• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles investigation on the structural stability, electronic structure and optical properties of MgxZn1-xSe alloys

    2017-12-26 01:16:05YUZhiqiangZHANGChanghuaLIAOHonghuaLIShidongLANGJianxun
    關(guān)鍵詞:性質(zhì)結(jié)構(gòu)研究

    YU Zhiqiang, ZHANG Changhua, LIAO Honghua, LI Shidong, LANG Jianxun

    (1.Department of Electrical Engineering, Hubei University for Nationalities, Enshi, Hubei 445000, China; 2.School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China)

    First-principlesinvestigationonthestructuralstability,electronicstructureandopticalpropertiesofMgxZn1-xSealloys

    YU Zhiqiang1,2*, ZHANG Changhua1*, LIAO Honghua1, LI Shidong1, LANG Jianxun1

    (1.Department of Electrical Engineering, Hubei University for Nationalities, Enshi, Hubei 445000, China; 2.School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China)

    The structural stability, electronic structure and optical properties of zinc-blende MgxZn1-xSe alloys are determined using first-principles calculations based on the density functional theory. The results show that both the pure and Mg-doped ZnSe alloys display a direct band structure. The band gapEgand formation energyEbof MgxZn1-xSe alloys are able to be evaluated by the first order equationEg=1.30+1.34xand the second order polynomialEb=-1.48+0.60x-0.27x2, respectively. The top of valence band is mainly contributed by the Se 4p and Zn 3p states, while the bottom of conduction band is primarily occupied by the Zn 4s, Zn 3p and Se 4s states in MgxZn1-xSe alloys. Moreover, the static dielectric constant decreases and the optical absorption spectrum has a blue-shift obviously with the increasing Mg dopant compositionxin MgxZn1-xSe alloys. The calculated results provide important theoretical guidance for the applications of MgxZn1-xSe alloys in optical detectors.

    first-principles; MgxZn1-xSe alloys; electronic structure; optical properties

    The group II-VI semiconductors with a large direct band structure at the room temperature and their alloys have attracted considerable interest due to their potential applications in integrated optical devices, optical wave guides, ultraviolet photodetectors, photovoltaic devices, semiconductor photocatalysts, luminescence biological tags and blue-green laser diodes[1-4]. As one of the typical II-VI semiconductors, the zinc-blende ZnSe has been deemed to be a prospective optical material derives from its wide direct band gap of 2.70 eV and large excitation binding energy of 21 meV. Meanwhile, zinc-blende ZnSe has been widely applied in semiconductor photocatalysts, light emitting diodes, ultraviolet photodetectors, solar cells and blue-green laser devices[5-9].

    In recent decades, people have found that the electronic structure and optical properties of zincblende ZnSe can be effectively tuned by introducing some impurities or defects. Zhang et al[10]reported that the incorporation of nitrogen composition has resulted in a phase transformation of ZnSe films from zinc-blende to wurtzite. Amin et al[11]. predicted a ferromagnetic nature and the reduced band gap of zinc-blende ZnSe due to the addition of some transition metal elements such as Fe, Co, and Ni, which originates from the strong sp-d exchange interaction between the band electrons and localized 3d states of dopants. The alkaline earth metal elements have no localized d states, which can be taken as the prospective dopants for modifying the properties of semiconductors. Archana et al[12]shown experimentally an increased band gap of ZnSe nanoparticles with the Mg doping of alkaline earth metal. However, the theoretical investigation on the structural stability, electronic structure and optical properties of MgxZn1-xSe alloys has not been reported in detail.

    In the present paper, we performed the first-principles calculations based on the density functional theory to determine the band structure, density of state and optical properties of zinc-blende MgxZn1-xSe alloys, which provides useful theoretical guidance for the applications of zinc-blende MgxZn1-xSe alloys in optical detectors.

    1 Models and methods

    The cubic zinc-blende ZnSe has an F-43m space group and the pure ZnSe with 1×1×1 cubic unit cell is shown in Fig.1. The zinc-blende MgxZn1-xSe alloys can be obtained by the Zn atoms replaced for Mg atoms and the MgxZn1-xSe alloys models are constructed in the 2×2×1 ZnSe supercell. We directly employ four, eight and twelve Mg atoms to replace Zn atoms in the 2×2×1 ZnSe supercell correspond to Mg dopant composition x at 0.25, 0.50 and 0.75, respectively.

    Fig.1 The crystal structure of pure ZnSe unit cell

    The first-principles calculations based on the density functional theory[13]are performed using the Cambridge Sequential Total Energy Package (CASTEP) code and the exchange correlation function is implemented by the generalized gradient approximation[14](GGA) upon the scheme of Perdew-Burke-Ernzerhof (PBE). The Brillouin zone integrations with 4×4×4 k-point meshes are performed in the framework of Monkhorst-Pack meshes for the MgxZn1-xSe alloys. The convergence criterion of the plane wave energy cutoff is chosen to be 420 eV, while the convergence accuracy of the maximum force between the atoms is less than 0.02 eV/? and the self-consistent convergence criteria is 1.5×10-6eV/atom. Moreover, the Zn 3d104s2states, Se 4s24p4states and Mg 2p63s2states have been used for the pseudopotential configurations, respectively.

    2 Results and discussion

    2.1 Geometry optimization and structural stability

    The optimized lattice constant and formation energy of MgxZn1-xSe alloys have been shown in Table 1. It is observed that the optimized lattice constant of pure ZnSe with a value of 0.571 4 nm is in reasonable agreement with the experimental data of 0.566 7 nm[15]in the theoretical error distribution around 0.8%, while the lattice constants of MgxZn1-xSe alloys slightly increase with the increases of Mg dopant composition. In particular, the optimized lattice constant and its fitting curves of MgxZn1-xSe alloys varies with the dopant compositionxare plotted in Fig.2. It is clear that the lattice constant can be evaluated by the second order polynomiala=0.5714+0.0173x+0.01x2with dopant compositionxranges from 0 to 0.75. It clearly shows the nonlinear relation between the lattice constant and dopant compositionxof MgxZn1-xSe alloys, which relates to the lower electronegativity of Mg atoms compared with Zn atoms.

    Tab.1 The optimized lattice constant and formation

    Moreover, compared with the structural stability of MgxZn1-xSe alloys, the formation energyEbof an impurity Mg is described as

    Eb=Et-Ep-EMg+EZn.

    (1)

    whereEtis the total energy of the supercell containing one Mg, andEpis the total energy of the supercell containing only bulk ZnSe.EZnandEMgare the chemical potentials of Zn and Mg, respectively.

    Fig.2 The formation energy and Lattice constant of MgxZn1-xSe alloys

    It is clearly seen that the formation energyEbof MgxZn1-xSe alloys increases from -1.35 eV to -1.18 eV with an increase in Mg doping concentrationxas shown in Tab.1 and Fig.2, which indi-

    cates that the structural stability of MgxZn1-xSe alloys decreases on the basis of the lowest energy principles. Meanwhile, the formation energyEbcan be evaluated by the second order polynomialEb=-1.48+0.60x-0.27x2as shown in Fig.2 and the most possible stable structure for MgxZn1-xSe alloys is displayed in Mg0.25Zn0.75Se.

    2.2 Electronic structure

    The band structure and density of states for MgxZn1-xSe alloys are depicted in Fig.3-Fig.8, respectively. As shown in Fig.3, both the pure and Mg-doped ZnSe alloys show a direct band gap along theΓ-Γpath in the first Brillouin zone and the band gap of MgxZn1-xSe alloys increases with the increasing Mg dopant compositionx. In addition, the band gap of pure ZnSe is 1.30 eV, which is close to the earlier band gaps of 1.20 eV[11]and 1.43 eV[16]. However, the band gap of 1.30 eV is lower than the experimental data of 2.70 eV due to the limitation of density functional theory, which originates from the exchange correlation function has been underestimated in the density functional theory.

    Fig.3 The band structures of (a) pure ZnSe, (b) Mg0.25Zn0.75Se, (c) Mg0.50Zn0.50Se and (d) Mg0.75Zn0.25Se

    The band structures of pure and Mg-doped ZnSe alloys are shown in Figs.3(a)~3(d), respectively. It is clear that the band gap of MgxZn1-xSe alloys increases from 1.30 eV to 2.30 eV with the increasing Mg dopant composition x ranges from 0 to 0.75. In particular, the band gap and its fitting curves of MgxZn1-xSe alloys varies with the dopant compositionxare plotted in Fig.4. It is shown that the band gap of MgxZn1-xSe alloys can be approximated by the first order functionEg=1.30+1.34x, whereEgis the band gap and Mg dopant compositionxranges from 0 to 0.75. It clearly elucidates the linear relation between the band gap and dopant compositionxof MgxZn1-xSe alloys, which is mainly induced by the effects of electronic hybridization in MgxZn1-xS alloys.

    Fig.4 The band gap of MgxZn1-xSe alloys

    In order to analyze the electronic properties of pure and Mg-doped ZnSe alloys. The total density of states (TDOS) and partial density of states (PDOS) for pure ZnSe are displayed in Fig.5(a)~5(c). It is observed that the conduction band of pure ZnSe is dominated by the Zn 4s, Zn 3p and Se 4s states, while the valence band is mainly separated into two regions. The Se 4s states primarily occupied the lower energy region at around -12 eV, and the Se 4p, Zn 3p, Zn 4s and Zn 3d states have determined the higher energy region ranges from -7 eV to 0 eV in the valence band. Moreover, the conduction band minimum (CBM) along theΓ-Γpath 1.30 eV above the Fermi surface and it is mainly derived from the Zn 4s, Zn 3p and Se 4s states, while the valance band maximum (VBM) along theΓ-Γdirection that near the Fermi surface and it is primarily occupied by the Se 4p and Zn 3p states, which construct the direct band structure of pure ZnSe as shown in Fig.3(a).

    Fig.5 The TDOS and PDOS of ZnSe: (a) TDOS of ZnSe; (b) PDOS of Zn atom; (c) PDOS of Se atom

    The TDOS and PDOS of MgxZn1-xSe alloys are shown in Fig.6~Fig.8, respectively. It is clear that the CBM along theΓ-Γpath that above the Fermi surface is mainly contributed by the Zn 4s states, Zn 3p states and Mg 2p states, while the VBM along theΓ-Γdirection that near the Fermi surface is primarily determined by the S 3p states in MgxZn1-xSe alloys. In particular, compared with the band structure of zinc-blende ZnSe, the CBM along theΓ-Γdirection shifts upwards higher energy region with the increasing Mg dopant compositionxin MgxZn1-xSe alloys, which is mainly resulted from the s-s type exchange interaction relates to Mg 2s states with Zn 4s and Se 4s states. Meanwhile, it is also observed that the VBM along theΓ-Γpath shifts downwards lower energy region with the increasing dopant compositionxin MgxZn1-xSe alloys, which relates to the reduction of p-d type exchange interaction due to the deficiency of 3p states for Mg as compared with Zn, and the increased p-p type exchange interaction derives from Mg 2p states with Zn 3p states, which results in the increase of band gap in MgxZn1-xSe alloys as shown in Fig.3.

    Fig.6 The TDOS and PDOS of Mg0.25Zn0.75Se (a)TDOS of Mg0.25Zn0.75Se; (b)PDOS of Zn atom; (c)PDOS of Se atom; (d)PDOS of Mg atom

    Fig.7 The TDOS and PDOS of Mg0.50Zn0.50Se(a)TDOS of Mg0.50Zn0.50Se; (b)PDOS of Zn atom; (c)PDOS of Se atom; (d)PDOS of Mg atom

    In particular, it is also found that the 3d states of Zn located around -4.5 eV are disintegrated into two parts, which relate to theegandt2gstates originated from Zn 3d states. Moreover, the crystal field splitting of energyE=Et2g-Eegfor MgxZn1-xSe alloys increases with an increase in Mg dopant compositionx. This can be explicated by the Jahn-Teller effect, where crystal distortion due to the larger size of Mg atoms, which also implies the results that the Mg0.25Zn0.75Se may be the most stable in the MgxZn1-xSe alloys.

    Fig.8 The TDOS and PDOS of Mg0.75Zn0.25Se: (a)TDOS of Mg0.75Zn0.25Se; (b)PDOS of Zn atom;(c)PDOS of Se atom; (d)PDOS of Mg atom

    2.3 Optical properties

    In order to determine the optical properties of MgxZn1-xSe alloys, the complex dielectric function and optical absorption coefficient of MgxZn1-xSe alloys have been calculated. Both the complex dielectric function and optical absorption coefficient are directly relevant to the electronic structure. The real part and imaginary part of complex dielectric function, and the optical absorption coefficient obey the following formulations as

    ε(ω)=ε1(ω)+iε2(ω),

    (2)

    (3)

    δ[EC(K)-EV(K)-?ω],

    (4)

    (5)

    whereωis the frequency of incident photon,αωis the optical absorption coefficient.ε1ωandε2ωare the real part and imaginary part of complex dielectric functionεω, respectively. The imaginary partε2ωis directly relevant to the band structure and the real partε1ωcan be obtained by Kramers-Kronig relationship.

    The real partε1ωand imaginary partε2ωof complex dielectric functionεωfor MgxZn1-xSe alloys are presented in Fig.9~Fig.10, respectively. As shown in Fig.9, the first dielectric absorption peaks of real partε1ωdecrease and the dielectric absorption sides of MgxZn1-xSe alloys shift upwards higher photon energy region with the increases of Mg dopant concentration. Meanwhile, the static dielectric constant at the zero frequency limitε10 of MgxZn1-xSe alloys decreases from 8.11 to 4.85 with dopant composition x increases from 0 to 0.75, which induces an increase of band gap for MgxZn1-xSe alloys in Fig.3. In order to elucidate the dependence between the static dielectric constant and band gap for MgxZn1-xSe alloys, the theoretical model[17]ε1(0)≈1+(?ω′/Eg)2has been given, where ? is the Dirac constant,ω′ is the plasma frequency and Egis the band gap of MgxZn1-xSe alloys. It clearly indicates the inverse proportion relation between the static dielectric constant and band gap of MgxZn1-xSe alloys.

    Fig.9 Dielectric function of real part for MgxZn1-xSe alloys

    Fig.10 Dielectric function of imaginary part for MgxZn1-xSe alloys

    Fig.10 shows the imaginary partε2ωof complex dielectric functionεωfor MgxZn1-xSe alloys. It is clear that the imaginary partε2ωof MgxZn1-xSe alloys shows a strong dielectric absorption region corresponds to incident photon energy ranges from 2 eV to 11 eV. In particular, the sharp dielectric absorption peaks inε2ωare observed at around 5.5 eV and 7.2 eV, which are mainly contributed by the electronic transition of Se 4p states with Zn 4s and Zn 3p states. The initial critical points of imaginary partε2ωfor MgxZn1-xSe alloys have been found at around 0.05 eV, 0.33 eV, 0.47 eV and 0.78 eV respectively, which also are considered as the threshold energy of the direct optical transitions for MgxZn1-xSe alloys occurring at 1.30 eV, 1.66 eV, 1.94 eV and 2.30 eV correspond to Mg dopant compositionxat 0, 0.25, 0.50 and 0.75, respectively. Moreover, it is observed that the first dielectric peaks of imaginary partε2ωoccur at around 5.5 eV decrease and the dielectric absorption peaks of imaginary partε2ωshift towards higher photon energy region with increasing Mg dopant composition, which validates the results that the band gaps of MgxZn1-xSe alloys increase with the increases of Mg dopant concentration in Fig.3.

    Fig.11 shows the optical absorption spectrum of MgxZn1-xSe alloys. It is observed that the optical absorption curves of MgxZn1-xSe alloys are mainly displayed in the ultraviolet light region corresponds to photon wavelength ranges from 50 nm to 400 nm and the absorption coefficient maximum of MgxZn1-xSe alloys is higher than 2.5×105cm-1, which indicates the unique ultraviolet absorption properties and show an important potential applications prospects for MgxZn1-xSe alloys in ultraviolet detectors. The similar ultraviolet absorption spectrum has also been reported experimentally by Archana et al[14]. In particular, the optical absorption peaks maximum of MgxZn1-xSe alloys have improved as compared with the pure ZnSe, and the strongest absorption peaks have been displayed in Mg0.25Zn0.75Se alloys. Meanwhile, the optical absorption sides of MgxZn1-xSe alloys show a blue-shift obviously with the increases of Mg doping concentration, which derives from the interband transition between Se 4p and Zn 4s states, and it confirms the results that the increase of band gaps for MgxZn1-xSe alloys with the increases of Mg dopant composition as shown in Fig.3.

    Fig.11 Optical absorption spectrum of MgxZn1-xSe alloys

    3 Conclusion

    In this paper, we have reported the band structure, density of states and optical properties of zinc-blende MgxZn1-xSe alloys from first-principles calculations based on the density functional theory. The calculated results indicate that both the pure and Mg-doped ZnSe alloys display a direct band structure and the band gap increases from 1.30 eV to 2.30 eV with the increases of Mg dopant compositionxranges from 0 to 0.75. In particular, the band gap of MgxZn1-xSe alloys can be evaluated by the first order functionEg=1.30+1.34xwith compositionxranges from 0 to 0.75. The upper valence band is mainly dominated by the Se 4p and Zn 3p states, while the lower conduction band is primarily contributed by the Zn 4s, Zn 3p and Se 4s states in MgxZn1-xSe alloys. Moreover, the static dielectric constant decreases and the optical absorption spectrum shows a blue-shift obviously in MgxZn1-xSe alloys. The results provide useful theoretical guidance for the potential applications of MgxZn1-xSe alloys in optical detectors.

    [1] HAASE M A, QUI J, DEPUYDT J M, et al. Blue-green laser diodes [J]. Appl Phys Lett, 1991,59: 1272-1274.

    [2] JEON H, DING J, XIE A V N, et al. ZnSe based multilayer pn junctions as efficient light emitting diodes for display Applications [J]. Appl Phys Lett, 1992,60: 892-894.

    [3] COE S, STECKEL J S, KIM L, et al. Electroluminescence from single monolayers of nanocrystals in molecular organic devices [J]. Nature, 2002,420: 800-803.

    [4] XIE W, GRILLO D C, GUNSHOR R L, et al. Blue/green pn junction electroluminescence from ZnSe-based multiple quantumwell structures [J]. Appl Phys Lett, 1992,60: 463-465.

    [5] HE Y, LU H T, SAI L M, et al. Microwave synthesis of water-dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with excellent photostability and biocompatibility [J]. Advanced Materials, 2008,20: 3416-3421.

    [6] WOOD V, HALPERT J E, PANZER M J, et al. Alternating current driven electroluminescence from ZnSe/ZnS∶Mn/ZnS nanocrystals [J]. Nano Letters, 2009,9: 2367-2371.

    [7] ZHANG Y, HU C G, FENG B, et al. Synthesis and photocatalytic property of ZnSe flowerlike hierarchical structure [J]. Applied Surface Science, 2011,257: 10679-10685.

    [8] CHENG D C, HAO H C, ZhANG M, et al. Improving Si solar cell performance using Mn∶ZnSe quantum dot-doped PLMA thin film [J]. Nanoscale Research Letters, 2013,8: 291(1-5).

    [9] KARAZHANOV S Z, RAVINDRAN P, KJEKSHUS A, et al. Electronic structure and optical properties of ZnX (X=O, S, Se, Te): a density functional study [J]. Phys Rev B, 2007,75: 155104(1-14).

    [10] ZHANG X J, WANG D D, BERES M, et al. Zincblende-wurtzite phase transformation of ZnSe films by pulsed laser deposition with nitrogen doping [J]. Appl Phys Lett, 2013,103: 082111(1-3).

    [11] AMIN B, AHMAD I, MAQBOOL M, et al. Ab initio study of the bandgap engineering of Al1-xGaxN for optoelectronic applications [J]. J Appl Phys, 2011,109: 023109(1-5).

    [12] ARCHANA J, NAVANEETHAN M, PRAKASH T, et al. Chemical synthesis and functional properties of magnesium doped ZnSe nanoparticle [J]. Materials Letters, 2013,100: 54-57.

    [13] CAR R, PARRINELLO M. Unified approach for molecular dynamics and density-functional theory [J]. Phys Rev Lett, 1985,55: 2471-2474.

    [14] WU Z G, COHEN R E. More accurate generalized gradient approximation for solids [J]. Phys Rev B, 2006,73: 235116(1-6).

    [15] KARZEL H, POTZEL W, KOFFERLEIN M, et al. Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures [J]. Phys Rev B, 1996,53: 11425-11438.

    [16] OLEG Z, ANGEL R, BLASE X, et al. Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe [J]. Phys Rev B, 1994,50: 10780-10787.

    [17] PENN D R. Wave-number-dependent dielectric function of semiconductors [J]. Phys Rev, 1962,128: 2093-2097.

    2017-05-21.

    湖北省自然科學(xué)基金項(xiàng)目(2015CFC784).

    1000-1190(2017)06-0796-08

    MgxZn1-xSe合金的電子結(jié)構(gòu)、光學(xué)性質(zhì)和穩(wěn)定性的第一性原理研究

    余志強(qiáng)1,2, 張昌華1, 廖紅華1, 李時東1, 郎建勛1

    (1.湖北民族學(xué)院 電氣工程系, 湖北 恩施 445000; 2.華中科技大學(xué) 光學(xué)與電子信息學(xué)院, 武漢 430074)

    基于密度泛函理論的第一性原理計(jì)算,研究了閃鋅礦MgxZn1-xSe合金的穩(wěn)定性、電子結(jié)構(gòu)和光學(xué)性質(zhì).研究結(jié)果表明,閃鋅礦ZnSe和MgxZn1-xSe合金都為直接帶隙半導(dǎo)體,MgxZn1-xSe合金的帶隙寬度Eg和形成能Eb分別可以由Eg=1.30+1.34x和Eb=-1.48+0.60x-0.27x2進(jìn)行估計(jì).同時,MgxZn1-xSe合金的價帶頂主要取決于Se 4p 和 Zn 3p態(tài)電子的相互作用,而其導(dǎo)帶底則主要由Zn 4s、Zn 3p 以及Se 4s態(tài)電子共同決定.此外,隨著鎂摻雜系數(shù)x的逐漸增大,MgxZn1-xSe合金的靜態(tài)介電常數(shù)逐漸減小,而其吸收譜則出現(xiàn)明顯的藍(lán)移現(xiàn)象.研究結(jié)果為MgxZn1-xSe合金在光電探測器方面的應(yīng)用提供了重要的理論指導(dǎo).

    第一性原理; MgxZn1-xSe合金; 電子結(jié)構(gòu); 光學(xué)性質(zhì)

    O481.1

    A

    *通訊聯(lián)系人. E-mail: zhiqiangyu@hust.edu.cn; zch-tan@tom.com.

    10.19603/j.cnki.c

    猜你喜歡
    性質(zhì)結(jié)構(gòu)研究
    FMS與YBT相關(guān)性的實(shí)證研究
    《形而上學(xué)》△卷的結(jié)構(gòu)和位置
    遼代千人邑研究述論
    隨機(jī)變量的分布列性質(zhì)的應(yīng)用
    完全平方數(shù)的性質(zhì)及其應(yīng)用
    視錯覺在平面設(shè)計(jì)中的應(yīng)用與研究
    科技傳播(2019年22期)2020-01-14 03:06:54
    論結(jié)構(gòu)
    中華詩詞(2019年7期)2019-11-25 01:43:04
    九點(diǎn)圓的性質(zhì)和應(yīng)用
    EMA伺服控制系統(tǒng)研究
    厲害了,我的性質(zhì)
    人妻久久中文字幕网| 亚洲色图 男人天堂 中文字幕| 久久免费观看电影| 久久性视频一级片| 亚洲av国产av综合av卡| 成人手机av| 欧美日韩福利视频一区二区| 国产国语露脸激情在线看| 国产精品美女特级片免费视频播放器 | av福利片在线| 成年女人毛片免费观看观看9 | 波多野结衣一区麻豆| bbb黄色大片| 首页视频小说图片口味搜索| √禁漫天堂资源中文www| 亚洲精品国产色婷婷电影| 亚洲色图综合在线观看| 亚洲色图综合在线观看| 丰满少妇做爰视频| 老熟妇乱子伦视频在线观看| 精品一区二区三区视频在线观看免费 | 欧美黑人欧美精品刺激| 久久精品人人爽人人爽视色| 久久人妻熟女aⅴ| 免费看十八禁软件| 欧美人与性动交α欧美精品济南到| 久久香蕉激情| 99热网站在线观看| 国产激情久久老熟女| 天堂8中文在线网| 男男h啪啪无遮挡| 99国产精品一区二区三区| 麻豆乱淫一区二区| 老熟妇仑乱视频hdxx| 午夜福利视频在线观看免费| 久久久精品免费免费高清| 高清视频免费观看一区二区| 老司机影院毛片| 母亲3免费完整高清在线观看| 欧美乱妇无乱码| 成人国产av品久久久| 天天躁夜夜躁狠狠躁躁| 国产日韩欧美在线精品| 久久中文看片网| 日韩熟女老妇一区二区性免费视频| 国产伦人伦偷精品视频| 国产成人影院久久av| 午夜老司机福利片| 成人三级做爰电影| 国产精品一区二区免费欧美| 亚洲av成人一区二区三| 99国产精品一区二区三区| 又紧又爽又黄一区二区| 成人av一区二区三区在线看| 亚洲精品国产区一区二| 亚洲伊人色综图| 两个人免费观看高清视频| 国产欧美亚洲国产| 国产成人精品久久二区二区91| 在线观看免费日韩欧美大片| 精品国产一区二区久久| 国产精品免费大片| 久久青草综合色| 免费日韩欧美在线观看| 蜜桃国产av成人99| 国产精品麻豆人妻色哟哟久久| 国产欧美日韩一区二区三| 成人免费观看视频高清| 亚洲黑人精品在线| 麻豆国产av国片精品| 狂野欧美激情性xxxx| 色视频在线一区二区三区| 久久精品亚洲精品国产色婷小说| 午夜两性在线视频| av线在线观看网站| 日韩欧美一区视频在线观看| 岛国毛片在线播放| 大型av网站在线播放| 别揉我奶头~嗯~啊~动态视频| 久久久久国产一级毛片高清牌| 亚洲av成人不卡在线观看播放网| 国产日韩欧美亚洲二区| h视频一区二区三区| 欧美激情极品国产一区二区三区| 久久精品国产亚洲av高清一级| 久9热在线精品视频| 精品欧美一区二区三区在线| 淫妇啪啪啪对白视频| 两性午夜刺激爽爽歪歪视频在线观看 | 巨乳人妻的诱惑在线观看| 天堂动漫精品| 男女下面插进去视频免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 色综合欧美亚洲国产小说| 黄色怎么调成土黄色| 欧美激情久久久久久爽电影 | 久久久国产精品麻豆| 亚洲精华国产精华精| 久久这里只有精品19| 制服人妻中文乱码| 757午夜福利合集在线观看| 建设人人有责人人尽责人人享有的| 国产野战对白在线观看| 久久久国产欧美日韩av| 欧美激情 高清一区二区三区| 视频区欧美日本亚洲| 又大又爽又粗| 国产单亲对白刺激| 脱女人内裤的视频| 午夜激情av网站| 涩涩av久久男人的天堂| 十八禁网站免费在线| 69av精品久久久久久 | 日韩制服丝袜自拍偷拍| 欧美变态另类bdsm刘玥| 免费观看av网站的网址| 亚洲人成电影免费在线| 搡老乐熟女国产| 色婷婷久久久亚洲欧美| 嫩草影视91久久| 免费在线观看完整版高清| 国产成人精品久久二区二区91| 菩萨蛮人人尽说江南好唐韦庄| 最新美女视频免费是黄的| 老司机深夜福利视频在线观看| 美女视频免费永久观看网站| 人妻 亚洲 视频| 99精国产麻豆久久婷婷| 最黄视频免费看| 国产精品一区二区在线不卡| 高清欧美精品videossex| 久久久久久久国产电影| 一进一出好大好爽视频| 国产成人精品无人区| 久久久精品国产亚洲av高清涩受| 国产在线精品亚洲第一网站| 久久久久网色| 亚洲少妇的诱惑av| 岛国毛片在线播放| 欧美乱妇无乱码| 亚洲欧洲精品一区二区精品久久久| 老司机深夜福利视频在线观看| 亚洲专区中文字幕在线| 免费在线观看完整版高清| 国产精品久久久久久人妻精品电影 | 午夜福利影视在线免费观看| 日韩免费av在线播放| 亚洲男人天堂网一区| 亚洲国产欧美一区二区综合| 夜夜夜夜夜久久久久| 久久99热这里只频精品6学生| 亚洲欧美日韩另类电影网站| 国产xxxxx性猛交| 人人妻人人澡人人爽人人夜夜| 91国产中文字幕| www.精华液| 在线十欧美十亚洲十日本专区| 丝瓜视频免费看黄片| 精品少妇黑人巨大在线播放| 一级,二级,三级黄色视频| 中文字幕色久视频| 99九九在线精品视频| 午夜视频精品福利| 亚洲精品一二三| 大型av网站在线播放| 成年女人毛片免费观看观看9 | 中文字幕最新亚洲高清| 国产精品久久久久成人av| 国产深夜福利视频在线观看| 亚洲久久久国产精品| 亚洲精华国产精华精| 人妻久久中文字幕网| 久久精品亚洲精品国产色婷小说| 国产男靠女视频免费网站| 欧美日本中文国产一区发布| 91国产中文字幕| 欧美大码av| 天堂俺去俺来也www色官网| 日韩精品免费视频一区二区三区| 免费观看av网站的网址| 国产一区二区在线观看av| 青青草视频在线视频观看| 国产精品免费视频内射| 天天影视国产精品| 99国产综合亚洲精品| 男人操女人黄网站| 高清在线国产一区| 色婷婷久久久亚洲欧美| videos熟女内射| 色94色欧美一区二区| 国产av又大| 男女高潮啪啪啪动态图| 欧美日韩精品网址| 国产又色又爽无遮挡免费看| 啦啦啦 在线观看视频| 青草久久国产| 黄色丝袜av网址大全| 搡老熟女国产l中国老女人| 蜜桃国产av成人99| 亚洲精品一二三| av超薄肉色丝袜交足视频| 亚洲人成伊人成综合网2020| xxxhd国产人妻xxx| 超碰97精品在线观看| 欧美黑人精品巨大| 叶爱在线成人免费视频播放| 久久人妻熟女aⅴ| 国产麻豆69| 日本撒尿小便嘘嘘汇集6| 国产1区2区3区精品| 老熟妇仑乱视频hdxx| 国产精品.久久久| 亚洲国产av新网站| 亚洲精品中文字幕在线视频| 久久久久久久久久久久大奶| 国产成+人综合+亚洲专区| 1024香蕉在线观看| 免费人妻精品一区二区三区视频| 国产高清国产精品国产三级| 欧美激情久久久久久爽电影 | 人人妻人人爽人人添夜夜欢视频| 亚洲五月婷婷丁香| 欧美国产精品一级二级三级| 五月天丁香电影| 国产真人三级小视频在线观看| 亚洲国产精品一区二区三区在线| 亚洲第一欧美日韩一区二区三区 | 精品一品国产午夜福利视频| 国产福利在线免费观看视频| 亚洲综合色网址| 美女国产高潮福利片在线看| 美女午夜性视频免费| 丝袜在线中文字幕| 亚洲国产毛片av蜜桃av| 性色av乱码一区二区三区2| 国产区一区二久久| 欧美国产精品va在线观看不卡| 欧美av亚洲av综合av国产av| 18禁美女被吸乳视频| 日韩中文字幕视频在线看片| 色老头精品视频在线观看| 国产主播在线观看一区二区| 国产精品 国内视频| 黑人猛操日本美女一级片| 黄色成人免费大全| 久久久欧美国产精品| 日韩大码丰满熟妇| 久久人妻av系列| 欧美亚洲日本最大视频资源| 一二三四社区在线视频社区8| 一进一出抽搐动态| 成人精品一区二区免费| 无遮挡黄片免费观看| 男女下面插进去视频免费观看| 法律面前人人平等表现在哪些方面| 手机成人av网站| 考比视频在线观看| 黄片大片在线免费观看| 看免费av毛片| 日韩欧美国产一区二区入口| 国产有黄有色有爽视频| 色综合欧美亚洲国产小说| 黄色成人免费大全| 精品乱码久久久久久99久播| 亚洲一卡2卡3卡4卡5卡精品中文| 真人做人爱边吃奶动态| 女人高潮潮喷娇喘18禁视频| 91av网站免费观看| 国产男女内射视频| 黑人巨大精品欧美一区二区mp4| 久久av网站| 操出白浆在线播放| 亚洲av成人一区二区三| 日本欧美视频一区| 18禁美女被吸乳视频| 国产精品久久电影中文字幕 | 搡老熟女国产l中国老女人| 国产成人系列免费观看| 纵有疾风起免费观看全集完整版| 在线播放国产精品三级| 蜜桃国产av成人99| 天天添夜夜摸| 精品久久蜜臀av无| 757午夜福利合集在线观看| av在线播放免费不卡| 超色免费av| 男男h啪啪无遮挡| 国产成人系列免费观看| a级毛片在线看网站| 黄片播放在线免费| 丝瓜视频免费看黄片| 亚洲一码二码三码区别大吗| 亚洲精品国产色婷婷电影| 中文字幕制服av| 90打野战视频偷拍视频| 777米奇影视久久| 超碰成人久久| 亚洲第一青青草原| bbb黄色大片| 在线十欧美十亚洲十日本专区| 国产精品国产av在线观看| 欧美成狂野欧美在线观看| 色播在线永久视频| 欧美在线黄色| 成人手机av| 亚洲午夜理论影院| 啦啦啦免费观看视频1| 18在线观看网站| 精品高清国产在线一区| 国产日韩欧美在线精品| 日韩大码丰满熟妇| 成人精品一区二区免费| 91字幕亚洲| 最近最新中文字幕大全免费视频| 色尼玛亚洲综合影院| 蜜桃国产av成人99| 国产精品av久久久久免费| 国产亚洲欧美精品永久| 亚洲精品在线美女| 精品久久久久久久毛片微露脸| 色综合欧美亚洲国产小说| 久久久精品区二区三区| 亚洲人成77777在线视频| 老司机福利观看| 亚洲三区欧美一区| 狂野欧美激情性xxxx| 9热在线视频观看99| www.999成人在线观看| 亚洲国产av影院在线观看| 777久久人妻少妇嫩草av网站| 在线天堂中文资源库| 色婷婷av一区二区三区视频| 成年版毛片免费区| 老汉色av国产亚洲站长工具| 久久久精品国产亚洲av高清涩受| 亚洲色图av天堂| 精品少妇黑人巨大在线播放| 夜夜夜夜夜久久久久| 亚洲成人免费电影在线观看| 久久精品人人爽人人爽视色| 狂野欧美激情性xxxx| 变态另类成人亚洲欧美熟女 | 亚洲人成电影观看| 国产日韩一区二区三区精品不卡| 乱人伦中国视频| 麻豆av在线久日| 色综合婷婷激情| 考比视频在线观看| 国产成人一区二区三区免费视频网站| 色老头精品视频在线观看| 91精品三级在线观看| 国产成人欧美在线观看 | 欧美日韩亚洲高清精品| 大陆偷拍与自拍| 色尼玛亚洲综合影院| 亚洲av成人不卡在线观看播放网| aaaaa片日本免费| 中文字幕制服av| 国产熟女午夜一区二区三区| 久久久久久久国产电影| 日本一区二区免费在线视频| 嫩草影视91久久| 热99re8久久精品国产| 在线观看www视频免费| 精品免费久久久久久久清纯 | 青青草视频在线视频观看| 丝袜在线中文字幕| 男女下面插进去视频免费观看| 怎么达到女性高潮| 国产精品久久久av美女十八| 老鸭窝网址在线观看| 日日爽夜夜爽网站| 亚洲视频免费观看视频| 国产成人欧美在线观看 | 中文字幕制服av| 久久久久久久精品吃奶| 美女福利国产在线| 在线永久观看黄色视频| 国产97色在线日韩免费| 妹子高潮喷水视频| 一夜夜www| 啦啦啦视频在线资源免费观看| 搡老岳熟女国产| 在线观看人妻少妇| 亚洲av欧美aⅴ国产| 看免费av毛片| 亚洲精品久久成人aⅴ小说| 国产极品粉嫩免费观看在线| 女性被躁到高潮视频| 亚洲av日韩精品久久久久久密| 国产精品久久久久久人妻精品电影 | aaaaa片日本免费| 麻豆成人av在线观看| 老司机影院毛片| 国产在线精品亚洲第一网站| 午夜福利欧美成人| 国产麻豆69| 999精品在线视频| 亚洲精华国产精华精| 一本综合久久免费| 老汉色av国产亚洲站长工具| 亚洲avbb在线观看| 热re99久久精品国产66热6| 亚洲国产精品一区二区三区在线| 黑人欧美特级aaaaaa片| 国产深夜福利视频在线观看| 又大又爽又粗| 国产亚洲精品一区二区www | 国产三级黄色录像| 成人18禁在线播放| 久久精品国产a三级三级三级| 国产精品偷伦视频观看了| 欧美国产精品va在线观看不卡| 国产亚洲欧美在线一区二区| av天堂久久9| 午夜福利视频在线观看免费| 99精品久久久久人妻精品| 麻豆成人av在线观看| 肉色欧美久久久久久久蜜桃| 久久99热这里只频精品6学生| 欧美黑人精品巨大| 国产精品亚洲av一区麻豆| 三上悠亚av全集在线观看| 1024视频免费在线观看| 国产精品熟女久久久久浪| 国产午夜精品久久久久久| 午夜精品久久久久久毛片777| 女人精品久久久久毛片| 99久久99久久久精品蜜桃| 超碰成人久久| 久久久欧美国产精品| 久久精品国产99精品国产亚洲性色 | 国产亚洲一区二区精品| 大香蕉久久网| 国产激情久久老熟女| 十八禁高潮呻吟视频| 在线观看免费日韩欧美大片| 在线 av 中文字幕| 国产欧美亚洲国产| 亚洲欧洲精品一区二区精品久久久| 欧美+亚洲+日韩+国产| 在线观看免费日韩欧美大片| 老司机在亚洲福利影院| 久久中文字幕一级| 脱女人内裤的视频| 一进一出好大好爽视频| 免费久久久久久久精品成人欧美视频| 亚洲成人免费av在线播放| 99热国产这里只有精品6| 麻豆乱淫一区二区| 性高湖久久久久久久久免费观看| 叶爱在线成人免费视频播放| 亚洲精品久久午夜乱码| 蜜桃在线观看..| 欧美中文综合在线视频| tube8黄色片| 日本vs欧美在线观看视频| 男人舔女人的私密视频| 精品欧美一区二区三区在线| 日韩有码中文字幕| 亚洲欧美精品综合一区二区三区| 亚洲av第一区精品v没综合| 亚洲欧美一区二区三区久久| 在线天堂中文资源库| 国产精品一区二区免费欧美| 国产精品国产av在线观看| 欧美日韩亚洲国产一区二区在线观看 | 极品人妻少妇av视频| 免费在线观看影片大全网站| 黄片大片在线免费观看| 亚洲专区国产一区二区| 欧美精品人与动牲交sv欧美| a级毛片黄视频| 亚洲欧美一区二区三区黑人| 亚洲欧美一区二区三区久久| 成人免费观看视频高清| 国产精品电影一区二区三区 | 欧美日韩亚洲综合一区二区三区_| 一区二区三区国产精品乱码| 19禁男女啪啪无遮挡网站| 午夜免费鲁丝| 国产伦理片在线播放av一区| 久久影院123| 他把我摸到了高潮在线观看 | 精品人妻在线不人妻| 日本vs欧美在线观看视频| 人人妻,人人澡人人爽秒播| 久久香蕉激情| 亚洲国产欧美日韩在线播放| 成人黄色视频免费在线看| 不卡一级毛片| 制服诱惑二区| 美女视频免费永久观看网站| tocl精华| 12—13女人毛片做爰片一| 免费观看a级毛片全部| 欧美亚洲日本最大视频资源| 成人黄色视频免费在线看| 黄色 视频免费看| 69精品国产乱码久久久| 女人被躁到高潮嗷嗷叫费观| 亚洲色图 男人天堂 中文字幕| 欧美日韩黄片免| 波多野结衣一区麻豆| 欧美 日韩 精品 国产| 亚洲人成电影免费在线| 天天躁夜夜躁狠狠躁躁| 无人区码免费观看不卡 | 久久这里只有精品19| 亚洲伊人色综图| 夜夜夜夜夜久久久久| 丝袜喷水一区| av又黄又爽大尺度在线免费看| 日韩视频在线欧美| 免费久久久久久久精品成人欧美视频| 久久精品国产亚洲av香蕉五月 | 亚洲欧美日韩高清在线视频 | 99精品在免费线老司机午夜| 日韩三级视频一区二区三区| 国精品久久久久久国模美| 视频区欧美日本亚洲| 午夜91福利影院| 中文字幕人妻丝袜制服| 一本大道久久a久久精品| 18禁美女被吸乳视频| 老司机亚洲免费影院| 黄频高清免费视频| 国产老妇伦熟女老妇高清| 男女下面插进去视频免费观看| 色婷婷久久久亚洲欧美| 狠狠狠狠99中文字幕| 欧美国产精品va在线观看不卡| 亚洲av日韩在线播放| 9热在线视频观看99| 1024视频免费在线观看| 亚洲欧美激情在线| 成年人黄色毛片网站| 老熟妇仑乱视频hdxx| 99久久国产精品久久久| 韩国精品一区二区三区| 一区二区av电影网| 新久久久久国产一级毛片| 国产精品亚洲av一区麻豆| 亚洲欧美色中文字幕在线| 一级片'在线观看视频| 成年动漫av网址| 欧美精品av麻豆av| 男女床上黄色一级片免费看| 国产精品电影一区二区三区 | 高清黄色对白视频在线免费看| 黄色毛片三级朝国网站| 国产一区二区三区在线臀色熟女 | 欧美成狂野欧美在线观看| 每晚都被弄得嗷嗷叫到高潮| 黄色片一级片一级黄色片| 精品人妻1区二区| 老司机午夜福利在线观看视频 | 国产精品成人在线| 午夜视频精品福利| 老司机午夜十八禁免费视频| 男女午夜视频在线观看| 亚洲第一欧美日韩一区二区三区 | 免费人妻精品一区二区三区视频| 婷婷成人精品国产| 久久这里只有精品19| 日本欧美视频一区| 久久久精品94久久精品| 深夜精品福利| 久久国产亚洲av麻豆专区| 少妇裸体淫交视频免费看高清 | 蜜桃在线观看..| 亚洲欧美日韩高清在线视频 | 亚洲欧美一区二区三区久久| 亚洲av日韩在线播放| 亚洲精品成人av观看孕妇| 亚洲五月婷婷丁香| 久久久久久久国产电影| 成人国产av品久久久| 亚洲色图 男人天堂 中文字幕| 999久久久国产精品视频| 夜夜夜夜夜久久久久| 国产又色又爽无遮挡免费看| 亚洲avbb在线观看| 久久久欧美国产精品| 国产99久久九九免费精品| 久久国产精品大桥未久av| 五月天丁香电影| 国产成人影院久久av| 少妇粗大呻吟视频| 日韩一卡2卡3卡4卡2021年| 巨乳人妻的诱惑在线观看| 欧美精品av麻豆av| 亚洲精品粉嫩美女一区| 午夜福利影视在线免费观看| 国产精品久久久久久人妻精品电影 | 人妻 亚洲 视频| 精品国产乱子伦一区二区三区| 一个人免费在线观看的高清视频| 老司机亚洲免费影院| 国产成人影院久久av| 好男人电影高清在线观看| 欧美黄色淫秽网站| 欧美变态另类bdsm刘玥| 国产高清videossex| 欧美日本中文国产一区发布| av电影中文网址| 电影成人av| 飞空精品影院首页| 最新在线观看一区二区三区| avwww免费| 日本av手机在线免费观看| 免费高清在线观看日韩| 国产精品久久久久久精品电影小说| 国产色视频综合| 97在线人人人人妻|