• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Construction and analysis of a new class of shape-preserving piecewise cubic polynomial curves

    2018-01-08 05:33:54YANLanlanFANJiqiuCollegeofScienceEastChinaUniversityofTechnologyNanchang330013China
    關(guān)鍵詞:樣條多邊形全局

    YAN Lanlan, FAN Jiqiu(College of Science, East China University of Technology, Nanchang 330013, China)

    Construction and analysis of a new class of shape-preserving piecewise cubic polynomial curves

    YAN Lanlan, FAN Jiqiu
    (College of Science, East China University of Technology, Nanchang 330013, China)

    This paper proposes a new class of shape-preserving piecewise cubic polynomial curves with both local and global shape control parameters. By presetting the properties of its basis functions and then solving equations, a set of polynomial basis functions with two shape parameters are derived, including the cubic uniform B-spline basis functions as a special case. Based on the relationship between the new basis functions and the cubic Bernstein basis functions, the totally positive property of the new basis functions is proved and a new class of piecewise cubic polynomial curves is therefore defined. The effect of the relative position of the control polygons’ side vectors onto the shape characteristic of the corresponding curve segments is analyzed. Necessary and sufficient conditions are obtained for the curve segments containing single or double inflection points, a loop or a cusp, or be locally or globally convex, which provide a theoretical guide for adjusting the shape of curve segments.

    curve design; B-spline method; totally positive basis; shape parameter;shape analysis

    保形分段三次多項(xiàng)式曲線的形狀分析.浙江大學(xué)學(xué)報(bào)(理學(xué)版),2018,45(1): 044-053

    Constructing practical basis functions to generate free-form curves and surfaces is an important topic in computer aided geometric design (CAGD).As a unified mathematical model with many desirable properties, B-splines, particularly the cubic B-splines, have gained widespread application in CAGD[1].Piecewise cubic B-spline curves with four consecutive control points for each curve segment is flexible and can be used conveniently.However, the positions of the cubic B-spline curves are fixed relatively to their control polygon.Although the weights in the cubic non-uniform rational B-spline curves possess an effect on adjusting the shape of the curves, how to change the weights to adjust the shape of a curve is sometimes quite opaque to the user.

    To enhance the flexibility of B-spline models, some researchers have suggested many types of curves with shape parameters incorporated into the basis functions.For instance, XU et al[2]proposed three kinds of extensions of cubic uniform B-spline. The advantage of the extensions is that they have shape parameters, which can be used to adjust the shape of the curves without shifting the control points.COSTANTINI et al[3]presented a method for the construction of cubic like B-splines with multiple knots.The proposed B-splines are equipped with tension parameters, associated to the knots, which permit a modification of their shape.HAN[4]constructed piecewise quartic polynomial curves with a local shape parameter.HAN[5]defined piecewise quartic spline curves with three local shape parameters.HU et al[6]presented B-spline curves with two local shape parameters.ZHU et al[7]defined B-spline-like curves with two local shape parameters.

    Totally positive property is one of the most important properties of basis functions.Although the schemes given in[2, 4-6] improved the control of the shape of B-spline curves, whether the basis functions have total positivity is unknown, so whether the curves have variation diminishing is unknown.Although the curves in[3,7] have variation diminishing, the basis functions are not cubic polynomials.For many applications in geometric modeling, it is often necessary to detect singularities and inflection points on curves, and convexity is important as an intuitive geometric concept as well.There are many publications[8-13]on this topic from different points of view.

    This paper is aimed at constructing a cubic polynomial basis functions with total positivity.The associated curves have local control, adjustable shape, and have variation diminishing thus have a good shape control.Considering that a curve with variation diminishing is suitable for conformal design, we analyze the shape feature of the new curves.We give conditions on the existence of cusp, loop and inflection point.The results are summarized in a shape diagram like the one in[8, 10-11].Furthermore, the influence of the shape parameters on the shape diagram and their ability for adjusting the shape of the curves is discussed.

    The rest of the paper is organized as follows.Section 1 gives the basis functions and their properties.Section 2 defines the curves and gives their properties.Section 3 analyzes the shape feature of the curve segments.Section 4 defines the surfaces.Section 5 concludes the paper.

    1 Basis functions and their properties

    (1)

    Theαβbasis can be rewritten in Bernstein basis functions form, i.e.,

    (b0(t),b1(t),b2(t),b3(t))=

    (2)

    where |Jij,kl| denotes the minor formed by thei,jrows andk,lcolumns ofJ.The matrixJhas 16 third-order minors as follows:

    where |Jijk,lmn| denotes the minor formed by thei,j,krows andl,m,ncolumns ofJ.Besides,

    (3)

    Theorem1Theαβbasis has the following properties:

    (a) Degeneracy: Whenα=-1,β=0, theαβbasis is the cubic uniform B-spline basis.

    (c) Symmetry:bi(1-t)=b3-i(t)(i=0,1,2,3).

    (d) Property at the endpoints: For arbitraryαandβ, we have

    and forα=-1,β=0, we have

    (f) Non-negativity:bi(t)≥0(i=0,1,2,3).

    (g) Total positivity: Theαβbasis forms a normalized totally positive basis of the space Ω={1,t,t2,t3}.

    ProofWe shall prove (e)and(g).The remaining can be easily obtained by formula (1) or (2).

    (g) The cubic Bernstein basis is the normalized B-basis of the space Ω. Thus, by formula (2), lemma 1, and the properties (b)and (e), we know theαβbasis is a normalized totally positive basis.

    2 The αβ curves and their properties

    Definition2Given control pointsPi(i=0,1,…,n)∈R2orR3and knotsu1

    i=1,2,…,n-2,

    i=1,2,…,n-2.

    Theorem2From the properties of theαβbasis, we can obtain the following properties of theαβcurves.

    (a) Affine invariance.

    (b) Symmetry: When taking the sameαβbasis, the two polygons,Pi-1,Pi,Pi+1,Pi+2andPi+2,Pi+1,Pi,Pi-1,describe the sameαβcurve segment; The only thing that changes is the direction of traversal of the parameter.

    (c) Local control: Changing one control point of anαβcurve, four segments will change mostly.

    (d) Endpoint property: For arbitraryαandβi, we have

    and forα=-1,βi=0, we have

    RemarkBy the endpoint property, we can see that the position of the starting and ending points of the curve segment only related to the parameterα. The valueβi-αdecides to the length of the tangent vector at the starting and ending points, thus decides to the degree of blending of theith curve segment.

    (e) Continuity: In general, theith and (i+1)thαβcurve segments areG1continuous at the junction, and they areG2continuous whenα=-1,βi=βi+1=0.

    (f) Shape adjustable: The parametersαandβican be used to adjust the shape of theαβcurve without changing the control points.Theαis a global parameter, whileβiis a local parameter.The change ofβiwill only change the shape of theith segment.

    (h) Variation diminishing and convexity-preserving.

    Fig.1 The open αβ curves

    Fig.2 The closed αβ curves

    As can be seen in figs.1 and 2, the shape ofαβcurves can reflect the shape of the control polygon well.

    3 Shape analysis of the curve segment

    We consider anαβcurve segment

    ai=Pi-Pi-1,i=1,2,3,

    thenp(t)can be rewritten as

    p(t)=P0+[1-b0(t)]a1+[b2(t)+
    b3(t)]a2+b3(t)a3.

    (4)

    We first consider the case ofa1not parallel toa3. Sincea1anda3are linearly independent,a2can be represented by the linear combination ofa1anda3.Without loss of generality, leta2=ua1+va3, and substitute it into formula (4), and then we have

    p(t)=P0+{1-b0(t)+u[b2(t)+b3(t)]}a1+
    {b3(t)+v[b2(t)+b3(t)]}a3.

    (5)

    3.1 The case of cusp

    The necessary condition that the curvep(t)has a cusp isp′(t)=0(0

    Letp′(t)=0, fora1anda3are linearly independent, we obtain

    and then the following parametric curveC?C(t)can be obtained.

    (6)

    To facilitate the analysis of the geometric properties ofC, we rewrite it in the form of quadratic rational Bézier curve, i.e,

    (7)

    (8)

    Let (u0,v0)∈C, and 0α, sop″(t0)≠0. Then from

    p′(t)=p″(t0)(t-t0)+O(t-t0),

    we can see that the direction ofp′(t)is contravariant when it passes throught0.It shows thatCis the cusp curve, that is, the curvep(t)has cusp if and only if (u,v)∈C.

    3.2 The case of loop

    The sufficient and necessary condition that the curvep(t)has a loop is that there exists 0≤t1

    {b0(t2)-b0(t1)+u[b2(t1)+b3(t1)-b2(t2)-

    b3(t2)]}a1+{b3(t1)-b3(t2)+v[b2(t1)+

    b3(t1)-b2(t2)-b3(t2)]}a3=0.

    Fora1anda3are linearly independent, we obtain

    (9)

    where (t1,t2)∈Δ={(t1,t2)∈R2|0≤t1

    The parametric equations ofL1andL2are as follows:

    (10)

    (11)

    The curvesL1andL2can be rewritten in the form of quadratic rational Bézier curves

    (12)

    (13)

    (14)

    wheret∈(0,1). Eliminate the parametert, we obtain

    3.3 The case of inflection point

    The binormal vector ofp(t)isγ(t)=p′(t)∧p″(t), wherep′(t)∧p″(t)is the wedge product ofp′(t)andp″(t). If the direction ofγ(t)is changed when it passes throught0, thenp(t0)(0

    The binormal vectorγ(t)can be represented asγ(t)=f(t;u,v)(a1∧a3), where

    Sincea1×a3≠0,the direction ofγ(t)changes if and only if the sign off(t;u,v)changes.Hence, we only need to consider the sign change off(t;u,v).

    S= {(u,v)|uv<0}∪{(u,0)|-1

    {(0,v)|-1

    Dis the open region surrounded by the curveCand the coordinate axes.

    There is at least one straight linef(t0;u,v)=0 passing through every point (u0,v0)∈S∪D∪Ctangent to the curveC, heret0is the parameter corresponding to (u0,v0).

    From

    we can see that the sign off(t;u0,v0)does not change when it passes throught0. It meansp(t0)is not an inflection point, and there is no inflection point on the curvep(t).

    we can see that the sign off(t;u0,v0)changes when it passes throught0. It indicates thatp(t0)is an inflection point.Furthermore, there is only one straight line tangent to the curveCand passing through (u0,v0)∈S, the corresponding curvep(t)has a single inflection point.There are two straight lines tangent toCand passing through (u0,v0)∈D,the corresponding curvep(t)has double inflection points.

    3.4 The case of convexity

    We discuss the case of (u,v)∈N=R2(C∪S∪D∪L), see fig.3.At this point, there is no cusp or loop or inflection point on the curvep(t). And, the direction of the binormal vectorγ(t)does not change.

    Let

    From eq. (5), we obtain

    where

    (15)

    we can see that the sign ofφ(t;u0,v0)changes when it passes throught0. Sop(t)is local convex if (u,v)∈N1.

    we can see that the sign ofψ(t;u0,v0)changes when it passes throught0. Hence,p(t)is local convex if (u,v)∈N2.

    While if (u,v)∈N0=N(N1∪N2), the direction ofγ(t),m(t)andn(t)do not change, as a result the curvep(t)is global convex.

    3.5 Result

    Summarizing the discussion of section 3.1 to 3.4, we obtain the following conclusion.

    Theorem3Forαβcurve segment, letai=Pi-Pi-1,i=1,2,3, ifa1not parallel toa3anda2=ua1+va3,then the shape characteristic ofp(t)is totally determined by the distribution of the point (u,v)onuv-plane (see fig.3), i.e.

    Fig.3 gives the shape diagram of theαβcurve withα=-1,β=0. It is exactly the shape diagram of the traditional cubic uniform B-spline curve.

    Fig.3 The shape diagram of the αβ curve

    Examples of theαβapproximation curves with the six different shape characteristics are shown in fig.4.The settings of the parameters and the values of (u,v)are as follows:

    Fig.4 The αβ curves with different shape characteristics

    Ifa1parallel toa3, then after a similar discussion to section 3.1 to 3.4, we obtain the following conclusion.

    Theorem4Whena1‖a3, the curvep(t)has no singularity.If and only if the direction ofa1is the same as that ofa3, excluding the four control points collinear, the curvep(t)has one and only one inflection point.

    3.6 Regulatory effect of the shape parameters

    Changingαandβ, the shape diagram of theαβcurve will change accordingly, see fig.5.In fig.5, the settings of the parameters are as follows:

    Fig.5 The influence on shape diagram by α and β

    As can be seen from fig.5(a) to (c), with the increase ofα, the regionDreduces and the regionN0expands,while the regionSremains unchanged.As can be seen from fig.5(d) to (f), with the increase ofβ, the regionDreduces and the regionsN1,N2,Lexpand, while the regionsN0andSremain unchanged.In addition, from fig.5(d), we see that whenβ→α, the regionsN1,N2,Lreduce to zero.From fig.5(c), we see that whenα→0 andβ=0, the regionsN1,N2,LandDreduce to zero.

    From the above analysis, we can conclude that the regionScannot be changed by adjusting the shape parameters.That is to say, when there is only one inflection point on theαβapproximation curve, we cannot eliminate it by altering the values ofαandβ. However, when there is one cusp or one loop on the curve, or when the curve is local convex, it can be adjusted to a curve with two inflection points by takingβ→α. Further, the two inflection points can be removed by takingα→0 andβ=0. Meanwhile, the curve is adjusted to global convex.

    4 The αβ surfaces

    Definition3Given control pointsPij∈R3(i=0,1,…,m;j=0,1,…,n), two sets of knotsu1

    wheres,t∈[0,1],i=1,2,…,m-2;j=1,2,…,n-2. All the patches constitute anαβsurface

    u∈[ui,ui+1],v∈[vj,vj+1],

    Theαβsurfaces have properties similar to theαβcurves.Fig.7 shows theαβsurfaces consisting of 7×4 patches defined by the same control net but different parameters.The settings of parameters are as follows:

    Fig.7 The αβ surfaces

    5 Conclusion

    There are many extensions of cubic B-spline curves, but theαβcurves enjoy some advantageous properties from design.With variation diminishing and convexity-preserving, theαβcurves have a good shape control.Shape parameters are incorporated into theαβcurves, but we do not increase the degree of the basis polynomial, and therefore do not increase the amount of calculation.The shape diagram is useful for classifying and modifying the shape of theαβcurve.Notice that ifα=0, then theαβcurve segments interpolate to the two inner control points.Thus theαβcurves can be used to construct interpolation curves without solving equations.One of our future works is to discuss the shape parameter selection scheme of the interpolation curve.

    [1] FARIN G.CurvesandSurfacesforComputerAidedGeometricDesign[M]. San Diego: Academic Press,1993.

    [2] XU G, WANG G Z. Extended cubic uniform B-spline andα-B-spline[J].ActaAutomaticaSinica,2008,34(8): 980-984.

    [3] COSTANTINI P, KAKLIS P D, MANNI C. Polynomial cubic splines with tension properties[J].ComputerAidedGeometricDesign,2010,27(8): 592-610.

    [4] HAN X L. Piecewise quartic polynomial curves with a local shape parameter[J].JournalofComputationalandAppliedMathematics,2006,195(1-2): 34-45.

    [5] HAN X L. A class of general quartic spline curves with shape parameters[J].ComputerAidedGeometricDesign,2011,28(3): 151-163.

    [6] HU G, QIN X Q, JI X M, et al. The construction ofλμ-B-spline curves and its application to rotational surfaces[J].AppliedMathematicsandComputation,2015,266(C): 194-211.

    [7] ZHU Y P, HAN X L, LIU S J. Curve construction based on fourαβ-Bernstein-like basis functions[J].JournalofComputationalandAppliedMathematics,2015,273(1): 160-181.

    [8] HAN X L, HUANG X L, MA Y C. Shape analysis of cubic trigonometric Bezier curves with a shape parameter[J].AppliedMathematicsandComputation,2010,217(6): 2527-2533.

    [9] MONTERDE J. Singularities of rational Bezier curve[J].ComputerAidedGeometricDesign,2001,18(8): 805-816.

    [10] YANG Q M, WANG G Z. Inflection points and singularities on C-curves[J].ComputerAidedGeometricDesign,2004,21(2): 207-213.

    [12] LIU C Y.TheoryandApplicationofConvexCurvesandSurfacesinCAGD[D]. Enschede: University of Twente,2001.

    [13] YAN L L, YING Z W. Adjustable curves and surfaces with simple G3conditions[J].JournalofZhejiangUniversity:ScienceEdition,2016,43(1): 87-96.

    嚴(yán)蘭蘭, 樊繼秋
    (東華理工大學(xué) 理學(xué)院, 江西 南昌 330013)

    構(gòu)造了一種保形并且形狀可調(diào)的分段三次多項(xiàng)式曲線,并分析其形狀特征與控制多邊形之間的關(guān)系.首先,通過預(yù)設(shè)基函數(shù)的性質(zhì)再解方程組,構(gòu)造了一組帶2個(gè)形狀參數(shù)的多項(xiàng)式基函數(shù),其包含三次均勻B樣條基函數(shù)作為特例.然后,借助基函數(shù)與三次Bernstein基函數(shù)之間的關(guān)系證明了基函數(shù)的全正性,由這組基函數(shù)定義了一種分段三次多項(xiàng)式曲線,使該曲線擁有一個(gè)局部和一個(gè)全局形狀參數(shù).最后,分析了控制多邊形邊變量之間的相對(duì)位置關(guān)系對(duì)曲線段形狀特征的影響,得到了曲線段擁有1個(gè)或2個(gè)拐點(diǎn),1個(gè)二重點(diǎn)或1個(gè)尖點(diǎn),為局部凸或全局凸時(shí)的充要條件.該結(jié)論為曲線段的形狀調(diào)整提供了理論基礎(chǔ).

    曲線設(shè)計(jì); B樣條方法; 全正基; 形狀參數(shù); 形狀分析

    TP 391

    A

    1008-9497(2018)01-044-10

    date: April 5,2016.

    Supported by the NSFC(11261003, 11761008 ), the Natural Science Foundation of Jiangxi Province ( 20161BAB211028) and the Science Research Foundation of Jiangxi Province Education Department ( GJJ160558).

    AbouttheauthorYAN Lanlan (1982-),ORCID: http: //orcid.org/0000-0002-5472-9986, female, Ph.D,associate professor, the field of interest is CAGD, E-mail: yxh821011@aliyun.com.

    10.3785/j.issn.1008-9497.2018.01.008

    猜你喜歡
    樣條多邊形全局
    多邊形中的“一個(gè)角”問題
    Cahn-Hilliard-Brinkman系統(tǒng)的全局吸引子
    一元五次B樣條擬插值研究
    量子Navier-Stokes方程弱解的全局存在性
    多邊形的藝術(shù)
    解多邊形題的轉(zhuǎn)化思想
    多邊形的鑲嵌
    落子山東,意在全局
    金橋(2018年4期)2018-09-26 02:24:54
    三次參數(shù)樣條在機(jī)床高速高精加工中的應(yīng)用
    三次樣條和二次刪除相輔助的WASD神經(jīng)網(wǎng)絡(luò)與日本人口預(yù)測
    軟件(2017年6期)2017-09-23 20:56:27
    欧美精品人与动牲交sv欧美| 天天躁狠狠躁夜夜躁狠狠躁| 99国产精品99久久久久| 可以免费在线观看a视频的电影网站| 人人妻人人澡人人爽人人夜夜| 久久香蕉国产精品| 岛国毛片在线播放| 亚洲av成人av| 十八禁高潮呻吟视频| 在线观看www视频免费| 亚洲精品av麻豆狂野| 777米奇影视久久| 三级毛片av免费| 日韩欧美免费精品| 少妇被粗大的猛进出69影院| 日本五十路高清| 久久国产精品影院| 欧美久久黑人一区二区| 免费av中文字幕在线| 18禁裸乳无遮挡免费网站照片 | 成人三级做爰电影| 日本a在线网址| 久久久精品免费免费高清| 在线观看免费视频日本深夜| xxxhd国产人妻xxx| 国产精品亚洲av一区麻豆| 麻豆av在线久日| 一个人免费在线观看的高清视频| 日本黄色日本黄色录像| 欧美 日韩 精品 国产| 国产99久久九九免费精品| 校园春色视频在线观看| 日本wwww免费看| 黄片大片在线免费观看| 黄色视频,在线免费观看| 在线免费观看的www视频| 久久久久精品人妻al黑| 国产精品香港三级国产av潘金莲| 久久香蕉精品热| 欧美不卡视频在线免费观看 | 老司机靠b影院| 欧美不卡视频在线免费观看 | 在线看a的网站| www.999成人在线观看| 国产免费av片在线观看野外av| 国产高清视频在线播放一区| 一级a爱视频在线免费观看| 黑人猛操日本美女一级片| 99热网站在线观看| 99国产精品一区二区蜜桃av | 国产精品秋霞免费鲁丝片| 久久精品国产亚洲av高清一级| 19禁男女啪啪无遮挡网站| 欧美激情 高清一区二区三区| 亚洲成人免费av在线播放| 精品国产亚洲在线| 九色亚洲精品在线播放| 在线观看免费高清a一片| 国产精品 欧美亚洲| 一区在线观看完整版| 亚洲av欧美aⅴ国产| 日韩视频一区二区在线观看| 欧美日本中文国产一区发布| 搡老岳熟女国产| 国产精品影院久久| 亚洲欧美激情在线| 好看av亚洲va欧美ⅴa在| 天天躁日日躁夜夜躁夜夜| 精品久久久久久久久久免费视频 | 免费在线观看完整版高清| 丁香欧美五月| 天天躁夜夜躁狠狠躁躁| 国产真人三级小视频在线观看| 国产在线观看jvid| 亚洲欧美色中文字幕在线| 韩国精品一区二区三区| 国产日韩欧美亚洲二区| 国产精品久久久av美女十八| 欧美激情 高清一区二区三区| 国产三级黄色录像| 免费观看人在逋| 欧美老熟妇乱子伦牲交| 国产在线观看jvid| 日本五十路高清| 美女视频免费永久观看网站| 9热在线视频观看99| 黑人操中国人逼视频| 精品少妇久久久久久888优播| 免费一级毛片在线播放高清视频 | 在线观看一区二区三区激情| 午夜免费成人在线视频| 婷婷精品国产亚洲av在线 | 丝袜人妻中文字幕| 亚洲五月天丁香| 满18在线观看网站| 亚洲七黄色美女视频| 亚洲av日韩在线播放| 啪啪无遮挡十八禁网站| 电影成人av| 精品久久久久久久毛片微露脸| 91成年电影在线观看| 亚洲精品国产精品久久久不卡| 日韩欧美一区二区三区在线观看 | 精品国产一区二区三区四区第35| 十八禁高潮呻吟视频| ponron亚洲| 超碰97精品在线观看| 久久婷婷成人综合色麻豆| 妹子高潮喷水视频| 欧美性长视频在线观看| 色婷婷久久久亚洲欧美| 超碰成人久久| 热99国产精品久久久久久7| 久久精品国产综合久久久| 日日爽夜夜爽网站| 精品国产乱子伦一区二区三区| 国产高清国产精品国产三级| 丰满人妻熟妇乱又伦精品不卡| 久久久精品国产亚洲av高清涩受| 在线观看免费日韩欧美大片| 国产伦人伦偷精品视频| 欧美日韩中文字幕国产精品一区二区三区 | 色综合婷婷激情| 久久青草综合色| 啦啦啦在线免费观看视频4| 亚洲欧美日韩高清在线视频| 亚洲欧美日韩高清在线视频| 国产高清国产精品国产三级| av一本久久久久| 免费在线观看日本一区| 黄色毛片三级朝国网站| 丝袜美足系列| 午夜91福利影院| 亚洲一区二区三区不卡视频| 精品第一国产精品| 国产激情久久老熟女| 国产亚洲欧美精品永久| 欧美久久黑人一区二区| 亚洲av成人一区二区三| 美国免费a级毛片| 色婷婷久久久亚洲欧美| 九色亚洲精品在线播放| www.自偷自拍.com| 一a级毛片在线观看| 在线天堂中文资源库| 黑丝袜美女国产一区| 国产精品.久久久| 亚洲av日韩精品久久久久久密| 久久久久精品人妻al黑| www.999成人在线观看| 亚洲熟妇熟女久久| 美女高潮到喷水免费观看| 亚洲av日韩精品久久久久久密| 国产成人精品在线电影| 免费高清在线观看日韩| 成在线人永久免费视频| 日韩熟女老妇一区二区性免费视频| av有码第一页| 男女之事视频高清在线观看| 麻豆av在线久日| 最新的欧美精品一区二区| 日韩大码丰满熟妇| 欧美人与性动交α欧美精品济南到| 国产精华一区二区三区| 十八禁人妻一区二区| 国产色视频综合| 香蕉国产在线看| 免费观看a级毛片全部| 夜夜夜夜夜久久久久| 校园春色视频在线观看| 中文字幕最新亚洲高清| 亚洲欧洲精品一区二区精品久久久| 欧美日韩精品网址| 久久人人爽av亚洲精品天堂| 国产精品免费大片| 国产精品免费大片| 日韩欧美在线二视频 | 下体分泌物呈黄色| 久久国产精品影院| 日本黄色视频三级网站网址 | 久久亚洲真实| 国产精华一区二区三区| 两性夫妻黄色片| 欧美一级毛片孕妇| 久久久久久久久免费视频了| 手机成人av网站| 老汉色∧v一级毛片| 欧美av亚洲av综合av国产av| 欧美黑人精品巨大| 天天躁日日躁夜夜躁夜夜| 大片电影免费在线观看免费| netflix在线观看网站| 欧美日韩精品网址| 嫩草影视91久久| 免费少妇av软件| av视频免费观看在线观看| 欧美黑人欧美精品刺激| 大香蕉久久网| 精品国产一区二区三区久久久樱花| 午夜亚洲福利在线播放| 69av精品久久久久久| 一边摸一边抽搐一进一小说 | 美女福利国产在线| 亚洲自偷自拍图片 自拍| 九色亚洲精品在线播放| 少妇粗大呻吟视频| 亚洲国产毛片av蜜桃av| 亚洲片人在线观看| 欧美黄色片欧美黄色片| 19禁男女啪啪无遮挡网站| 狠狠婷婷综合久久久久久88av| 交换朋友夫妻互换小说| 香蕉国产在线看| 成人国语在线视频| www.熟女人妻精品国产| av国产精品久久久久影院| 国产亚洲精品一区二区www | 色94色欧美一区二区| 国产精品自产拍在线观看55亚洲 | 久久青草综合色| 天天躁日日躁夜夜躁夜夜| 一二三四在线观看免费中文在| 每晚都被弄得嗷嗷叫到高潮| 婷婷精品国产亚洲av在线 | 国产欧美日韩一区二区精品| 操美女的视频在线观看| 亚洲国产中文字幕在线视频| 看免费av毛片| 免费在线观看视频国产中文字幕亚洲| 久热爱精品视频在线9| 精品电影一区二区在线| 在线观看一区二区三区激情| 高清视频免费观看一区二区| 99国产综合亚洲精品| 1024视频免费在线观看| 一进一出抽搐动态| 国产亚洲欧美精品永久| 精品少妇久久久久久888优播| 搡老熟女国产l中国老女人| 又紧又爽又黄一区二区| 欧美+亚洲+日韩+国产| 在线观看免费视频网站a站| 国产一区二区三区综合在线观看| 性色av乱码一区二区三区2| 两性夫妻黄色片| 老司机午夜福利在线观看视频| 久久热在线av| 亚洲专区字幕在线| 国产精品久久久久久精品古装| 色在线成人网| a级片在线免费高清观看视频| 国产精品一区二区在线观看99| a在线观看视频网站| 欧美黄色淫秽网站| 国产高清videossex| 国产成人精品久久二区二区免费| 欧美日韩av久久| 好男人电影高清在线观看| 久久亚洲精品不卡| 视频区欧美日本亚洲| 色精品久久人妻99蜜桃| 精品国产一区二区久久| 欧美国产精品一级二级三级| 9191精品国产免费久久| 一边摸一边做爽爽视频免费| av线在线观看网站| 久久精品国产清高在天天线| 亚洲性夜色夜夜综合| 狠狠婷婷综合久久久久久88av| 欧美成狂野欧美在线观看| 成人18禁在线播放| 又黄又爽又免费观看的视频| 精品亚洲成国产av| 久久久国产精品麻豆| 久久精品91无色码中文字幕| 亚洲综合色网址| 色综合婷婷激情| 丝袜在线中文字幕| 亚洲男人天堂网一区| 视频在线观看一区二区三区| 多毛熟女@视频| a级毛片黄视频| 亚洲片人在线观看| 亚洲av日韩在线播放| 亚洲综合色网址| 国产精品久久久久成人av| 天天躁狠狠躁夜夜躁狠狠躁| 精品免费久久久久久久清纯 | 欧美亚洲日本最大视频资源| 宅男免费午夜| 午夜福利在线观看吧| 校园春色视频在线观看| 久久精品亚洲精品国产色婷小说| 黑人巨大精品欧美一区二区蜜桃| 亚洲熟妇熟女久久| 两性夫妻黄色片| 黄片播放在线免费| 国产精品免费视频内射| 精品人妻在线不人妻| 狠狠狠狠99中文字幕| 亚洲免费av在线视频| 国产成人精品久久二区二区免费| 飞空精品影院首页| 中文字幕人妻丝袜一区二区| 免费看十八禁软件| www.熟女人妻精品国产| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利乱码中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 在线观看免费午夜福利视频| 精品少妇久久久久久888优播| 又紧又爽又黄一区二区| 宅男免费午夜| 欧美大码av| 国产精品98久久久久久宅男小说| 在线视频色国产色| 丝袜美腿诱惑在线| 亚洲精品乱久久久久久| 美国免费a级毛片| av天堂在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 香蕉丝袜av| aaaaa片日本免费| 午夜日韩欧美国产| 亚洲全国av大片| 一二三四社区在线视频社区8| 香蕉国产在线看| 精品一区二区三区av网在线观看| 精品少妇一区二区三区视频日本电影| 精品人妻在线不人妻| 夜夜爽天天搞| 国产精品久久电影中文字幕 | 国产日韩欧美亚洲二区| 国产亚洲欧美在线一区二区| 男人操女人黄网站| 亚洲情色 制服丝袜| 国产亚洲一区二区精品| 欧美黑人欧美精品刺激| 成人黄色视频免费在线看| 一级毛片精品| 日韩欧美国产一区二区入口| 人人妻人人澡人人爽人人夜夜| aaaaa片日本免费| 国产亚洲精品一区二区www | 99精品久久久久人妻精品| 欧美最黄视频在线播放免费 | 久久国产精品人妻蜜桃| 97人妻天天添夜夜摸| av视频免费观看在线观看| 色精品久久人妻99蜜桃| 国产高清videossex| 少妇 在线观看| 国产精品久久久人人做人人爽| 午夜福利在线观看吧| 久久热在线av| 丰满饥渴人妻一区二区三| 老汉色av国产亚洲站长工具| a在线观看视频网站| 亚洲精品久久午夜乱码| 亚洲全国av大片| 成在线人永久免费视频| 国产97色在线日韩免费| 欧美乱色亚洲激情| 久久久国产欧美日韩av| 国产男女超爽视频在线观看| 一进一出抽搐动态| 女性被躁到高潮视频| av视频免费观看在线观看| 黄片大片在线免费观看| 日日摸夜夜添夜夜添小说| 乱人伦中国视频| 人成视频在线观看免费观看| xxxhd国产人妻xxx| 国产精品久久久av美女十八| 啪啪无遮挡十八禁网站| 男女高潮啪啪啪动态图| 精品少妇一区二区三区视频日本电影| 久久亚洲精品不卡| 最新的欧美精品一区二区| 久久影院123| 动漫黄色视频在线观看| 久久久水蜜桃国产精品网| 亚洲欧美激情综合另类| 不卡av一区二区三区| 另类亚洲欧美激情| 女警被强在线播放| 国产成+人综合+亚洲专区| 久久国产精品男人的天堂亚洲| 亚洲精华国产精华精| 亚洲欧美日韩高清在线视频| 国产高清视频在线播放一区| 久久精品亚洲精品国产色婷小说| videos熟女内射| 日本a在线网址| 美女扒开内裤让男人捅视频| 亚洲欧美精品综合一区二区三区| 国产精品免费一区二区三区在线 | 在线av久久热| 又黄又爽又免费观看的视频| 黄片小视频在线播放| 精品熟女少妇八av免费久了| 王馨瑶露胸无遮挡在线观看| 啦啦啦免费观看视频1| 国产精品久久久久久人妻精品电影| 免费av中文字幕在线| 成人特级黄色片久久久久久久| 久久天堂一区二区三区四区| 久久香蕉激情| netflix在线观看网站| 成年动漫av网址| 久久性视频一级片| 一区二区三区国产精品乱码| 免费少妇av软件| 久久精品亚洲av国产电影网| 啦啦啦在线免费观看视频4| 国产男靠女视频免费网站| 久久精品国产亚洲av高清一级| 欧美国产精品一级二级三级| 国产亚洲一区二区精品| 国产一区二区激情短视频| 18禁裸乳无遮挡动漫免费视频| 曰老女人黄片| a级片在线免费高清观看视频| 99热国产这里只有精品6| 又黄又粗又硬又大视频| 在线观看免费视频网站a站| 如日韩欧美国产精品一区二区三区| 窝窝影院91人妻| 国产男靠女视频免费网站| 亚洲av熟女| 人人妻人人添人人爽欧美一区卜| av线在线观看网站| 亚洲aⅴ乱码一区二区在线播放 | 久久亚洲精品不卡| 欧美日韩福利视频一区二区| 免费日韩欧美在线观看| 美女高潮喷水抽搐中文字幕| 成年女人毛片免费观看观看9 | 久久国产乱子伦精品免费另类| 夜夜爽天天搞| 精品国产乱子伦一区二区三区| 极品少妇高潮喷水抽搐| 亚洲精品自拍成人| 国产1区2区3区精品| 久久狼人影院| 一区二区三区精品91| 成人精品一区二区免费| 国产高清激情床上av| 国产精品av久久久久免费| 欧美另类亚洲清纯唯美| 日韩免费av在线播放| av网站免费在线观看视频| 久久 成人 亚洲| 成年动漫av网址| 18禁黄网站禁片午夜丰满| 欧美精品亚洲一区二区| 久久久国产精品麻豆| 亚洲精品国产色婷婷电影| 久久精品国产a三级三级三级| 国产成人影院久久av| 中文字幕精品免费在线观看视频| 人妻一区二区av| 精品欧美一区二区三区在线| 丰满饥渴人妻一区二区三| 极品教师在线免费播放| 久久ye,这里只有精品| 黑人巨大精品欧美一区二区蜜桃| 啪啪无遮挡十八禁网站| 一级毛片女人18水好多| 亚洲第一av免费看| 人人妻人人澡人人看| 国产精品免费视频内射| 露出奶头的视频| 亚洲人成网站高清观看| 亚洲精品成人久久久久久| 国产成人aa在线观看| 变态另类成人亚洲欧美熟女| 最近视频中文字幕2019在线8| 日韩欧美国产在线观看| 欧美日本亚洲视频在线播放| 给我免费播放毛片高清在线观看| 搞女人的毛片| 哪里可以看免费的av片| 亚洲男人的天堂狠狠| 嫩草影视91久久| 国产成人影院久久av| 国产成+人综合+亚洲专区| 天天添夜夜摸| 可以在线观看毛片的网站| 美女高潮喷水抽搐中文字幕| 特大巨黑吊av在线直播| 欧美+亚洲+日韩+国产| 美女cb高潮喷水在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产精品爽爽va在线观看网站| 欧美一级a爱片免费观看看| 免费av毛片视频| 老司机福利观看| 美女大奶头视频| 精品午夜福利视频在线观看一区| 日韩欧美精品v在线| x7x7x7水蜜桃| 伊人久久大香线蕉亚洲五| 久99久视频精品免费| 老熟妇仑乱视频hdxx| 麻豆国产av国片精品| 亚洲电影在线观看av| 一本久久中文字幕| 亚洲电影在线观看av| 一本久久中文字幕| 一区二区三区激情视频| 一边摸一边抽搐一进一小说| av福利片在线观看| 成人无遮挡网站| 欧美最新免费一区二区三区 | 男女下面进入的视频免费午夜| 久久久国产成人精品二区| 国内少妇人妻偷人精品xxx网站| 69av精品久久久久久| 看黄色毛片网站| 亚洲激情在线av| 欧美一级毛片孕妇| 国产精品久久久久久亚洲av鲁大| 国产精华一区二区三区| 亚洲av五月六月丁香网| 国产精品自产拍在线观看55亚洲| 国产成人av激情在线播放| 叶爱在线成人免费视频播放| 国产成人a区在线观看| 午夜a级毛片| 亚洲欧美激情综合另类| 亚洲中文字幕日韩| 日本a在线网址| 韩国av一区二区三区四区| 九色成人免费人妻av| 观看免费一级毛片| 色噜噜av男人的天堂激情| 夜夜夜夜夜久久久久| 久久久久久九九精品二区国产| 俺也久久电影网| 国语自产精品视频在线第100页| 精品免费久久久久久久清纯| 在线播放无遮挡| 国产一区二区在线av高清观看| 最新美女视频免费是黄的| 精品国产三级普通话版| 狂野欧美激情性xxxx| 午夜免费成人在线视频| 操出白浆在线播放| 精品一区二区三区人妻视频| 久久久久国内视频| 精品福利观看| 岛国在线免费视频观看| 国产久久久一区二区三区| 亚洲国产精品999在线| x7x7x7水蜜桃| 大型黄色视频在线免费观看| 亚洲成av人片免费观看| 在线观看免费视频日本深夜| 欧美黑人巨大hd| 又黄又爽又免费观看的视频| 午夜亚洲福利在线播放| 在线观看舔阴道视频| 国产精品爽爽va在线观看网站| 丁香六月欧美| 九色成人免费人妻av| 亚洲欧美日韩高清在线视频| 日韩欧美三级三区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 蜜桃久久精品国产亚洲av| 3wmmmm亚洲av在线观看| 精品午夜福利视频在线观看一区| 亚洲乱码一区二区免费版| 美女 人体艺术 gogo| 国产爱豆传媒在线观看| 麻豆成人午夜福利视频| 三级国产精品欧美在线观看| 久久性视频一级片| 亚洲中文字幕日韩| a在线观看视频网站| 欧美日韩综合久久久久久 | 亚洲精品456在线播放app | x7x7x7水蜜桃| 久久久久亚洲av毛片大全| 在线免费观看不下载黄p国产 | 好男人在线观看高清免费视频| 成年女人看的毛片在线观看| 午夜免费激情av| 国产精品久久久久久久电影 | 成人高潮视频无遮挡免费网站| 性色av乱码一区二区三区2| 熟妇人妻久久中文字幕3abv| 香蕉丝袜av| 国产精品乱码一区二三区的特点| 亚洲av第一区精品v没综合| 亚洲欧美日韩东京热| 国产高清有码在线观看视频| 欧美日韩瑟瑟在线播放| 欧美激情在线99| 婷婷精品国产亚洲av| 一边摸一边抽搐一进一小说| 国产老妇女一区| 亚洲成av人片免费观看| 我的老师免费观看完整版| 午夜精品久久久久久毛片777| 91久久精品电影网| 日韩有码中文字幕| 97碰自拍视频| 国产亚洲欧美98| 成人三级黄色视频| 亚洲av电影不卡..在线观看| 久久亚洲精品不卡| 精品人妻一区二区三区麻豆 | 女同久久另类99精品国产91| 俺也久久电影网|