片av蜜桃av| 亚洲av福利一区| 久久久久精品久久久久真实原创| 丰满饥渴人妻一区二区三| 视频在线观看一区二区三区| 麻豆精品久久久久久蜜桃| 日韩av在线免费看完整版不卡| 亚洲国产精品成人久久小说| 日韩av不卡免费在线播放| 国产黄色视频一区二区在线观看| 丝袜人妻中文字幕| 免费看av在线观看网站| 别揉我奶头~嗯~啊~动态视频 | 9热在线视频观看99| 伊人亚洲综合成人网| 黄色视频在线播放观看不卡| 亚洲一区二区三区欧美精品| 性色av一级| 欧美日韩视频精品一区| 在线亚洲精品国产二区图片欧美| 精品国产一区二区久久| 人人妻,人人澡人人爽秒播 | 丰满迷人的少妇在线观看| 欧美黄色片欧美黄色片| 亚洲,一卡二卡三卡| 国产精品.久久久| 黄色毛片三级朝国网站| videosex国产| 99九九在线精品视频| 国产熟女欧美一区二区| 亚洲四区av| 国产有黄有色有爽视频| 日日摸夜夜添夜夜爱| 深夜精品福利| 国产精品亚洲av一区麻豆 | 日本猛色少妇xxxxx猛交久久| 亚洲成人免费av在线播放| 别揉我奶头~嗯~啊~动态视频 | 七月丁香在线播放| 亚洲国产成人一精品久久久| 欧美在线一区亚洲| 久久韩国三级中文字幕| 国产伦理片在线播放av一区| www.熟女人妻精品国产| 成年动漫av网址| 欧美日韩亚洲国产一区二区在线观看 | 久久免费观看电影| 亚洲成人手机| 国产一区二区三区综合在线观看| 国产精品 欧美亚洲| 日本欧美视频一区| 操美女的视频在线观看| 亚洲精品一区蜜桃| 午夜老司机福利片| 18禁动态无遮挡网站| 亚洲精品自拍成人| 男人爽女人下面视频在线观看| videosex国产| 黄片播放在线免费| 两个人免费观看高清视频| 日韩av免费高清视频| 韩国精品一区二区三区| 日本午夜av视频| 一级黄片播放器| 天堂中文最新版在线下载| 国产99久久九九免费精品| 国产日韩欧美在线精品| 日韩精品有码人妻一区| 久久精品久久久久久久性| 老鸭窝网址在线观看| 夜夜骑夜夜射夜夜干| 国产欧美亚洲国产| 国产精品一区二区在线不卡| 国产日韩欧美在线精品| 午夜老司机福利片| 如何舔出高潮| 只有这里有精品99| 水蜜桃什么品种好| 制服丝袜香蕉在线| 王馨瑶露胸无遮挡在线观看| 看免费成人av毛片| 我的亚洲天堂| 午夜免费男女啪啪视频观看| 大片电影免费在线观看免费| 国产野战对白在线观看| 久久这里只有精品19| 国产精品久久久久久久久免| 人体艺术视频欧美日本| 在现免费观看毛片| 只有这里有精品99| 18禁观看日本| 色综合欧美亚洲国产小说| 国产不卡av网站在线观看| 亚洲 欧美一区二区三区| 国产高清不卡午夜福利| 国产 精品1| 日本av免费视频播放| 亚洲图色成人| 午夜激情久久久久久久| 欧美人与善性xxx| 黄色毛片三级朝国网站| 国产成人精品久久久久久| 久久久久国产精品人妻一区二区| 欧美日韩一级在线毛片| 波多野结衣av一区二区av| 黑人猛操日本美女一级片| 99re6热这里在线精品视频| 亚洲成人手机| 母亲3免费完整高清在线观看| 精品国产超薄肉色丝袜足j| 亚洲美女视频黄频| 在线观看免费视频网站a站| 欧美日韩视频高清一区二区三区二| 90打野战视频偷拍视频| 一边摸一边抽搐一进一出视频| 一区二区三区精品91| 九九爱精品视频在线观看| 色综合欧美亚洲国产小说| 欧美激情 高清一区二区三区| 男男h啪啪无遮挡| 亚洲七黄色美女视频| 国产乱来视频区| 视频区图区小说| 男人添女人高潮全过程视频| 校园人妻丝袜中文字幕| 狠狠婷婷综合久久久久久88av| 侵犯人妻中文字幕一二三四区| 国产 一区精品| 国产日韩欧美亚洲二区| 欧美另类一区| 不卡视频在线观看欧美| 亚洲四区av| 久久精品亚洲av国产电影网| 97在线人人人人妻| 搡老乐熟女国产| 亚洲av日韩精品久久久久久密 | 日韩一区二区三区影片| 国产精品秋霞免费鲁丝片| 日韩 欧美 亚洲 中文字幕| 人人澡人人妻人| 精品国产露脸久久av麻豆| 亚洲欧美日韩另类电影网站| 日韩不卡一区二区三区视频在线| 亚洲精品久久成人aⅴ小说| 人人澡人人妻人| 国产av码专区亚洲av| 秋霞在线观看毛片| 国产成人91sexporn| 国产午夜精品一二区理论片| 99久久综合免费| 成年美女黄网站色视频大全免费| 久久久久网色| 纵有疾风起免费观看全集完整版| 青青草视频在线视频观看| 欧美日韩精品网址| 人体艺术视频欧美日本| 人妻人人澡人人爽人人| 色94色欧美一区二区| 久久国产亚洲av麻豆专区| 大香蕉久久网| 国产av国产精品国产| 久久久久精品人妻al黑| 久久久久久久精品精品| 男女床上黄色一级片免费看| 精品一区二区三区av网在线观看 | 亚洲av成人不卡在线观看播放网 | 在线观看免费视频网站a站| xxx大片免费视频| 一区福利在线观看| www.熟女人妻精品国产| 18禁国产床啪视频网站| 9色porny在线观看| 看免费成人av毛片| 在现免费观看毛片| 欧美精品一区二区大全| 亚洲精品在线美女| 人人妻人人澡人人看| 秋霞伦理黄片| 午夜福利视频精品| 亚洲av中文av极速乱| 99久久人妻综合| 国产人伦9x9x在线观看| 丝袜美腿诱惑在线| 热re99久久精品国产66热6| 中文字幕色久视频| 在线天堂中文资源库| 曰老女人黄片| 午夜老司机福利片| 国产一卡二卡三卡精品 | 捣出白浆h1v1| av女优亚洲男人天堂| 又大又黄又爽视频免费| 国产精品国产av在线观看| 欧美日韩国产mv在线观看视频| 日韩av在线免费看完整版不卡| 久久精品国产a三级三级三级| 国产视频首页在线观看| 大陆偷拍与自拍| 老司机在亚洲福利影院| 极品人妻少妇av视频| 亚洲欧美成人精品一区二区| 又黄又粗又硬又大视频| 波多野结衣一区麻豆| 精品视频人人做人人爽| 99久久综合免费| 电影成人av| 飞空精品影院首页| 成人国产av品久久久| 视频区图区小说| 在线免费观看不下载黄p国产| 夫妻性生交免费视频一级片| 91精品国产国语对白视频| 90打野战视频偷拍视频| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩亚洲综合一区二区三区_| 热99国产精品久久久久久7| 成人毛片60女人毛片免费| 九色亚洲精品在线播放| 国产精品无大码| 亚洲图色成人| 在线观看三级黄色| 久久毛片免费看一区二区三区| 综合色丁香网| 久久女婷五月综合色啪小说| 一本大道久久a久久精品| 老鸭窝网址在线观看| 妹子高潮喷水视频| 久久这里只有精品19| 亚洲第一av免费看| 国产亚洲最大av| 十八禁网站网址无遮挡| 精品国产国语对白av| 亚洲一码二码三码区别大吗| 麻豆乱淫一区二区| 少妇被粗大猛烈的视频| 免费黄频网站在线观看国产| 久久久久久久久免费视频了| 人成视频在线观看免费观看| 亚洲精品一区蜜桃| 久久久久久久精品精品| 一级,二级,三级黄色视频| 精品亚洲成a人片在线观看| 免费观看性生交大片5| 成人毛片60女人毛片免费| 国产乱人偷精品视频| 精品少妇久久久久久888优播| 国产精品 国内视频| 久久久国产欧美日韩av| 亚洲,一卡二卡三卡| 国产精品国产三级专区第一集| 国产精品久久久av美女十八| 男男h啪啪无遮挡| 亚洲美女黄色视频免费看| 日韩欧美一区视频在线观看| 亚洲欧美一区二区三区久久| 日本午夜av视频|