• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Role of ROS/Kv/HIF Axis in the Development of Hypoxia-Induced Pulmonary Hypertension

    2018-01-08 07:21:46WenWuYanLiDunquanXu
    Chinese Medical Sciences Journal 2017年4期

    Wen Wu, Yan Li, Dunquan Xu*

    1Department of Ultrasound, 2Medical Examination Center, General Hospital of the Army, Beijing 100007, China 3Clinical Laboratory, the Xigaze Branch of Xinqiao Hospital, the Army Medical University,Xigaze, Tibet 857000, China

    Role of ROS/Kv/HIF Axis in the Development of Hypoxia-Induced Pulmonary Hypertension

    Wen Wu1, Yan Li2, Dunquan Xu3*

    1Department of Ultrasound,2Medical Examination Center, General Hospital of the Army, Beijing 100007, China3Clinical Laboratory, the Xigaze Branch of Xinqiao Hospital, the Army Medical University,Xigaze, Tibet 857000, China

    hypoxia-induced pulmonary hypertension; reactive oxygen species; hypoxia inducible factors; potassium channels; vasoconstriction; arterial remodeling

    Hypoxic pulmonary hypertension (HPH) is a common complication in patients with chronic obstructive pulmonary disease (COPD), sleep-disordered breathing, or dwellers in high altitude. The exact mechanisms underlying the development of HPH still remain unclear. Reactive oxygen species (ROS),hypoxia inducible factors (HIF), and potassium channels (KV) are believed as the main factors during the development of HPH. We propose that the “ROS/Kv/HIF axis” may play an important initiating role in the development of HPH. Being formed under a hypoxic condition, ROS affects the expression and function of HIFs or KV, and consequently triggers multiple downstream signaling pathways and genes expression that participate in promoting pulmonary vasoconstriction and arterial remodeling. Thus, further study determining the initiating role of “ROS/Kv/HIF axis” in the development of HPH could provide theoretic evidences to better understand the underlying mechanisms of HPH, and help identify new potential targets in the treatment of HPH.

    PULMONARY hypertension, a condition associated with increased mortality, is a severe comorbidity in many diseases. Clinically it is characterized by progressive increase in pulmonary arterial pressure and pulmonary vascular resistance.1According to the latest clinical classification of the guidelines for the diagnosis and treatment of pulmonary hypertension,2pulmonary hyper-tension is classified into 5 groups, where hypoxic pulmonary hypertension (HPH) is a subtype of pulmonary hypertension due to lung diseases and/or hypoxia. Totally, there are 7 etiologies for HPH: chronic obstructive pulmonary disease, interstitial lung disease, other pulmonary diseases with mixed restrictive and obstructive pattern, sleepdisordered breathing, alveolar hypoven-tilation disorders,chronic exposure to high altitude, and developmental abnormalities.

    Hypoxic vasoconstriction, one of the important physio-logical responses to hypoxia, known as the von Euler-Liljestrand mechanism, is meaningful for maintaining ventilation/perfusion ratio.3However, generalized pulmonary arteriole constriction results in elevated pulmonary arterial pressure, and long-term elevation of pulmonary arterial pressure promotes thickening of pulmonary arterial wall.Thus pulmonary vascular remodeling together with enhanced pulmonary vascular resistance eventually lead to pulmonary hypertension.

    PATHOGENESIS FOR HYPOXIC PULMONARY HYPERTENSION

    The mechanisms underlying the pulmonary vascular remodeling and vasoconstriction during hypoxic pulmonary hypertension remain to be fully explored. To date, there exist several cellular and molecular mechanisms explaining pulmonary vascular remodeling and vasoconstriction during HPH. Stenmark et al summarized that the cellular and molecular mechanisms are varied, and depend on the cellular composition of vessels at particular sites along the longitudinal axis of the pulmonary vasculature, as well as on local environmental factors.4They also elucidated that the resident vascular cell types play specific roles in the overall remodeling response, which undergo site and time-dependent changes in proliferation, matrix protein production, expression of growth factors, etc.4In another review, Stenmark and colleagues proposed that the adventitia played critical roles in hypoxia-induced pulmonary vascular remodeling, during which adventitial fibroblasts were activated and underwent phenotypic changes including proliferation, differentiation, recruitment of inflammatory and progenitor cells to the vessel wall, etc.5

    ROS, HIFS, AND KV IN HYPOXIC PULMONARY HYPERTENSION

    Reactive oxygen species (ROS)

    Sommer et al exhibited that the mechanisms responsible for hypoxic pulmonary vasoconstriction include ion channels,reactive oxygen species (ROS), and redox couples.6According to recent research, hypoxia leads to exaggerated increase of ROS in the pulmonary arterial smooth muscle cells.7-9Accumulating data have shown that oxidative stress plays important roles in mediating pathological changes in the pulmonary arterioles and the right ventricle.10-12Additionally, ROS affects cells’ sensibility to oxidative stress, cell migration, proliferation, apoptosis, and matrix protein deposition, all of which are related with vasoconstriction and vascular remodeling.10,13Lately, another team reported that ROS mediated physio-logical angiogenesis due to aerobic endurance exercise, in which HIF may play as an exercise-sensitive oxygen sensor and a redox regulator.14Taken together, ROS is believed to be an initiating factor for vascular response under hypoxia exposure. Thus,oxidative stress is becoming a new target for treating pulmonary hypertension.15

    Hypoxia inducible factors (HIFs)

    Hypoxia inducible factors (HIFs) are demonstrated to be the main modulators in cellular response to hypoxia, and play key roles in the development of organs and the progression of diseases.16,17Recently, a controversy about whether ROS participates in HIF-1α modulating has arisen.18An opinion considers that hypoxia induces superoxide production in compound Ⅲ of the mitocho-ndrial electron transport chain, and the activity of prolyl hydroxylase (PHD)is inhibited by oxidation of the nonheme Fe Ⅱ, which stabilizes HIF-1α.19On the contrary, another opinion propose that the decreased activity of mitochondrial electron transport chain can result in elevation of oxygen concentration in cytoplasm.20Consequently, PHD can be reactivated, and then HIF-1α degradation occurs. HIF-2α is also believed to be regulated via this mechanism.21Calvani M et al reported that hypoxia induces the produc-tion of ROS in mitochondria, and inhibition of PHD stabi-lizes HIF-1α.22Consequently, the expression of vascular endothelial growth factor (VEGF) increases. When VEGF binds to VEGF receptor-2, nicoti-namide adenine dinucleo-tide phosphate(NADPH), an oxidase, is activated, resulting in a secondary increase of ROS. As HIF-1α is further stabilized, cells acclimatize to oxidative stress. Besides, Prabhakar and colleagues also demon-strated that, besides by hypoxia,HIF-1α could be activated by nitric oxide (NO) and ROS.23Furthermore, study showed that the mechanism for ROS increase under chronic intermittent hypoxia is related with the imbalance of the pro-oxidation and anti-oxidation genes encoded by HIF-1α and HIF-2α.24

    Potassium channels (Kv)

    Research showed that oxygen-sensitive potassium channels (Kv) are predominantly expressed in resistant pulmonary arterioles, and are responsible for hypoxia induced pulmonary vasoconstriction occurring mainly in this area.25A team found that the ROS-K+signaling pathway modulates NO, endothelin 1 (ET-1), and VEGF secretion in human pulmonary arterial endothelium under oxidative stress. They also demonstrated that Kv1.5 may play an important role in ROS-K+signaling pathway, and intracellular Ca2+may be related with the secretion regulation of endo-thelium by ROS-K+.26Yasui et al reported that H2O2directly inhibits the activity of KATPat the concentration of 10 μM.27

    ROS/KV/HIF AXIS

    Based on the research findings and questions mentioned above, we believe that HIFs and KVmay exert key roles during the development of HPH. Consequently, we propose the concept of “ROS/Kv/HIF axis”. Firstly, hypoxia causes exaggerated increase of ROS in pulmonary arterioles. The increased ROS then inhibits the activity of Kv located in pulmonary arterioles, meanwhile, stabilizes HIFs activity. The decreased Kv activity could explain the early pulmonary vascular constriction reaction under hypoxia exposure. On the other hand, the stabilized HIF axis could activate its downstream genes, and subsequently cause the expression of various hypoxia-related proteins that participate in pulmonary vascular remodeling during HPH. We hypothesize that during the development of HPH, the production of ROS inhibits Kv activity,stabilizes HIF axis, and further leads to imbalances of pulmonary vascular constriction/dilation and proliferation/apoptosis.

    Nevertheless, does the “ROS/KV/HIF axis” really exist in pulmonary circulation during the development of HPH?What is the exact nature of the “ROS/KV/HIF axis”, and what is the underlying molecular mechanism? These questions need further investigation.

    The characteristics of HPH are remarkable pulmonary arterial remodeling and elevated vascular resistance. The specific pathological changes in resistant arterioles during HPH are exhibited as: thickening of pulmonary arteriole wall with proliferated and hypertrophic medial smooth muscle cells, inflammatory cell infiltration, and enlarged adventitia along with extracellular matrix accumulation.The pulmonary vasoconstriction response to hypoxia is initially a physiological adaptation to maintain ventilation/perfusion ratio, which eventually leads to elevation of vascular resistance. Chronic hypoxia exposure induces durable vasoconstriction and vascular resistance, which synergistically promote pulmonary arteriole remodeling. As a consequence,pulmonary arteriole remodeling inversely promotes vasoconstriction and vascular resistance. The positive feedback path during chronic hypoxia exposure further exacerbates HPH. However, the exact mechanisms underlying HPH still remain further exploration.

    Studies showed that intracellular redox reaction could affect cellular signaling transduction and genes expression,which exerts important function during cell proliferation,growth inhibition, and apoptotic pathophysiological processes. ROS are produced during intracellular redox reaction. Mitochondrial electron transport chain and NADPH oxygenase (Nox) are the sources of ROS in pulmonary arterial smooth muscle cells (PASMCs) under the hypoxic condition. Wang and colleagues showed that hypoxia leads to increase of ROS in PASMCs, along with significant elevation of intracellular [Ca2+]i, followed by the constriction of pulmonary arterial smooth muscle cells.28Sommer et al demonstrated that endothelial cells regulated the vascular tone partially through regulating the ROS production in cells.6In the early phase of hypoxia, decreasing of hydrogen carriers accompanied with reducing of oxygen radical causes elevation of GSH/GSSG and NADPH/ NADP. Next, the intracellular deoxidation tendency increases, and the calciumdependent potassium channels are inhibited. Transmembrane influx of Ca2+increases afterwards, followed by pulmonary vascular constriction.6,28Additionally, Rathore and colleagues showed that ROS production through the ROS-Protein Kinase C Epsilon (PKCe)-Nox axis played a pivotal role in transmembrane Ca2+influx and the constriction of PASMCs.29N-acetyl-cysteine, an antioxidant could effectively inhibit peroxides from increasing,and prevent vascular pathological changes during the development of HPH.30However, another team showed that as a key endothelium-derived hyperpolarizing factor,H2O2mediates flow-induced dilation of human coronary arterioles through activating BK(Ca) channels in smooth muscle cells.31,32To summarize those aforesaid studies,different concentra-tions of ROS affect the pathophysiological processes of vascular constriction/dilation and cell proliferation/apoptosis.

    On the other hand, HIFs play a key role in response to hypoxia, and modulate genes transcription during various pathophysiological processes. The battery of genes regulated by HIF-1 and HIF-2 are overlapping but distinct, and are dependent on cell types. For example,HIF-2α is present but does not activate the transcription in mouse embryonic stem cells.33HIF-1α modulates various genes expression such as endothelin-1, platelet derived growth factor, heme oxygenase-1, and inducible nitric oxide synthase-1, all of which play important roles during hypoxia-induced vasoconstriction and arterial remodeling.34,35Moreover, HIF-2α plays a significant role in tumorigenesis.36,37

    HIF-1 is a heterodimer composed with HIF-1α and HIF-1β, which is regulated by Fe and oxygen dependent PHD.The main viewpoint on the increase of HIF-1α under hypoxia is that this is due to the decrease of oxygendependent degradation, and the increase of oxygenindependent protein synthesis.38,39A recent study exhibited that, besides hypoxia, NO and ROS can also activate HIF-1α.23Chronic intermittent hypoxia leads to increased synthesis and stability of HIF-1α, and the calpaindependent degradation of HIF-2α. Thus, the loss of redox homeostasis due to the imbalance of HIF-1α-dependent and pro-oxidant/HIF-2α-dependent anti-oxidant activity is considered as the main mechanism underlying the pathogenesis of autonomic morbidities associated with chronic intermittent hypoxia.24Mechanisms responsible for increased ROS generation may involve transcriptional dysregulation of genes encoding pro- and anti-oxidant enzymes by HIF-1 and HIF-2, respectively.40Therefore, we consider that the interaction of ROS and HIF mutually promotes each other, forming a positive feedback loop, which disturbs the constriction/dilation of pulmonary vessels and cell proliferation/apoptosis during the pathophysiological progression of HPH.

    Hypoxia induced pulmonary vasoconstriction mainly occurs in resistant arterioles (the forth division, diameter<200 μm), not in conduit arteries.41The anatomical(proximal-distal) and functional (conduit-resistance) differences also exhibit at the cellular and molecular level, such as the difference of K+channel distribution in different arterial segments.42,43In conduit PASMCs, the whole cell potassium currents (IK) exhibit contributions from both voltagegated (KV)and large-conductance, calcium-sensitive(BKCa) channels. However, IKin resistance PASMCs mainly manifests Kv current.44The reason for these differences may lie in the different origins of conduit and resistance arteries in the embryological vascular beds: the conduit arteries originate from the 6th aortic arch, whereas the resistance arterioles originate from the mesenchymal lung bud by capillary plexus expansion.45Hypoxia-induced pulmonary vasoconstriction is dependent on the inhibition of KV, for 4-AP pretreatment could completely inhibit the activity of KV. Along with the longitude of pulmonary arteries, the mRNA levels of KV1.2, KV1.5, KV3.1, KV4.3,and KV9.3 all increase. However, only the protein level of KV1.5 increases in resistance arterioles.25Study showed that K+is transported to mitochondria more quickly in hypoxia-resistant rats than in hypoxia-sensitive rats;meanwhile, the concentration of K+in hypoxia-resistant rats is higher than that in hypoxia-sensitive rats.46The study also showed that adaptation to hypoxia manifests not only as a faster transportation of K+, but also as the exchange of K+/H+. When KATPchannels are blocked, the production of H2O2in mitochondria of hypoxia-resistant rats is faster than that of hypoxia-sensitive rats. Extralife,a flavonoid extract, was shown to increase the transportation of ATP-dependent K+, and elevate the tolerance ability by 5 times in hypoxia-sensitive rats.46Brown et al found that hypoxia that lasts several seconds to minutes inhibits KVthrough decreasing ROS production in mitochondria and directly stimulating catecholamine secretion in adrenal medulla chromatocytes; meanwhile, chronic hypoxia leads to the production of HIF-2α by a ROS-independent pathway in fetus-derived chromatocytes, and intermittent chronic hypoxia results in anti-oxidative response modulated by Nrf-2 that is associated with increases of ROS and HIF-1α.47Dong et al found that, with 18-hour hypoxia exposure,HIF-1αincreased hypoxia-induced expression of Kv channels in cultured PASMCs through erythropoietin (EPO) enhancer effects.48According to the research above, HIF-1α may have protective effect in vitro during early hypoxic phase.Thus, the role of HIF-1α during hypoxia process should be fully explored. Besides, Shin and colleagues found that HIF-1α upregulated a two-pore domain K+channel in mouse B cells, which may be due to humoral immune responses and B cell differentiation.49Taken together,there are different types of potassium channels existing invascular endothelial cells and smooth muscle cells,whose activation or inhibition play important roles in regulating vascular constriction/dilation. The ROS production,diversity of K+channels expression, and HIF axis activation may be closely related with hypoxia-induced vasoconstriction and vascular remodeling during chronic hypoxia.

    To summarize, the “ROS/Kv/HIF axis” partakes and greatly contributes in the process of hypoxia-induced pulmonary vasoconstriction and vascular remodeling. The schematic diagram below elucidates the “ROS/Kv/HIF axis”during HPH (Fig. 1). Hypoxia leads to the production of ROS, and ROS affects the balance of K+, followed by stabilizing of HIF system. Those aforesaid factors further cause the imbalances of pulmonary vascular constriction/dilation and proliferation/apoptosis, which promote the development of HPH. Further investigation in the “ROS/Kv/HIF axis” may offer new theoretical bases and potential targets for treating HPH.

    Figure 1. Schematic flowchart of the pathway of ROS/ Kv/HIF axis in hypoxia-induced HPH.

    Conflict of interest statement

    The authors have no conflict of interest to disclose.

    Acknowledgement

    We thank professor Yanxia Wang from the Fourth Military Medical University for editing and polishing the language of this manuscript.

    1. Shah SJ. Pulmonary hypertension. JAMA 2012; 308:1366-74. doi: 10.1001/jama.2012.12347.

    2. Galiè N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL,Barbera JA, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 2009; 30: 2493-537. doi: 10.1093/ eurheartj/ehp297.

    3. Sylvester JT, Shimoda LA, Aaronson PI, Ward JP. Hypoxic pulmonary vasoconstriction. Physiol Rev 2012; 92:367-520. doi: 10.1152/physrev.00041.2010.

    4. Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 2006; 99: 675-91. doi: 10.1161/01.RES.0000243584.45145.3f.

    5. Stenmark KR, Davie N, Frid M, Gerasimovskaya E, Das M. Role of the adventitia in pulmonary vascular remodeling. Physiology (Bethesda) 2006; 21: 134-45. doi: 10.1152/physiol.00053.2005.

    6. Sommer N, Dietrich A, Schermuly RT, Ghofrani HA,Gudermann T, Schulz R, et al. Regulation of hypoxic pulmonary vasoconstriction: basic mechanisms. Eur Respir J 2008; 32:1639-51. doi: 10.1183/09031936.00013908.

    7. Liu JQ, Zelko IN, Erbynn EM, Sham JS, Folz RJ. Hypoxic pulmonary hypertension: role of superoxide and NADPH oxidase (gp91phox). Am J Physiol Lung Cell Mol Physiol 2006; 290: L2-10. doi: 10.1152/ajplung.00135.2005.

    8. Jankov RP, Kantores C, Pan J, Belik J. Contribution of xanthine oxidase-derived superoxide to chronic hypoxic pulmonary hypertension in neonatal rats. Am J Physiol Lung Cell Mol Physiol 2008; 294: L233-45. doi: 10.1152/ajplung.00166.2007.

    9. Mittal M, Gu XQ, Pak O, Pamenter ME, Haag D, Fuchs DB,et al. Hypoxia induces Kv channel current inhibition by increased NADPH oxidase-derived reactive oxygen species. Free Radic Biol Med 2012; 52: 1033-42. doi: 10.1016/j.freeradbiomed.2011.12.004.

    10. Xu S, Touyz RM. Reactive oxygen species and vascular remodelling in hypertension: still alive. Can J Cardiol 2006; 22: 947-51. doi: 10.1016/s0828-282x(06)70314-2.

    11. Wong CM, Bansal G, Pavlickova L, Marcocci L, Suzuki YJ.Reactive oxygen species and antioxidants in pulmonary hypertension. Antioxid Redox Signal 2013; 1: 1789-96.doi: 10.1089/ars.2012.4568.

    12. Voelkel NF, Bogaard HJ, Al Husseini A, Farkas L, Gomez-Arroyo J, Natarajan R. Antioxidants for the treatment of patients with severe angioproliferative pulmonary hypertension? Antioxid Redox Signal 2013; 18: 1810-7. doi:10.1089/ars.2012.4828.

    13. Waypa GB, Guzy R, Mungai PT, Mack MM, Marks JD, Roe MW, et al. Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells. Circ Res 2006; 99:970-8. doi: 10.1161/01.RES.0000247068.75808.3f.

    14. Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013; 18: 1208-46. doi: 10.1089/ars.2011.4498.

    15. Freund-Michel V, Guibert C, Dubois M, Courtois A, Marthan R, Savineau JP, et al. Reactive oxygen species as therapeutic targets in pulmonary hypertension. Ther Adv Respir Dis 2013; 7: 175-200. doi: 10.1177/1753465812 472940.

    16. Semenza GL. Hypoxia-inducible factor 1: control of oxygen homeostasis in health and disease. Pediatr Res 2001;49: 614-7. doi: 10.1203/00006450-200105000-00002.

    17. Semenza GL. Oxygen sensing, homeostasis, and disease.N Engl J Med 2011; 365: 537-47. doi: 10.1056/NEJMra 1011165.

    18. Hagen T. Oxygen versus Reactive Oxygen in the Regulation of HIF-1alpha: The Balance Tips. Biochem Res Int 2012; 436981. doi: 10.1155/2012/436981.

    19. Masson N, Singleton RS, Sekirnik R, Trudgian DC, Ambrose LJ, Miranda MX, et al. The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity. EMBO Rep 2012; 13: 251-7. doi: 10.1038/embor.2012.9.

    20. Chua YL, Dufour E, Dassa EP, Rustin P, Jacobs HT, Taylor CT, et al. Stabilization of hypoxia-inducible factor-1alpha protein in hypoxia occurs independently of mitochondrial reactive oxygen species production. J Biol Chem 2010;285: 31277-84. doi: 10.1074/jbc.M110.158485.

    21. Brown ST, Nurse CA. Induction of HIF-2alpha is dependent on mitochondrial O2consumption in an O2-sensitive adrenomedullary chromaffin cell line. Am J Physiol Cell Physiol 2008; 294: C1305-12. doi: 10.1152/ajpcell.00007.2008.

    22. Calvani M, Comito G, Giannoni E, Chiarugi P. Time-dependent stabilization of hypoxia inducible factor-1alpha by different intracellular sources of reactive oxygen species. Plos One 2012; 7: e38388. doi: 10.1371/journal.pone.0038388.

    23. Prabhakar NR, Semenza GL. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev 2012; 92: 967-1003. doi: 10.1152/physrev.00030.2011.

    24. Semenza GL, Prabhakar NR. The role of hypoxia-inducible factors in oxygen sensing by the carotid body. Adv Exp Med Biol 2012; 758: 1-5. doi: 10.1007/978-94-007-4584-1_1.

    25. Archer SL, Wu XC, Thébaud B, Nsair A, Bonnet S, Tyrrell B, et al. Preferential expression and function of voltagegated, O2-sensitive K+channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells. Circ Res 2004; 95: 308-18. doi: 10.1161/01.RES.0000137173.42723.fb.

    26. Ouyang JS, Li YP, Li CY, Cai C, Chen CS, Chen SX, et al.Mitochondrial ROS-K+channel signaling pathway regulated secretion of human pulmonary artery endothelial cells. Free Radic Res 2012; 46: 1437-45. doi: 10.3109/10715762.2012.724532.

    27. Yasui S, Mawatari K, Morizumi R, Furukawa H, Shimohata T, Harada N,et al. Hydrogen peroxide inhibits insulininduced ATP-sensitive potassium channel activation independent of insulin signaling pathway in cultured vascular smooth muscle cells. J Med Invest 2012; 59: 36-44. doi: 10.2152/jmi.59.36.

    28. Wang YX, Zheng YM. Role of ROS signaling in differential hypoxic Ca2+and contractile responses in pulmonary and systemic vascular smooth muscle cells. Respir Physiol Neurobiol 2010; 174: 192-200. doi: 10.1016/j.resp. 2010.08.008.

    29. Rathore R, Zheng YM, Niu CF, Furukawa H, Shimohata T,Harada N,et al. Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through the mitochondrial ROS-PKCepsilon signaling axis in pulmonary artery smooth muscle cells. Free Radic Biol Med 2008; 45:1223-31. doi: 10.1016/j.freeradbiomed.2008.06.012.

    30. .Lachmanová V, Hnilicková O, Povysilová V, Hampl V,Herget J. N-acetylcysteine inhibits hypoxic pulmonary hypertension most effectively in the initial phase of chronic hypoxia. Life Sci 2005; 77: 175-82. doi: 10.1016/j.lfs.2004.11.027.

    31. Liu Y, Bubolz AH, Mendoza S, Zhang DX, Gutterman DD.H2O2 is the transferrable factor mediating flow-induced dilation in human coronary arterioles. Circ Res 2011; 108:566-73. doi: 10.1161/CIRCRESAHA.110.237636.

    32. Zhang DX, Borbouse L, Gebremedhin D, Mendoza SA,Zinkevich NS, Li R, et al. H2O2-induced dilation in human coronary arterioles: role of protein kinase G dimerization and large-conductance Ca2+-activated K+channel activation. Circ Res 2012; 110: 471-80. doi: 10.1161/CIRCRESAHA.111.258871.

    33. Hu CJ, Iyer S, Sataur A, Covello KL, Chodosh LA, Simon MC. Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-1alpha) and HIF-2alpha in stem cells. Mol Cell Biol 2006; 26: 3514-26.doi: 10.1128/MCB.26.9.3514-3526.2006.

    34. Rankin EB, Giaccia AJ. Hypoxic control of metastasis. Science 2016; 352(6282): 175-80. doi: 10.1126/science.aaf4405.

    35. Smith KA, Yuan JX. Hypoxia-inducible factor-1alpha in pulmonary arterial smooth muscle cells and hypoxiainduced pulmonary hypertension. Am J Respir Crit Care Med 2014; 189: 245-6. doi: 10.1164/rccm.201312-2148ED.

    36. Zhao J, Du F, Shen G, Zheng F, Xu B. The role of hypoxiainducible factor-2 in digestive system cancers. Cell Death Dis 2015; 6: e1600. doi: 10.1038/cddis.2014.565.

    37. Yang SL, Liu LP, Niu L, Sun YF, Yang XR, Fan J, et al.Downregulation and pro-apoptotic effect of hypoxiainducible factor 2 alpha in hepatocellular carcinoma. Oncotarget 2016; 7: 34571-81. doi: 10.18632/oncotarget. 8952.

    38. Huang LE, Gu J, Schau M, Bunn HF. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 1998; 95:7987-92. doi: 10.1073/pnas.95.14.7987.

    39. Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 2000;88: 1474-80. doi: 10.1152/jappl.2000.88.4.1474.

    40. Prabhakar NR, Kumar GK, Peng YJ. Sympatho-adrenal activation by chronic intermittent hypoxia. J Appl Physiol 2012; 113: 1304-10. doi: 10.1152/japplphysiol.00444. 2012.

    41. Kato M, Staub NC. Response of small pulmonary arteries to unilobar hypoxia and hypercapnia. Circ Res 1966; 19:426-40. doi: 10.1161/01.res.19.2.426.

    42. Madden JA, Vadula MS, Kurup VP. Effects of hypoxia and other vasoactive agents on pulmonary and cerebral artery smooth muscle cells. Am J Physiol 1992; 263: L384-93. doi: 10.1152/ajplung.1992.263.3.L384.

    43. Vadula MS, Kleinman JG, Madden JA. Effect of hypoxia and norepinephrine on cytoplasmic free Ca2+in pulmonary and cerebral arterial myocytes. Am J Physiol 1993;265: L591-7. doi: 10.1152/ajplung.1993.265.6.L591.

    44. Archer S, Michelakis E. The mechanism(s) of hypoxic pulmonary vasoconstriction: potassium channels, redox O(2)sensors, and controversies. News Physiol Sci 2002; 17:131-7. doi: 10.1152/nips.01388.2002.

    45. Hall SM, Hislop AA, Pierce CM, Haworth SG. Prenatal origins of human intrapulmonary arteries: formation and smooth muscle maturation. Am J Respir Cell Mol Biol 2000; 23: 194-203. doi: 10.1165/ajrcmb.23.2.3975.

    46. Mironova GD, Shigaeva MI, Gritsenko EN, Murzaeva SV,Gorbacheva OS, Germanova EL, et al. Functioning of the mitochondrial ATP-dependent potassium channel in rats varying in their resistance to hypoxia. Involvement of the channel in the process of animal's adaptation to hypoxia. J Bioenerg Biomembr 2010; 42: 473-81. doi:10.1007/s10863-010-9316-5.

    47. Brown ST, Buttigieg J, Nurse CA. Divergent roles of reactive oxygen species in the responses of perinatal adrenal chromaffin cells to hypoxic challenges. Respir Physiol Neurobiol 2010; 174: 252-8. doi: 10.1016/j.resp.2010.08.020.

    48. Dong Q, Zhao N, Xia CK, Du LL, Fu XX, Du YM. Hypoxia induces voltage-gated K+(Kv) channel expression in pulmonary arterial smooth muscle cells through hypoxia-inducible factor-1 (HIF-1). Bosn J Basic Med Sci 2012; 12:158-63. doi: 10.17305/bjbms.2012.2463.

    49. Shin DH, Lin H, Zheng H, Kim KS, Kim JY, Chun YS, et al.HIF-1alpha-mediated upregulation of TASK-2 K+channels augments Ca2+signaling in mouse B cells under hypoxia. J Immunol 2014; 193: 4924-33. doi: 10.4049/jimmunol.1301829.

    10.24920/J1001-9294.2017.037

    October 24, 2016.

    Tel: 86-17710560131, E-mail:149011273@qq.com

    国产免费男女视频| 97超碰精品成人国产| 久久久色成人| 亚洲精品影视一区二区三区av| 国产黄片视频在线免费观看| 成人特级av手机在线观看| 在线观看美女被高潮喷水网站| 91久久精品国产一区二区成人| 少妇熟女aⅴ在线视频| 亚洲婷婷狠狠爱综合网| 别揉我奶头 嗯啊视频| 成熟少妇高潮喷水视频| 成人欧美大片| 亚洲经典国产精华液单| 国内精品美女久久久久久| 男人舔女人下体高潮全视频| 嫩草影院入口| av黄色大香蕉| 夫妻性生交免费视频一级片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲高清免费不卡视频| 蜜桃亚洲精品一区二区三区| 岛国毛片在线播放| 婷婷六月久久综合丁香| 插阴视频在线观看视频| 国产精品麻豆人妻色哟哟久久 | 色5月婷婷丁香| 久久热精品热| 淫秽高清视频在线观看| 国产日本99.免费观看| 大又大粗又爽又黄少妇毛片口| 女同久久另类99精品国产91| 久久久久久伊人网av| 女人十人毛片免费观看3o分钟| 国产日本99.免费观看| 麻豆一二三区av精品| 国产一级毛片七仙女欲春2| 高清日韩中文字幕在线| 毛片女人毛片| 成人一区二区视频在线观看| 亚洲精品日韩在线中文字幕 | 午夜久久久久精精品| 成人鲁丝片一二三区免费| 亚洲精品成人久久久久久| 国产高清三级在线| 天堂中文最新版在线下载 | 波多野结衣巨乳人妻| 国产毛片a区久久久久| 男的添女的下面高潮视频| 久久国产乱子免费精品| 日韩欧美三级三区| 精品免费久久久久久久清纯| 国产亚洲精品久久久com| 熟女人妻精品中文字幕| 免费在线观看成人毛片| 亚洲图色成人| 日日摸夜夜添夜夜添av毛片| 九九在线视频观看精品| 日韩欧美精品v在线| www.色视频.com| 美女国产视频在线观看| 国产真实伦视频高清在线观看| 自拍偷自拍亚洲精品老妇| 亚洲自拍偷在线| 午夜福利在线在线| 神马国产精品三级电影在线观看| 婷婷色综合大香蕉| 美女黄网站色视频| 乱人视频在线观看| 欧美xxxx黑人xx丫x性爽| 一进一出抽搐动态| 精品久久久久久成人av| 亚洲av中文字字幕乱码综合| 成年版毛片免费区| 成人毛片a级毛片在线播放| 日韩中字成人| av国产免费在线观看| 少妇裸体淫交视频免费看高清| 久久精品久久久久久久性| 国产伦一二天堂av在线观看| 日韩制服骚丝袜av| 精品一区二区三区视频在线| 欧美日韩国产亚洲二区| 男女下面进入的视频免费午夜| 欧美zozozo另类| 亚洲久久久久久中文字幕| 伊人久久精品亚洲午夜| 久久欧美精品欧美久久欧美| 噜噜噜噜噜久久久久久91| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久午夜欧美精品| 亚洲av.av天堂| 中国国产av一级| 美女cb高潮喷水在线观看| 亚洲精品456在线播放app| 免费人成在线观看视频色| 少妇高潮的动态图| 久久精品人妻少妇| 久久久久久伊人网av| 综合色丁香网| 日韩 亚洲 欧美在线| 人人妻人人看人人澡| 蜜臀久久99精品久久宅男| 超碰av人人做人人爽久久| 久久精品国产99精品国产亚洲性色| 黄色配什么色好看| 我的女老师完整版在线观看| 在线免费观看不下载黄p国产| 精品久久久久久久人妻蜜臀av| 久久欧美精品欧美久久欧美| 久久6这里有精品| 久久久久性生活片| 国产av一区在线观看免费| 校园春色视频在线观看| 久久草成人影院| 亚洲av电影不卡..在线观看| 99久国产av精品| 欧美另类亚洲清纯唯美| 日韩在线高清观看一区二区三区| 国产午夜福利久久久久久| 美女大奶头视频| 成人特级av手机在线观看| 在现免费观看毛片| 国产又黄又爽又无遮挡在线| 精品少妇黑人巨大在线播放 | 在线天堂最新版资源| 欧美日韩在线观看h| 国产一区二区在线av高清观看| 亚洲va在线va天堂va国产| 欧美高清性xxxxhd video| 伦精品一区二区三区| 男女啪啪激烈高潮av片| 天堂√8在线中文| 性插视频无遮挡在线免费观看| 91精品国产九色| 亚洲成av人片在线播放无| 男的添女的下面高潮视频| 国产一区亚洲一区在线观看| 午夜福利在线观看吧| 国产v大片淫在线免费观看| 国产精品电影一区二区三区| 99精品在免费线老司机午夜| 国产成人午夜福利电影在线观看| 国内精品一区二区在线观看| 亚洲人成网站在线播放欧美日韩| 日日啪夜夜撸| 国产男人的电影天堂91| 欧美在线一区亚洲| 九九爱精品视频在线观看| 99久久成人亚洲精品观看| 亚洲人成网站高清观看| 99久久精品国产国产毛片| 国产精品一二三区在线看| 蜜桃久久精品国产亚洲av| 久久亚洲国产成人精品v| 国产精品一区二区性色av| 久久婷婷人人爽人人干人人爱| 91久久精品国产一区二区三区| 亚洲最大成人手机在线| 亚洲国产精品国产精品| 少妇熟女aⅴ在线视频| 国产av在哪里看| 长腿黑丝高跟| 亚洲va在线va天堂va国产| 成年av动漫网址| 成人高潮视频无遮挡免费网站| 中文欧美无线码| 中国国产av一级| 国产一区二区激情短视频| 日日摸夜夜添夜夜爱| 中国国产av一级| 青春草亚洲视频在线观看| 少妇裸体淫交视频免费看高清| 99九九线精品视频在线观看视频| 五月伊人婷婷丁香| 久久久久久国产a免费观看| 成人午夜高清在线视频| 欧美色欧美亚洲另类二区| 国产激情偷乱视频一区二区| 身体一侧抽搐| АⅤ资源中文在线天堂| 国产淫片久久久久久久久| 亚洲av成人精品一区久久| 寂寞人妻少妇视频99o| 日本爱情动作片www.在线观看| 99riav亚洲国产免费| 成年av动漫网址| 国产白丝娇喘喷水9色精品| 一区福利在线观看| 国产成人a∨麻豆精品| 特大巨黑吊av在线直播| 久久亚洲国产成人精品v| 亚洲第一区二区三区不卡| av.在线天堂| 久久99精品国语久久久| 精品国产三级普通话版| 在线免费观看的www视频| 国产成人a∨麻豆精品| 日韩视频在线欧美| 人人妻人人澡人人爽人人夜夜 | 九九久久精品国产亚洲av麻豆| 97在线视频观看| 高清毛片免费观看视频网站| 亚洲图色成人| 久久久久国产网址| 精品久久久久久久久亚洲| 国产黄片视频在线免费观看| 精品久久久久久久人妻蜜臀av| 一区福利在线观看| 国产69精品久久久久777片| 国产亚洲精品久久久久久毛片| 噜噜噜噜噜久久久久久91| 在线播放国产精品三级| 少妇人妻一区二区三区视频| 亚洲最大成人手机在线| 日本熟妇午夜| 激情 狠狠 欧美| 高清在线视频一区二区三区 | 男女下面进入的视频免费午夜| 成人性生交大片免费视频hd| 人人妻人人澡人人爽人人夜夜 | 日本五十路高清| 性色avwww在线观看| 欧美日本视频| 我的女老师完整版在线观看| 春色校园在线视频观看| 国产精品永久免费网站| 日韩一区二区视频免费看| 国产亚洲精品久久久久久毛片| 欧美+亚洲+日韩+国产| 身体一侧抽搐| 又粗又爽又猛毛片免费看| 精华霜和精华液先用哪个| 综合色av麻豆| 日韩 亚洲 欧美在线| 成人午夜精彩视频在线观看| 久久99精品国语久久久| 狠狠狠狠99中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 成人亚洲欧美一区二区av| 亚洲国产欧美在线一区| 一进一出抽搐动态| 神马国产精品三级电影在线观看| 美女黄网站色视频| 国产成人aa在线观看| 麻豆成人av视频| avwww免费| 欧美成人一区二区免费高清观看| 成年av动漫网址| 欧美激情久久久久久爽电影| 久久欧美精品欧美久久欧美| 亚洲av免费在线观看| 能在线免费看毛片的网站| 欧美成人免费av一区二区三区| 亚洲在久久综合| 国产真实伦视频高清在线观看| 日本爱情动作片www.在线观看| 中文字幕久久专区| 日韩av不卡免费在线播放| 午夜亚洲福利在线播放| 精品无人区乱码1区二区| 大又大粗又爽又黄少妇毛片口| 国产精品1区2区在线观看.| 哪个播放器可以免费观看大片| 听说在线观看完整版免费高清| 少妇熟女欧美另类| 麻豆成人av视频| 国产精品av视频在线免费观看| 美女 人体艺术 gogo| 国产亚洲精品久久久久久毛片| 91在线精品国自产拍蜜月| 看片在线看免费视频| 日韩一区二区视频免费看| 蜜臀久久99精品久久宅男| 1024手机看黄色片| 少妇熟女aⅴ在线视频| 淫秽高清视频在线观看| 成人欧美大片| 久久精品影院6| 亚洲国产精品久久男人天堂| 色噜噜av男人的天堂激情| 99热全是精品| 国产高潮美女av| 久久午夜福利片| 欧美人与善性xxx| 97在线视频观看| 亚洲av成人精品一区久久| 久久这里只有精品中国| 国产精品久久电影中文字幕| 国产精品福利在线免费观看| 99热全是精品| 日日啪夜夜撸| 在线免费观看不下载黄p国产| 国产一级毛片七仙女欲春2| 国产成人a∨麻豆精品| 亚洲欧美成人精品一区二区| 丰满乱子伦码专区| 国产激情偷乱视频一区二区| 色哟哟·www| 亚洲av成人精品一区久久| 国产伦精品一区二区三区视频9| 国产单亲对白刺激| 国产午夜精品久久久久久一区二区三区| 国产精品美女特级片免费视频播放器| 一进一出抽搐gif免费好疼| 最近手机中文字幕大全| 亚洲中文字幕日韩| 国产精品久久久久久av不卡| 婷婷精品国产亚洲av| а√天堂www在线а√下载| 看黄色毛片网站| 又粗又硬又长又爽又黄的视频 | 悠悠久久av| 免费观看的影片在线观看| 亚洲av二区三区四区| 狠狠狠狠99中文字幕| 欧美日韩国产亚洲二区| 亚洲av一区综合| 国产在线男女| 久久精品综合一区二区三区| 大又大粗又爽又黄少妇毛片口| 91麻豆精品激情在线观看国产| 成人亚洲精品av一区二区| av天堂在线播放| 亚洲人与动物交配视频| 天堂中文最新版在线下载 | 国产精品一及| 久久久久九九精品影院| 一本精品99久久精品77| 国产精品永久免费网站| 久久久a久久爽久久v久久| 久久亚洲国产成人精品v| 日本-黄色视频高清免费观看| 日本五十路高清| 成年女人永久免费观看视频| 中国美女看黄片| 欧美丝袜亚洲另类| 十八禁国产超污无遮挡网站| 大香蕉久久网| 99热这里只有是精品50| 麻豆一二三区av精品| 男的添女的下面高潮视频| 久久亚洲精品不卡| 久久综合国产亚洲精品| 女的被弄到高潮叫床怎么办| 成人亚洲欧美一区二区av| 丰满乱子伦码专区| 一级av片app| 小说图片视频综合网站| 国产精品一及| 久久国内精品自在自线图片| 亚洲三级黄色毛片| 亚洲av中文av极速乱| 99久久无色码亚洲精品果冻| 亚洲丝袜综合中文字幕| eeuss影院久久| 国产老妇伦熟女老妇高清| 亚洲最大成人中文| 亚洲国产欧美人成| 中文字幕av在线有码专区| 久久久久久国产a免费观看| 一级毛片aaaaaa免费看小| 欧美精品国产亚洲| 免费一级毛片在线播放高清视频| 综合色av麻豆| 久久久久久久久久成人| а√天堂www在线а√下载| 国产成人freesex在线| 免费大片18禁| 黄色一级大片看看| 成人无遮挡网站| 在线观看免费视频日本深夜| 一本一本综合久久| 大型黄色视频在线免费观看| 99热这里只有是精品在线观看| 此物有八面人人有两片| 亚洲成a人片在线一区二区| 欧美日本亚洲视频在线播放| 一级av片app| 18禁黄网站禁片免费观看直播| 91精品国产九色| 3wmmmm亚洲av在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲综合色惰| 国内精品久久久久精免费| 国产高清视频在线观看网站| 国产精品野战在线观看| 中国国产av一级| 色5月婷婷丁香| 国产黄色小视频在线观看| 少妇熟女aⅴ在线视频| 99国产精品一区二区蜜桃av| 小说图片视频综合网站| 久久午夜亚洲精品久久| 一进一出抽搐gif免费好疼| 一进一出抽搐动态| 亚洲自拍偷在线| 国产精品久久久久久久久免| 亚洲欧洲国产日韩| 一本精品99久久精品77| 一边亲一边摸免费视频| 在线播放无遮挡| 观看美女的网站| www.av在线官网国产| av卡一久久| 插逼视频在线观看| 成人性生交大片免费视频hd| 欧美+亚洲+日韩+国产| 日本撒尿小便嘘嘘汇集6| av在线观看视频网站免费| 成人二区视频| 99久久精品热视频| 国产亚洲av片在线观看秒播厂 | 欧美日韩综合久久久久久| 亚洲精品国产av成人精品| av.在线天堂| av女优亚洲男人天堂| 男女啪啪激烈高潮av片| 日本黄色片子视频| 最新中文字幕久久久久| 国产高清三级在线| a级毛片免费高清观看在线播放| 久久亚洲国产成人精品v| 搡老妇女老女人老熟妇| 日本成人三级电影网站| 精品一区二区三区视频在线| 亚洲av中文av极速乱| 性欧美人与动物交配| 国产不卡一卡二| 日韩欧美国产在线观看| 国产一区二区在线av高清观看| 日韩在线高清观看一区二区三区| 亚洲欧美日韩卡通动漫| 高清午夜精品一区二区三区 | 黄片无遮挡物在线观看| 欧美另类亚洲清纯唯美| 日韩三级伦理在线观看| 国产成人午夜福利电影在线观看| 九九热线精品视视频播放| 青春草视频在线免费观看| 五月伊人婷婷丁香| 中国美女看黄片| 国产日韩欧美在线精品| av在线观看视频网站免费| 丰满乱子伦码专区| 免费av毛片视频| .国产精品久久| 边亲边吃奶的免费视频| 69av精品久久久久久| 色5月婷婷丁香| 一级二级三级毛片免费看| 国产精品电影一区二区三区| 丰满人妻一区二区三区视频av| 免费看av在线观看网站| 又粗又爽又猛毛片免费看| 99riav亚洲国产免费| 看十八女毛片水多多多| 欧美日韩乱码在线| 国产伦精品一区二区三区四那| 在线免费观看的www视频| 久久人妻av系列| 黑人高潮一二区| 久久精品国产亚洲av天美| 国产一区二区三区av在线 | 亚洲中文字幕一区二区三区有码在线看| 国产成人a∨麻豆精品| 久久鲁丝午夜福利片| 国产精品女同一区二区软件| 波多野结衣巨乳人妻| 国产一区二区激情短视频| 99精品在免费线老司机午夜| 亚洲国产欧美在线一区| 91狼人影院| 好男人视频免费观看在线| 永久网站在线| 久久精品久久久久久久性| 久久这里只有精品中国| 99精品在免费线老司机午夜| 天美传媒精品一区二区| 国产亚洲精品久久久久久毛片| 可以在线观看的亚洲视频| 亚洲欧美日韩无卡精品| 老师上课跳d突然被开到最大视频| 国产精品三级大全| www.av在线官网国产| 日本一二三区视频观看| 国产av在哪里看| 久久精品国产亚洲av天美| 久久精品影院6| 麻豆一二三区av精品| 国产精品爽爽va在线观看网站| 国产激情偷乱视频一区二区| 日本与韩国留学比较| 国产三级在线视频| 日本黄色片子视频| 少妇丰满av| 久久久色成人| 人妻夜夜爽99麻豆av| 免费观看的影片在线观看| 亚洲中文字幕日韩| 成人av在线播放网站| 精品人妻偷拍中文字幕| 91久久精品国产一区二区三区| 国产伦在线观看视频一区| 丝袜美腿在线中文| 变态另类成人亚洲欧美熟女| 午夜老司机福利剧场| 精品熟女少妇av免费看| 亚洲最大成人手机在线| 欧美精品一区二区大全| 国产中年淑女户外野战色| 午夜福利在线在线| 麻豆av噜噜一区二区三区| 深夜a级毛片| 欧美成人免费av一区二区三区| 久久精品国产自在天天线| 欧美高清性xxxxhd video| 九九久久精品国产亚洲av麻豆| 高清在线视频一区二区三区 | av.在线天堂| 1024手机看黄色片| 精品人妻偷拍中文字幕| 非洲黑人性xxxx精品又粗又长| 蜜臀久久99精品久久宅男| 国产69精品久久久久777片| 久久国产乱子免费精品| 欧美极品一区二区三区四区| 久久婷婷人人爽人人干人人爱| 级片在线观看| 丰满人妻一区二区三区视频av| 极品教师在线视频| 欧美日韩精品成人综合77777| 老司机福利观看| 婷婷六月久久综合丁香| 国产大屁股一区二区在线视频| 亚洲一级一片aⅴ在线观看| 亚洲在线观看片| 99在线人妻在线中文字幕| 免费一级毛片在线播放高清视频| 91久久精品国产一区二区三区| 色5月婷婷丁香| 成人午夜高清在线视频| 免费av不卡在线播放| 一边摸一边抽搐一进一小说| 国产极品精品免费视频能看的| 亚洲欧美日韩高清专用| 欧美+亚洲+日韩+国产| 久久精品国产99精品国产亚洲性色| 亚洲欧洲国产日韩| 久久久久久久亚洲中文字幕| 日韩欧美三级三区| 大又大粗又爽又黄少妇毛片口| 久久精品综合一区二区三区| 国产av麻豆久久久久久久| 淫秽高清视频在线观看| 国产伦在线观看视频一区| 亚洲欧美日韩卡通动漫| 夫妻性生交免费视频一级片| 亚洲最大成人手机在线| 久久热精品热| 夜夜夜夜夜久久久久| 少妇被粗大猛烈的视频| 晚上一个人看的免费电影| 草草在线视频免费看| 亚洲av成人精品一区久久| 日日干狠狠操夜夜爽| 22中文网久久字幕| 又爽又黄a免费视频| 一级毛片久久久久久久久女| 人妻夜夜爽99麻豆av| 99热这里只有精品一区| 成人特级av手机在线观看| 女同久久另类99精品国产91| 性欧美人与动物交配| 国产av不卡久久| 老熟妇乱子伦视频在线观看| 99热全是精品| 国产精品人妻久久久影院| 九草在线视频观看| 中文字幕精品亚洲无线码一区| 国产精品,欧美在线| 伊人久久精品亚洲午夜| 久99久视频精品免费| 美女国产视频在线观看| 精品少妇黑人巨大在线播放 | 免费一级毛片在线播放高清视频| 午夜福利在线观看吧| 91aial.com中文字幕在线观看| 精品久久久噜噜| 国产精品久久久久久av不卡| av在线观看视频网站免费| 亚洲在线观看片| 性插视频无遮挡在线免费观看| av在线观看视频网站免费| 黄色欧美视频在线观看| 美女内射精品一级片tv| 2021天堂中文幕一二区在线观| 日韩视频在线欧美| 精品久久久久久久末码| 人人妻人人澡欧美一区二区| 国产日韩欧美在线精品| av卡一久久| 日韩欧美精品v在线| a级一级毛片免费在线观看| 久久久久九九精品影院| 国产一区二区在线观看日韩| 欧美高清成人免费视频www| 一本一本综合久久| 久久99热这里只有精品18| 搞女人的毛片| 国产麻豆成人av免费视频| 亚洲av免费在线观看| 国语自产精品视频在线第100页| 欧美丝袜亚洲另类| 哪里可以看免费的av片|