• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust chromophore-integrated MOFs as highly visible-white-light active and tunable size-selective photocatalysts towards benzothiazoles

    2023-11-18 09:27:28HuLiuQunqunLiPenghuiPnLiZhouBingDengShuyZhoPingLiuYoyuWngJinliLi
    Chinese Chemical Letters 2023年10期

    Hu Liu, Qunqun Li, Penghui Pn, Li Zhou, Bing Deng, Shuy Zho, Ping Liu,*,Yoyu Wng, Jinli Li,*

    a College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China

    b College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China

    Keywordss:Metal-organic framework Heterogeneous photocatalyst Tetrazine Benzothiazole Substrates selectivity

    ABSTRACT Visible-light heterogeneous photocatalyst with high activity and selectivity is crucial for the development of organic transformations, but remains a formidable challenge.Herein, a simple and effective strategy was developed to integrate tetrazine moiety, a visible light active unit, into robust metal-organic frameworks (2D MOF-1(M), M=Co, Mn, Zn, and 3D MOF-2(Co)).MOF-1 series are isomorphous 2D porous frameworks, and MOF-2(Co) displays 3D porous framework.Interestingly, benefiting from the oxidative active species of O2·-, these MOFs all exhibit obviously highly enhanced photocatalytic activities toward the straightforward condensation of o-aminothiophenol and aromatic aldehydes at room temperature in EtOH under visible-white-light irradiation.Notably, compared to 3D MOF, the 2D layered MOF-1(Co) exhibited more excellent catalytic activity with a wide range of substrates possessing preeminent tolerance of steric hindrance.Most impressively, MOF-1(Co) can be recycled at least five times without significant loss of catalytic activity or crystallinity, exhibiting excellent stability and reusability.This study sheds light on the wide-ranging prospects of visible light active 2D MOFs as green photocatalysts for the preparation of fine chemicals.

    Compared to traditional synthetic reactions, visible light driven organic transformations offer a green and sustainable route for high value-added compounds [1–7].In this aspect, heterogeneous visible-light photocatalysts are especially promising for their great recyclability and environment friendly nature [8–13].However,the development of highly active heterogeneous photocatalysts remains a formidable challenge [14,15].To this end, metal-organic frameworks (MOFs) are recently emerging as a kind of photocatalysts for the combination of well-defined crystalline structures,large surface areas, fast charge separation and tunable photon absorption [16–21].Combining the merits of organic and inorganic chemistry, both metal central and organic linkers, as the basic components of MOFs, can be easily tailored to improve photocatalytic performance at the molecular level [22–28].In addition, it has been found that the structure dimension of MOFs can greatly influence the catalytic performances for their degree of access to the active sites [29–35].Nevertheless, to the best of our knowledge, it remains an unexplored area that the systematic effects of the metal central, and structural dimension in MOFs as photocatalysts on the activity and size selectivity under the visible-whitelight irradiation.The starting point is to design and synthesize suitable MOF platform as a model to study the structure–activity relationships, which can provide valuable insights for the further development of MOFs with highly efficient photocatalytic performance.

    Fig.1.(a) Schematic illustration of synthesis of 2D MOF-1(M) (M=Co, Zn, Mn)and 3D MOF-2(Co).(b) UV-visible diffuse reflectance spectrum and Tauc plots (inset) of MOF-1(Co).(c) Mott-Schottky plots and band structure diagram (inset) of MOF-1(Co).(d) Photocurrent responses of dptz and MOF-1(Co).(e) EIS Nyquist plots for dptz and MOF-1(Co).

    Compared to the metal central, integrating the organic linkers with well photoredox activities into MOF frameworks would be a relatively efficient strategy to enhance the photocatalytic performance owing to the easily modified nature [36–39].Nevertheless,the attractive visible-light active ligands are limited, and currently are typically expensive Ir- and Ru-complexes based linkers, or porphyrins and metalloporphyrins based chromophore linkers[36,40-43].Other visible light active ligands are thus encouraged to develop for ameliorating the current photocatalytic application.1,2,4,5-Tetrazines, as a representative electron-deficient structure,are well-known for their unique optical and photophysical properties [44–47].It possesses high electron affinity and is easily reduced by accepting an electron to form an anion radical.This reduction is even more pronounced for its first excited state, thus exhibiting a relatively strong oxidizing capacity.Also,1,2,4,5-tetrazines often display bright colors, exhibiting noteworthy visible light absorption.Therefore, developing the related 1,2,4,5-tetrazine-based porous MOFs as photocatalysts would be a crucial travel direction for the enhanced activity and tunable size selectivity.Herein, with a 1,2,4,5-tetrazine linker (3,6-di(pyridin-4-yl)-1,2,4,5-tetrazine, dptz) as a visible-light active unit, we have constructed a series of the structure- and property-comparative robust MOFs, 2D MOF-1(M) (M=Co, Zn, Mn) and 3D MOF-2(Co)as the visible-white-light driven heterogeneous photocatalysts towards benzothiazoles.Compared to the homogeneous dptz, its immobilized MOFs presented more outstanding photocatalytic activity.Notably, for the small sized substrates, these four MOFs displayed excellent photocatalytic activity with the yield up to 90%, while for the sterically hindered substrates, two-dimensional(2D) MOF-1(M) series displayed similar catalytic performance,superior to three-dimensional (3D) MOF-2(Co), thus exhibiting tunable substrate size-selectivity.Furthermore, MOF-1(Co) also demonstrated good recyclability.

    Four dptz-based MOFs, MOF-1(M) (M=Co, Mn, Zn) and MOF-2(Co) were synthesized through the solvothermal reactions(Fig.1a).Single-crystal X-ray diffraction studies revealed that 2D MOF-1(Co), MOF-1(Zn) and MOF-1(Mn) are isostructural, and crystallize in theP1 space group of triclinic crystal system.Taking MOF-1(Co) structure as an example, it exhibits a two-dimension network consisting of [M2(COO)4N4] secondary building unit(SBU), dptz, and partially protonated 1,3,5-benzenetricarboxylic acid (HBTC2-), which are assembled through the hydrogen bonding interactions andπ···πstacking interactions to generate a 3D supramolecular structure bearing open 1D channels with the pore dimension being 11.073×8.432 ?A2along theb-axis.In the structure, there is an uncoordinated carboxyl group in the HBTC2-ligand (Fig.S4 in Supporting information), which can act as acidbase buffer sites to protect the MOF-1(Co) from aqueous solution [34,48].In the case of MOF-2(Co), it displays a 3D pillarlayered framework constituted by [Co2(COO)4]nchain, dptz, and completely protonated 1,2,4,5-benzenetetracarboxylic acid (TTC4-)ligand, with the open 1D channels of 12.207×8.371 ?A2, showing slightly larger than that of MOF-1(Co) (Figs.S2–S8 in Supporting information).Notably, the presence ofπ···πstacking interactions between the benzene/tetrazine rings in MOF-1(Co)/MOF-2(Co) might favour the transfer of charges (Figs.S5 and S8), suggesting the potential photocatalytic performances [49–51].

    Solvent-stability tests showed that the framework of assynthesized MOF-1(M) and MOF-2(Co) remain intact after immersing them in various solvents for one month, demonstrating the excellent solvents resistance (Figs.S11 and S12 in Supporting information).Impressively, the crystallinity of MOF-1(Co) can be retained in water for one year, in water with pH from 2 to 12 for two weeks, or under white LED irradiation for 48 h (Figs.S13–S15 in Supporting information).Furthermore, thermogravimetric analysis(TGA) showed that MOF-1(M) and MOF-2(Co) are thermally stable up to 548 K (Figs.S16–S19 in Supporting information).The good stabilities of these MOFs render them to be excellent candidates for photocatalytic application.

    To evaluate the photocatalytic performance, the optical and electrochemical properties were initially studied.As shown in Fig.1b and Fig.S20 (Supporting information), the ultraviolet–visible (UV–vis) diffuse reflectance spectrum of MOF-1(Co) as a representative and MOF-2(Co) displayed a broad absorption range from 200 nm to 600 nm.By the Kubelka-Munk (KM) method from Tauc plots, the band gap (Eg) of MOF-1(Co) and MOF-2(Co) was estimated to be about 1.99 eV and 2.01 eV, respectively, demonstrating their application prospects as semiconducting visible light active catalysts.To assess the conduction band (CB) and the valence band (VB) levels, Mott-Schottky electrochemical experiments were performed, and the CB positions were determined to be -0.81 V for MOF-1(Co) and -0.82 V for MOF-2(Co) (Fig.1c and Fig.S21 in Supporting information).The VB was thus estimated to be 1.18 V and 1.19 V, respectively.

    Given that the charge separation efficiency of photocatalysts is an important factor for photocatalytic processes, the measurements of photocurrent responses and electrochemical impedance spectroscopy (EIS) were then performed.As shown in Fig.1d and Fig.S22 (Supporting information), MOF-1(Co) and MOF-2(Co) show significant stronger photocurrent responses than dptz linker, implying an effective separation of photogenerated electron-hole pairs and an enhanced catalytic activity.Furthermore, this result was further demonstrated by their smaller radius and lower chargetransfer resistance (Fig.1e and Fig.S23 in Supporting information).Overall, optical and electrical studies suggested that building the dptz linker into MOF can improve the charge separation efficiency,prompting our great interest in examining the photocatalytic performances of these synthesized MOFs.

    Benzothiazoles have received increasing attention for their interesting applications in dyes, chemosensing, as well as advanced materials such as nonlinear optics, and organic light-emitting diodes [52–54].However, the traditional synthetic methods commonly suffer from low yield, poor selectivity, or harsh reaction conditions (high temperature or acid conditions).Thus, it is urgent to develop green, sustainable and efficient synthetic methods.In view of this, the photocatalytic performances of MOF-1 series and MOF-2(Co) are evaluated in the synthesis of benzothiazoles.

    Fig.2.Photocatalytic synthesis of benzothiazoles with different sizes of aromatic aldehyde substrates catalyzed by MOF-1(Co), MOF-2(Co) and dptz, and the assumed structures and the molecular size were calculated by using the program Chem3D.

    MOF-1(Co) was initially selected and assessed for the condensation cyclization ofo-aminothiophenol and benzaldehyde as the model reaction.Then, the reaction conditions were optimized under 10 W white light emitting diode (LED) irradiation at room temperature (Table S2 in Supporting information).Various solvents were examined, and the desired product3awas obtained in 88%yield in ethanol (EtOH), while low yields with other solvents such as acetonitrile (MeCN), methanol (MeOH), tetrahydrofuran (THF),dimethyl sulfoxide (DMSO) orN,N-dimethylformamide (DMF) (Table S2, entries 1–6).It is noteworthy that good yields were observed at 0.5 mol% catalyst loading (Table S2, entries 2 and 7–9),and further increase in catalyst loading led to a decrease in yield because the excess MOF particles in the suspension may reduce photon utilization.Then, the reaction times were evaluated, and we found the optimum reaction for one hour (Table S2, entries 7,10 and 11).Therefore, the optimized reaction conditions can be 0.5 mol% MOF-1(Co), EtOH, and 1 h.

    To examine the role of metal central, we conceived the comparable utilization of 2D MOF-1(M) series with different metal central as photocatalysts under the optimal condition.As shown in Table S2, all 2D MOF catalysts displayed similar and excellent yields of3a(91%–94%), and significantly outperformed that of the dptz ligand (28%), indicating metal central is not a pivotal factor for the photocatalytic activity.

    Fig.3.Scope of photocatalytic synthesis of benzothiazoles catalyzed by MOF-1(Co).Reaction conditions: 1 (0.3 mmol), 2 (0.3 mmol), 10 W white LED, room temperature, air.Isolated yields.

    To gain an insight into dimension-activity relationships, several aldehydes with increasing sizes, such as benzaldehyde (2a),1-naphthaldehyde (2b), 1-pyrenecarboxaldehyde (2c), 4-(N,N-dip henylamino)benzaldehyde (2d) and 4-(1,2,2-triphenylvinyl)benza ldehyde (2e) were selected to examine their product yields catalyzed by 2D MOF-1(Co) and 3D MOF-2(Co) (Fig.2).The dptz linker performed poorly in the synthesis of benzothiazole and showed comparable catalytic activity for all aldehydes (28%, 33%,27%, 30%, and 29% for2a–2e).With 3D MOF-2(Co) as a catalyst,the yields of benzothiazole products from2ato2edecreased in the order of 88%, 84%, 33%, 26%, and 20%.In contrast, 2D MOF-1(Co) showed excellent activity with benzothiazole product yields of 93%, 95%, 91%, 93%, and 96% for2a–2e, indicating that 2D MOF-1(Co) exhibits excellent catalytic activity with a wide range of substrates possessing preeminent tolerance of steric hindrance.Despite the pore size of 3D MOF-2(Co) is slightly larger than that of 2D MOF-1(Co), the latter presents better catalytic activity in catalyzing sterically hindered substrates, which can be ascribed to the relatively limited channels of 3D MOF-2(Co) that causes the large reactants to barely transport through pores and access to the active sites [55].In this case, photocatalytic reactions occur on the outer surface of MOF-2(Co), thus exhibiting comparable or even lower catalytic efficiency with dptz.By contrast, the 2D network of MOF-1(Co) cannot only reduce diffusion barriers, facilitate the contact of substrates with the active sites, and afford rapid mass transport and electron transfer, but also easily dissociated intermediates in photocatalysis in comparison with 3D MOFs [11].Overall, for the tetrazine-based MOFs with the different dimension, 2D MOF-1(Co)demonstrates superior photocatalytic performance than that of 3D MOF-2(Co).

    Fig.4.(a) Time-dependent curves of the synthesis for benzothiazoles.(Red: standard conditions.Blue: the catalyst was filtered after 20 min).(b) Recycling experiments with MOF-1(Co) as the photocatalyst for the synthesis of benzothiazoles.(c)PXRD patterns of MOF-1(Co) after five cycles for the photocatalytic reaction.(d) EPR spectra of MOF-1(Co) sample in the presence of DMPO under air atmosphere under dark and visible-light conditions for 0.5 and 2 min.(e) Proposed reaction mechanisms for the synthesis of benzothiazoles over MOF-1(Co) powered by white LED light.

    Based on the above results, the substrate scope of aromatic aldehydes was expanded with the optimized protocol using 2D MOF-1(Co) as photocatalyst (Fig.3).First of all, for model benzaldehyde2a, the 93% yield of the product3awas observed.When benzaldehyde bears the groups of -Cl, -OH, -NO2and -CH3at theo-position, it is observed that the presence of electron-donating and -withdrawing groups has little effect on the reaction efficiency(3f–3m).When substitution at them- andp-positions, the desired products can also be given in good yields (3nand3o).We were pleased to find that furaldehyde or thenaldehyde as the substrates also afforded the target products in good yields (3pand3q).In general, regardless of the electronic properties and substitution modes, its extensive functional group compatibility showed that MOF-1(Co) can be a powerful photocatalyst for the condensation cyclization of 2-substituted benzothiazoles upon visible-white-light irradiation.

    Forward, control experiments were conducted, and no product was obtained under dark conditions or without the catalyst, revealing that photocatalyst and light were both necessary for this organic transformation (Table S2, entries 16 and 17).In addition,comparative experiments were also implemented.As indicated,when a powder mixture of Co(NO3)2·6H2O, dptz, and H3BTC was used as the photocatalyst, lower yield of products3awas observed(25%) (Table S2, entry 20), suggesting that the presence of framework of MOF-1(Co) is critical.This result is in good agreement with the leaching experiments (Fig.4a) that nearly no further conversion is observed after the removal of the MOF catalyst after 20 min of reaction.And after filtrating MOF-1(Co), no obvious dptz, H3BTC,or Co signal in the filtrate was observed in the inductively coupled plasma-mass spectrometry (ICP-MS), mass spectrometry (MS) or UV–vis spectra (Figs.S28–S30 in Supporting information), demonstrating the heterogeneous nature and stability of MOF-1(Co).

    The recyclability and stability are critical factors for heterogeneous photocatalysts.Therefore, recycling experiments to synthesize3awere carried out to examine the photocatalytic durability.MOF-1(Co) can be quickly recovered from the reaction system by centrifugation, and then used in the next cycle without additional treatment or activation.As revealed in Fig.4b, MOF-1(Co)can maintain the high photocatalytic activity toward the above condensation cyclization after five runs of experiments.The powder X-ray diffraction (PXRD) patterns of MOF-1(Co) after the recyclability tests remain unchanged (Fig.4c), demonstrating the structural integrity of MOF-1(Co) after the organic transformation and the enough stability to recycle and reuse.

    To determine the key active species in the photocatalytic reaction.Radical capture by (2,2,6,6-tetramethylpiperidin-1-yl)oxyl(TEMPO) was performed.As shown in Fig.S31 (Supporting information), the TEMPO completely shut down the condensation reaction.Then, we performed the reaction in the presence of a known superoxide radical anion (O2·-) quencher, 1,4-benzoquinone(BQ).The significant reduced yield of3aindicates that O2·-is key intermediate in this reaction.In addition, electron paramagnetic resonance (EPR) experiments were performed to confirm its ability to activate oxygen upon visible-light irradiation.The signals observed upon 400–470 nm visible-light irradiation of MOF-1(Co) in air indicated the generation of O2·-in the presence of a radical trapping reagent, 5,5-dimethyl-1-pyrrolineN-oxide (DMPO)(Fig.4d).

    On the basis of the above experimental results and reported literature [56], a mechanistic hypothesis for the synthesis of benzothiazole by visible-light assisted catalysis is depicted in Fig.4e.Upon light irradiation, MOF-1(Co) was first photoexcited to the MOF-1(Co)*species.O-aminothiophenol and benzaldehyde were quickly cyclized and reduced to intermediate I, and meanwhile,the MOF-1(Co)*species accepted one electron to produce MOF-1(Co)*-, which was oxidized to the ground state by O2in air, producing superoxide radicals.The desired product was then obtained by oxidative dehydrogenation and hydrogen abstraction.

    In summary, we have successfully developed four robust heterogenous MOFs catalysts (MOF-1(M), M=Co, Mn, Zn, and MOF-2(Co)), with a 1,2,4,5-tetrazine visible light-active unit as the organic linker.MOF-1(M) series exhibited 2D network, while MOF-2(Co) displayed 3D porous structure.All these four MOFs significantly outperformed homogeneous dptz ligands towards benzothiazoles under 10 W white LED irradiation.For 2D MOFs,MOF-1(M) series with various metal centers displayed similar catalytic performance.For Co(II)-based MOFs presenting different dimensionalities, 2D MOF-1(Co) significantly outperformed the 3D MOF-2(Co) in catalyzing sterically hindered substrates with the nearly free substrate accessibility.MOF-1(Co) as an excellent photocatalyst shows superb catalytic activity in the condensation cyclization to afford a broad scope of benzothiazoles in EtOH at room temperature.The heterogeneity and structural integrity of MOF-1(Co) were also confirmed by the recycling experiments.This work successfully illustrates that incorporating the visible-light active 1,2,4,5-tetrazine linker into 2D MOF platform would be as an efficient strategy to construct promising robust photoactive catalysts.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (Nos.22171223, 22077099 and 21531007), the Innovation Capability Support Program of Shaanxi(Nos.2023-CX-TD-75 and 2022KJXX-32), the Natural Science Foundation of Shaanxi Province of China (Nos.2020TG-031, 2022JQ-125, 2023-JC-YB-141, 2022JQ-151 and 2021JQ-440), the special fund of Shaanxi Key Laboratory of Special Fuel Chemistry and Material(No.SPCF-SKL-2021-0011), and Young Talent Fund of Association for Science and Technology in Shaanxi, China (No.SWYY202206).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2023.108562.

    天堂影院成人在线观看| 亚洲欧洲精品一区二区精品久久久| 国产一区二区三区在线臀色熟女 | 很黄的视频免费| 无人区码免费观看不卡| 免费在线观看亚洲国产| 亚洲免费av在线视频| 日本撒尿小便嘘嘘汇集6| 国产国语露脸激情在线看| 狂野欧美激情性xxxx| 色综合欧美亚洲国产小说| 桃色一区二区三区在线观看| 国产区一区二久久| 中出人妻视频一区二区| 日本三级黄在线观看| 免费观看精品视频网站| 亚洲精品av麻豆狂野| 中文字幕高清在线视频| 精品久久久久久久久久免费视频 | 欧美亚洲日本最大视频资源| 久久久久亚洲av毛片大全| 精品电影一区二区在线| 日韩 欧美 亚洲 中文字幕| 午夜免费成人在线视频| 亚洲国产毛片av蜜桃av| 日韩欧美一区视频在线观看| 欧美激情 高清一区二区三区| 亚洲精品国产精品久久久不卡| 国产一区二区三区在线臀色熟女 | 老司机深夜福利视频在线观看| 欧美精品啪啪一区二区三区| 午夜激情av网站| 国产精品综合久久久久久久免费 | 真人做人爱边吃奶动态| 91在线观看av| 成年版毛片免费区| 亚洲 欧美 日韩 在线 免费| 久久人人97超碰香蕉20202| 国产精品久久久av美女十八| 久久天堂一区二区三区四区| 久久香蕉国产精品| 久久人妻福利社区极品人妻图片| 国产一区二区三区在线臀色熟女 | 亚洲国产精品合色在线| 亚洲国产精品合色在线| 中文亚洲av片在线观看爽| 妹子高潮喷水视频| 色哟哟哟哟哟哟| 老熟妇仑乱视频hdxx| 日韩精品青青久久久久久| 国产不卡一卡二| 亚洲精品美女久久av网站| 亚洲av电影在线进入| 交换朋友夫妻互换小说| 一区二区三区精品91| 三级毛片av免费| 国产区一区二久久| 久久热在线av| 久久久久久久久中文| 久久精品亚洲熟妇少妇任你| 久久国产精品影院| 999久久久国产精品视频| 在线观看一区二区三区| 80岁老熟妇乱子伦牲交| 深夜精品福利| 亚洲性夜色夜夜综合| 欧美在线一区亚洲| 一级片免费观看大全| 99在线视频只有这里精品首页| 美女扒开内裤让男人捅视频| 日日夜夜操网爽| 亚洲自偷自拍图片 自拍| 一边摸一边做爽爽视频免费| 99国产极品粉嫩在线观看| 日韩 欧美 亚洲 中文字幕| 亚洲熟妇中文字幕五十中出 | 色综合婷婷激情| 欧美乱码精品一区二区三区| a级毛片黄视频| 欧美日韩亚洲高清精品| 天天躁狠狠躁夜夜躁狠狠躁| 精品一品国产午夜福利视频| 欧美黄色片欧美黄色片| 国产亚洲精品久久久久5区| 嫁个100分男人电影在线观看| 亚洲欧美激情综合另类| 高清在线国产一区| 99久久99久久久精品蜜桃| 午夜激情av网站| 午夜精品国产一区二区电影| 亚洲国产看品久久| 精品一品国产午夜福利视频| 欧美激情极品国产一区二区三区| 日本a在线网址| 成人黄色视频免费在线看| 亚洲免费av在线视频| 亚洲精品粉嫩美女一区| 精品一区二区三区视频在线观看免费 | 香蕉国产在线看| 国产麻豆69| 国产精品 欧美亚洲| 亚洲在线自拍视频| 国产精品一区二区在线不卡| 精品一区二区三区av网在线观看| 丝袜美足系列| 久久久久国产精品人妻aⅴ院| 亚洲精品在线美女| 色哟哟哟哟哟哟| 亚洲精品一区av在线观看| 他把我摸到了高潮在线观看| 亚洲av美国av| 国产有黄有色有爽视频| 成人手机av| 欧美丝袜亚洲另类 | 一级a爱视频在线免费观看| 国产99白浆流出| 女人高潮潮喷娇喘18禁视频| 国产在线观看jvid| 国产成年人精品一区二区 | 国产1区2区3区精品| 老司机深夜福利视频在线观看| 变态另类成人亚洲欧美熟女 | 黄色成人免费大全| 一区二区三区激情视频| 成人av一区二区三区在线看| 久久人人精品亚洲av| 91麻豆精品激情在线观看国产 | 精品一区二区三区av网在线观看| 精品久久久精品久久久| 麻豆成人av在线观看| 少妇粗大呻吟视频| 亚洲自拍偷在线| 黄片小视频在线播放| 国产免费现黄频在线看| 国产成人精品久久二区二区91| 一级作爱视频免费观看| 国产激情久久老熟女| 最新美女视频免费是黄的| 91在线观看av| 亚洲精品国产区一区二| 美女午夜性视频免费| 国产三级黄色录像| 18美女黄网站色大片免费观看| 两人在一起打扑克的视频| 男女高潮啪啪啪动态图| 黑人操中国人逼视频| 激情在线观看视频在线高清| 伊人久久大香线蕉亚洲五| 国产主播在线观看一区二区| 女性生殖器流出的白浆| 亚洲av熟女| 欧美成狂野欧美在线观看| 操美女的视频在线观看| www.精华液| 99国产精品99久久久久| 亚洲一区中文字幕在线| 精品电影一区二区在线| 久热这里只有精品99| 久久人妻福利社区极品人妻图片| 一级作爱视频免费观看| 国产aⅴ精品一区二区三区波| 欧美性长视频在线观看| 亚洲精品国产区一区二| 国产蜜桃级精品一区二区三区| 日韩视频一区二区在线观看| 亚洲人成电影观看| 99久久综合精品五月天人人| 最新美女视频免费是黄的| 成人永久免费在线观看视频| 黄色成人免费大全| 国产深夜福利视频在线观看| 欧美老熟妇乱子伦牲交| 中文字幕另类日韩欧美亚洲嫩草| 亚洲人成电影观看| 色综合欧美亚洲国产小说| 色播在线永久视频| 不卡一级毛片| 国产xxxxx性猛交| 国产一区二区激情短视频| 高清毛片免费观看视频网站 | 伦理电影免费视频| 久久 成人 亚洲| 国产精品1区2区在线观看.| 午夜精品国产一区二区电影| 午夜免费观看网址| 99精国产麻豆久久婷婷| av网站免费在线观看视频| 国产97色在线日韩免费| 人妻丰满熟妇av一区二区三区| 午夜激情av网站| 免费看a级黄色片| 久久精品影院6| 在线观看午夜福利视频| 精品久久久久久电影网| 黑人欧美特级aaaaaa片| 水蜜桃什么品种好| 自线自在国产av| 午夜福利欧美成人| 99在线人妻在线中文字幕| 日韩高清综合在线| av中文乱码字幕在线| 一区二区三区国产精品乱码| 亚洲中文日韩欧美视频| 变态另类成人亚洲欧美熟女 | 女人被躁到高潮嗷嗷叫费观| 国产精品国产av在线观看| 国产成人精品在线电影| 久久久久九九精品影院| 亚洲第一欧美日韩一区二区三区| 中文字幕高清在线视频| 久久婷婷成人综合色麻豆| 亚洲第一青青草原| 老鸭窝网址在线观看| 女人精品久久久久毛片| 国产在线精品亚洲第一网站| 九色亚洲精品在线播放| 久热这里只有精品99| 久久亚洲真实| 成人国语在线视频| 在线观看舔阴道视频| 一进一出抽搐gif免费好疼 | 无人区码免费观看不卡| 久久热在线av| 亚洲欧美激情在线| 久久天堂一区二区三区四区| 亚洲精品中文字幕一二三四区| 成人黄色视频免费在线看| 9色porny在线观看| 欧美日韩精品网址| 美女午夜性视频免费| 亚洲狠狠婷婷综合久久图片| 欧美日韩视频精品一区| 国产精品一区二区在线不卡| 亚洲专区国产一区二区| 亚洲国产精品999在线| 国产午夜精品久久久久久| 国产精华一区二区三区| 熟女少妇亚洲综合色aaa.| 超碰成人久久| 涩涩av久久男人的天堂| 国产一区二区激情短视频| 在线观看午夜福利视频| 亚洲欧洲精品一区二区精品久久久| 一本大道久久a久久精品| 午夜影院日韩av| 91av网站免费观看| 久久这里只有精品19| 窝窝影院91人妻| 亚洲三区欧美一区| 日韩精品免费视频一区二区三区| 黄频高清免费视频| 久久久国产成人精品二区 | 女性生殖器流出的白浆| 久9热在线精品视频| av天堂久久9| 亚洲中文字幕日韩| 欧美激情 高清一区二区三区| 丝袜人妻中文字幕| 国产日韩一区二区三区精品不卡| 久久国产精品影院| 久热这里只有精品99| 大型av网站在线播放| 国产av一区在线观看免费| 可以在线观看毛片的网站| 午夜视频精品福利| 长腿黑丝高跟| 免费在线观看黄色视频的| 久久精品亚洲精品国产色婷小说| 国产真人三级小视频在线观看| 电影成人av| 伦理电影免费视频| 亚洲成人久久性| 黑丝袜美女国产一区| 日本wwww免费看| 美女福利国产在线| av天堂在线播放| 久久人妻福利社区极品人妻图片| 两人在一起打扑克的视频| 国产伦一二天堂av在线观看| 啦啦啦免费观看视频1| a在线观看视频网站| 丁香六月欧美| 亚洲精品成人av观看孕妇| 免费高清视频大片| 国产区一区二久久| 亚洲精品久久午夜乱码| 亚洲专区中文字幕在线| 啦啦啦免费观看视频1| 乱人伦中国视频| 一区福利在线观看| 国产午夜精品久久久久久| 成年人免费黄色播放视频| 一级,二级,三级黄色视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美精品综合久久99| 在线观看www视频免费| 在线免费观看的www视频| 18美女黄网站色大片免费观看| 国产精品久久电影中文字幕| 一级毛片高清免费大全| 老司机靠b影院| 长腿黑丝高跟| 电影成人av| 狂野欧美激情性xxxx| 亚洲av成人一区二区三| 国产又爽黄色视频| 午夜亚洲福利在线播放| 亚洲欧美精品综合久久99| 国产高清视频在线播放一区| 国产精品自产拍在线观看55亚洲| 老司机午夜福利在线观看视频| 成人特级黄色片久久久久久久| 久久久精品欧美日韩精品| 精品日产1卡2卡| 美女国产高潮福利片在线看| 亚洲,欧美精品.| 很黄的视频免费| 日韩精品中文字幕看吧| 99热只有精品国产| 18禁黄网站禁片午夜丰满| 真人做人爱边吃奶动态| 久久国产精品男人的天堂亚洲| 国产成人精品无人区| 亚洲欧洲精品一区二区精品久久久| 不卡一级毛片| 成人亚洲精品一区在线观看| 精品久久久久久成人av| 一边摸一边抽搐一进一出视频| 18禁国产床啪视频网站| 亚洲一区二区三区欧美精品| 亚洲 欧美一区二区三区| 韩国精品一区二区三区| 18禁美女被吸乳视频| av天堂久久9| 午夜视频精品福利| 国内毛片毛片毛片毛片毛片| 免费久久久久久久精品成人欧美视频| 黄网站色视频无遮挡免费观看| 亚洲人成77777在线视频| 久久伊人香网站| 欧美日韩亚洲高清精品| 午夜亚洲福利在线播放| 级片在线观看| 国产欧美日韩一区二区三区在线| 少妇裸体淫交视频免费看高清 | 欧美黄色淫秽网站| 国产精品久久久久成人av| 日韩欧美一区视频在线观看| 亚洲人成电影免费在线| 免费在线观看视频国产中文字幕亚洲| 一进一出好大好爽视频| 国产欧美日韩综合在线一区二区| 757午夜福利合集在线观看| 美女高潮到喷水免费观看| 精品日产1卡2卡| 超碰97精品在线观看| 国产成人精品无人区| 国产1区2区3区精品| 国产高清激情床上av| 久99久视频精品免费| 亚洲午夜精品一区,二区,三区| 啦啦啦 在线观看视频| 亚洲男人的天堂狠狠| 亚洲精品国产区一区二| 俄罗斯特黄特色一大片| 91老司机精品| 亚洲精品久久成人aⅴ小说| 久久这里只有精品19| 黄色成人免费大全| 黄色视频,在线免费观看| www.精华液| 999久久久国产精品视频| cao死你这个sao货| 国产激情欧美一区二区| 久久久国产欧美日韩av| 一级,二级,三级黄色视频| 久久国产亚洲av麻豆专区| 国产xxxxx性猛交| 91国产中文字幕| 日韩免费高清中文字幕av| 宅男免费午夜| 女人精品久久久久毛片| 成人特级黄色片久久久久久久| 91成年电影在线观看| 久久国产精品人妻蜜桃| 成人三级黄色视频| 91国产中文字幕| 热99国产精品久久久久久7| 亚洲精品美女久久久久99蜜臀| 精品久久蜜臀av无| 身体一侧抽搐| 国产一区二区激情短视频| 国产片内射在线| 欧美日本亚洲视频在线播放| 真人一进一出gif抽搐免费| 日韩国内少妇激情av| 中文字幕人妻丝袜一区二区| 免费av中文字幕在线| 欧美av亚洲av综合av国产av| bbb黄色大片| 9热在线视频观看99| 免费高清在线观看日韩| av天堂久久9| 搡老岳熟女国产| 日本wwww免费看| 成人av一区二区三区在线看| 亚洲精华国产精华精| 欧美日韩国产mv在线观看视频| 午夜福利,免费看| 在线av久久热| 日韩免费av在线播放| 日韩人妻精品一区2区三区| 搡老熟女国产l中国老女人| 日本黄色日本黄色录像| 美女扒开内裤让男人捅视频| 伊人久久大香线蕉亚洲五| 久久久久国内视频| netflix在线观看网站| 亚洲精品美女久久久久99蜜臀| 国内久久婷婷六月综合欲色啪| 久久国产乱子伦精品免费另类| tocl精华| 一边摸一边抽搐一进一出视频| 精品免费久久久久久久清纯| 亚洲av成人一区二区三| 美女高潮喷水抽搐中文字幕| 免费久久久久久久精品成人欧美视频| av中文乱码字幕在线| 别揉我奶头~嗯~啊~动态视频| 一级黄色大片毛片| 久久人妻熟女aⅴ| 久久 成人 亚洲| 日韩欧美三级三区| 国产精品久久电影中文字幕| 国产三级在线视频| tocl精华| 麻豆成人av在线观看| 欧美成人性av电影在线观看| 在线观看免费高清a一片| 老汉色av国产亚洲站长工具| 成人18禁在线播放| 日韩 欧美 亚洲 中文字幕| 国产97色在线日韩免费| 久久人人97超碰香蕉20202| 后天国语完整版免费观看| 黄网站色视频无遮挡免费观看| 精品福利永久在线观看| 亚洲自偷自拍图片 自拍| 色综合站精品国产| 国产成人av激情在线播放| 欧美日韩黄片免| 免费在线观看影片大全网站| 精品福利永久在线观看| 国产免费男女视频| www.999成人在线观看| 日本一区二区免费在线视频| 12—13女人毛片做爰片一| 日本wwww免费看| 成熟少妇高潮喷水视频| 久久人人爽av亚洲精品天堂| 午夜成年电影在线免费观看| 看免费av毛片| 欧美日韩精品网址| 欧美一区二区精品小视频在线| 欧美在线黄色| 精品国产乱码久久久久久男人| 久9热在线精品视频| 国产精品 欧美亚洲| 欧美精品啪啪一区二区三区| 久久国产精品影院| 成人三级黄色视频| 久久久久久大精品| 欧美精品一区二区免费开放| av天堂久久9| 国产精品98久久久久久宅男小说| 无遮挡黄片免费观看| 国产精品av久久久久免费| 一进一出抽搐动态| 日日夜夜操网爽| 99久久久亚洲精品蜜臀av| 亚洲久久久国产精品| 欧美乱妇无乱码| 黄片播放在线免费| 日本黄色视频三级网站网址| 国产一卡二卡三卡精品| a在线观看视频网站| 国产高清国产精品国产三级| 在线观看免费视频日本深夜| 亚洲激情在线av| 男人的好看免费观看在线视频 | 精品午夜福利视频在线观看一区| 免费一级毛片在线播放高清视频 | 午夜91福利影院| 女人高潮潮喷娇喘18禁视频| 叶爱在线成人免费视频播放| 操美女的视频在线观看| 免费一级毛片在线播放高清视频 | 国产精品国产高清国产av| 久久狼人影院| 免费人成视频x8x8入口观看| 美女扒开内裤让男人捅视频| 精品福利观看| 亚洲成人国产一区在线观看| 欧美成狂野欧美在线观看| 欧美最黄视频在线播放免费 | 久久狼人影院| 日韩高清综合在线| 我的亚洲天堂| 日韩欧美国产一区二区入口| 亚洲精品美女久久久久99蜜臀| 久久久国产成人免费| 亚洲av成人一区二区三| 欧美av亚洲av综合av国产av| 高清黄色对白视频在线免费看| 日韩欧美在线二视频| 国产亚洲av高清不卡| 免费高清视频大片| 99久久国产精品久久久| 精品国产超薄肉色丝袜足j| 中国美女看黄片| 又紧又爽又黄一区二区| 精品久久久久久久毛片微露脸| 久久伊人香网站| 亚洲av成人不卡在线观看播放网| 最近最新免费中文字幕在线| 免费观看精品视频网站| 在线视频色国产色| 久久精品亚洲av国产电影网| 水蜜桃什么品种好| 女性生殖器流出的白浆| av网站在线播放免费| 激情视频va一区二区三区| 国产一区二区三区综合在线观看| 嫁个100分男人电影在线观看| 99精品在免费线老司机午夜| 婷婷精品国产亚洲av在线| 99国产精品一区二区蜜桃av| 久久午夜综合久久蜜桃| 国产欧美日韩一区二区三区在线| 天天添夜夜摸| 首页视频小说图片口味搜索| 亚洲五月色婷婷综合| 国产一区二区激情短视频| 老司机福利观看| 超碰97精品在线观看| 免费观看人在逋| 精品第一国产精品| 精品人妻1区二区| a级毛片在线看网站| 免费在线观看日本一区| 婷婷六月久久综合丁香| 久久伊人香网站| 女人高潮潮喷娇喘18禁视频| 久99久视频精品免费| 侵犯人妻中文字幕一二三四区| 香蕉丝袜av| 亚洲 欧美一区二区三区| 欧美日本亚洲视频在线播放| 人人妻人人澡人人看| 老汉色∧v一级毛片| 亚洲色图 男人天堂 中文字幕| 麻豆成人av在线观看| 日本免费a在线| 一级毛片女人18水好多| 男女下面进入的视频免费午夜 | 一夜夜www| 亚洲色图综合在线观看| 国产真人三级小视频在线观看| 一区在线观看完整版| 一边摸一边抽搐一进一出视频| 19禁男女啪啪无遮挡网站| www日本在线高清视频| 母亲3免费完整高清在线观看| 九色亚洲精品在线播放| 电影成人av| 好看av亚洲va欧美ⅴa在| 18禁国产床啪视频网站| 少妇的丰满在线观看| ponron亚洲| www.www免费av| 不卡av一区二区三区| 国产一区二区激情短视频| 成人影院久久| 日本欧美视频一区| 人人妻人人澡人人看| 动漫黄色视频在线观看| 亚洲一码二码三码区别大吗| 中文字幕高清在线视频| a级片在线免费高清观看视频| 成年女人毛片免费观看观看9| 天天躁夜夜躁狠狠躁躁| 成人手机av| 免费日韩欧美在线观看| 久久久久久久午夜电影 | 色在线成人网| 大型av网站在线播放| 精品国产国语对白av| 国产一区二区三区综合在线观看| 国产片内射在线| 亚洲伊人色综图| av福利片在线| 动漫黄色视频在线观看| 中亚洲国语对白在线视频| 欧美乱色亚洲激情| 成在线人永久免费视频| 国产成人免费无遮挡视频| 欧美日本亚洲视频在线播放| 一进一出抽搐动态| 成人av一区二区三区在线看| 在线观看午夜福利视频| 又黄又爽又免费观看的视频| 国产一区二区三区在线臀色熟女 | 美女午夜性视频免费| 女人精品久久久久毛片| 国产精品影院久久|