王宏杰,曹喆,趙子龍,董文藝
(1哈爾濱工業(yè)大學(xué)深圳研究生院,廣東 深圳 518055;2深圳市水資源利用與環(huán)境污染控制重點(diǎn)實(shí)驗(yàn)室,廣東 深圳 518055)
微波-過(guò)氧化氫工藝處理含Cu-EDTA廢水
王宏杰1,2,曹喆1,2,趙子龍1,2,董文藝1,2
(1哈爾濱工業(yè)大學(xué)深圳研究生院,廣東 深圳 518055;2深圳市水資源利用與環(huán)境污染控制重點(diǎn)實(shí)驗(yàn)室,廣東 深圳 518055)
采用微波-過(guò)氧化氫工藝處理含Cu-EDTA廢水,考察反應(yīng)時(shí)間、初始pH、H2O2投加量、微波功率以及共存物質(zhì)等因素對(duì)該工藝處理效能的影響,并分析了氧化作用機(jī)制。結(jié)果表明,在初始pH為3,H2O2投加量為41 mmol·L-1,微波功率為210 W時(shí),1.57 mmol·L-1Cu-EDTA反應(yīng)10 min后,Cu和TOC去除率分別高達(dá)97.0%和60.7%,出水電導(dǎo)率低至1.8 mS·cm-1,產(chǎn)泥量?jī)H為0.15 g·L-1。的存在對(duì)Cu-EDTA的氧化降解過(guò)程無(wú)明顯影響,而和酒石酸對(duì)反應(yīng)過(guò)程有一定的抑制作用。該工藝下反應(yīng)4 min后Cu-EDTA基本氧化為中間產(chǎn)物,并在4~6 min內(nèi)急劇降解,最終形成小分子羧酸類(lèi)物質(zhì)、NH3-N和無(wú)機(jī)碳。反應(yīng)過(guò)程沉淀產(chǎn)物主要以CuO形式存在。相比Fenton工藝,該工藝在氧化效能、出水電導(dǎo)率及產(chǎn)泥量等方面有顯著優(yōu)勢(shì)。
微波-過(guò)氧化氫;Cu-EDTA;氧化;廢水;芬頓;污染
以 Cu-EDTA為典型代表的重金屬絡(luò)合物普遍存在于化學(xué)鍍銅工業(yè)廢水中,該類(lèi)廢水具有絡(luò)合穩(wěn)定性強(qiáng)、可生化降解性差和急性毒性強(qiáng)等特性,易對(duì)水體、土壤環(huán)境及人體健康造成嚴(yán)重威脅。目前,針對(duì)含 Cu-EDTA廢水的處理方式主要包括化學(xué)沉淀[1]、離子交換[2]、物理吸附[3]、膜分離[4]和高級(jí)氧化(如光電催化[5-6]、臭氧氧化[7]和(類(lèi))芬頓氧化[8-9])等方法。其中以芬頓(Fenton)工藝應(yīng)用最為廣泛[10]。但反應(yīng)過(guò)程中鐵源的介入及Fe2+/Fe3+的循環(huán)轉(zhuǎn)化也導(dǎo)致了該方法存在氧化效率低、出水電導(dǎo)率及產(chǎn)泥量高等諸多缺陷[11]。
近年來(lái),微波(microwave,MW)輔助高級(jí)氧化工藝在水處理領(lǐng)域受到國(guó)內(nèi)外學(xué)者廣泛關(guān)注。研究表明,微波可實(shí)現(xiàn)分子水平加熱,具有降低極性分子反應(yīng)活化能和提高污染物處理效率等特點(diǎn)[12]。將微波與過(guò)氧化氫耦合(MW-H2O2),可強(qiáng)化H2O2解離生成?OH,并提高H2O2利用率,適用于陽(yáng)離子染料[12]、苯酚[13]、磺化芳香化合物[14]、農(nóng)藥[15]等諸多難降解有機(jī)污染物的氧化降解。由于僅添加H2O2氧化劑,MW-H2O2工藝避免了Fe2+的二次污染及污泥產(chǎn)生,具有克服傳統(tǒng)Fenton工藝缺陷的潛在優(yōu)勢(shì)。
截止目前,利用 MW-H2O2工藝處理含Cu-EDTA廢水尚未有所報(bào)道。本文通過(guò)小試實(shí)驗(yàn),探索MW-H2O2工藝氧化降解含Cu-EDTA廢水的可行性。考察了反應(yīng)時(shí)間、初始 pH、H2O2投加量、微波功率以及共存物質(zhì)等因素對(duì)工藝處理效能的影響,并從去除效率、產(chǎn)泥量和出水電導(dǎo)率等方面與傳統(tǒng)Fenton工藝進(jìn)行對(duì)比,為實(shí)際化學(xué)鍍銅廢水的綠色高效處理提供理論依據(jù)。
主要試劑包括:五水硫酸銅(CuSO4·5H2O,分析純,天津光復(fù)化學(xué)試劑廠(chǎng));乙二胺四乙酸二鈉(C10H16N2O8Na2,分析純,阿拉丁試劑有限公司);過(guò)氧化氫(H2O2,分析純,體積分?jǐn)?shù)30%,阿拉丁試劑有限公司);七水硫酸亞鐵(FeSO4·7H2O,分析純,阿拉丁試劑有限公司);草酸鈦鉀(分析純,阿拉丁試劑有限公司)等。
(1)模擬廢水配制:稱(chēng)取1.57 g CuSO4·5H2O和2.34 g C10H16N2O8Na2溶于4 L去離子水中,配制1.57 mmol·L-1Cu-EDTA 溶液,其中 Cu(Ⅱ)與 EDTA的摩爾比為 1:1。
(2)MW-H2O2工藝:量取100 ml Cu-EDTA溶液于250 ml錐形瓶,通過(guò)5% H2SO4或10% NaOH調(diào)節(jié)溶液pH,加入適量H2O2迅速搖勻后,置于微波化學(xué)反應(yīng)器(WBFY-201,鞏義市科瑞儀器,中國(guó))中進(jìn)行反應(yīng)。定時(shí)取樣,過(guò)0.45 μm濾膜后測(cè)定出水電導(dǎo)率、pH、NH3-N和H2O2濃度;調(diào)節(jié)試樣pH至10,經(jīng)沉淀過(guò)膜后測(cè)定TOC和Cu濃度。
(3)Fenton工藝:量取100 ml Cu-EDTA溶液于250 ml錐形瓶,調(diào)節(jié)溶液pH并加入適量FeSO4及H2O2,迅速搖勻后置于常溫下反應(yīng)。取樣及分析方法同MW-H2O2工藝。
TOC和IC濃度采用總有機(jī)碳檢測(cè)儀(TOC-L CPN,島津分析儀器,日本)進(jìn)行測(cè)定,其中在酒石酸存在情況下,考慮其本身所含有機(jī)物對(duì) TOC去除率的影響;利用電感耦合等離子體(Optima8000,PE,美國(guó))測(cè)定Cu濃度;出水電導(dǎo)率通過(guò)電導(dǎo)率儀(FE30K,梅特勒-托利多,瑞士)進(jìn)行測(cè)定;采用便攜式pH測(cè)量?jī)x(pH100,YSI,美國(guó))測(cè)定溶液pH;基于納氏試劑分光光度法和草酸鈦鉀分光光度法,利用紫外-可見(jiàn)光光度計(jì)(UV2600,島津分析儀器,日本)測(cè)定NH3-N和H2O2濃度,并在190~400 nm波長(zhǎng)范圍內(nèi)進(jìn)行紫外-可見(jiàn)光光譜掃描;使用X射線(xiàn)光電能譜儀(XPS,PHI 5000 VersaProbe II,ULVAC-PHI,日本)及原位X射線(xiàn)粉末衍射儀(XRD,D8 advance,布魯克光譜,德國(guó))進(jìn)行污泥組分分析;產(chǎn)泥量通過(guò)烘干稱(chēng)重法進(jìn)行測(cè)定。
溶液pH直接決定反應(yīng)過(guò)程中重金屬的形態(tài)分布、催化劑的反應(yīng)活性及過(guò)氧化氫的穩(wěn)定性。當(dāng)Cu-EDTA初始濃度為1.57 mmol·L-1,H2O2投加量為41 mmol·L-1,微波功率為210 W,反應(yīng)時(shí)間為10 min時(shí),初始pH(pH0)對(duì)MW-H2O2工藝處理效率的影響如圖1所示。由圖可知,受溶液pH、微波效應(yīng)、重金屬絡(luò)合物形態(tài)變化[16]及過(guò)渡金屬催化[17-18]等因素綜合作用,反應(yīng)過(guò)程中Cu和TOC去除率的變化較為復(fù)雜。但反應(yīng)10 min后,其最終去除率隨pH0的增加均呈先升后降的趨勢(shì),并在pH0為3時(shí)達(dá)到最佳,分別為97.1%和60.6%。結(jié)合相關(guān)文獻(xiàn)可以推斷,pH0較低時(shí),受過(guò)量H+影響,H2O2發(fā)生無(wú)效損耗[式(1)]并生成反應(yīng)活性較低的水合氫離子[式(2)][19],無(wú)法促成Cu-EDTA的有效降解,因而表現(xiàn)出較低的去除率。當(dāng)pH0增加至3時(shí),經(jīng)微波及Cu2+催化作用,H2O2可實(shí)現(xiàn)?OH的穩(wěn)定轉(zhuǎn)化[式(3)~式(7)],且 Cu-EDTA 質(zhì)子化產(chǎn)物CuHEDTA-更易與?OH結(jié)合,促進(jìn)Cu和TOC的去除[7]。pH0大于3時(shí),體系去除率明顯降低,主要?dú)w因于(1)偏中性和堿性條件?OH氧化還原電位(E0)逐漸衰減[20];(2)pH0高于4.2時(shí),游離態(tài)Cu(Ⅱ)逐漸沉淀,導(dǎo)致羥基自由基產(chǎn)生量不斷減少;(3)堿性條件下氧化中間產(chǎn)物Cu(Ⅲ)成為主要活性物質(zhì),較?OH而言其活性偏低[21],不利于氧化破絡(luò)和有機(jī)碳礦化的進(jìn)行。
圖1 初始pH對(duì)Cu和TOC去除效能的影響Fig.1 Effect of initial pH on removal efficiencies of Cu and TOC in MW-H2O2 systems(Cu-EDTA initial concentration=1.57 mmol·L-1,H2O2 dosage=41 mmol·L-1,micowave power=210 W)
圖2 H2O2投加量對(duì)Cu和TOC去除效能的影響Fig.2 Effect of H2O2 dosage on removal efficiencies of Cu and TOC in MW-H2O2 systems (Cu-EDTA initial concentration=1.57 mmol·L-1,initial pH=3,microwave power=210 W)
在 Cu-EDTA 初始濃度為 1.57 mmol·L-1,pH0為3,微波功率為210 W,反應(yīng)時(shí)間為10 min條件下,考察H2O2投加量對(duì)MW-H2O2工藝處理效率的影響。如圖2所示,當(dāng)H2O2投加量從8 mmol·L-1增加至41 mmol·L-1時(shí),Cu去除率從55.0%提高至96.9%,TOC去除率從29.9%上升至60.6%??梢钥闯?,適量濃度的H2O2有利于體系氧化效能的提高。過(guò)量 H2O2易與?OH 發(fā)生副反應(yīng)[式(8)~式(10)],對(duì) TOC去除率的進(jìn)一步提高具有抑制效應(yīng)[22],但對(duì) Cu去除率影響較小。該條件下兩者的變化差異主要?dú)w因于不同的去除機(jī)理。Kabda?l?等[23]認(rèn)為僅通過(guò)氧化部分有機(jī)物,即可破壞金屬-絡(luò)合物間的配位鍵,從而促進(jìn)絡(luò)合態(tài)重金屬向游離態(tài)轉(zhuǎn)變。因此,相對(duì)于有機(jī)物的完全礦化,絡(luò)合態(tài)重金屬的游離需要較少的羥基自由基。在本研究中,H2O2泯滅情況下產(chǎn)生的羥基自由基仍能滿(mǎn)足絡(luò)合體系的破絡(luò),但削弱了 TOC的去除能力,因而表現(xiàn)出不同氧化特性。綜合污染物去除效率及經(jīng)濟(jì)性考慮,確定該初始條件下的最佳H2O2投加量為41 mmol·L-1。
在Cu-EDTA初始濃度為1.57 mmol·L-1,H2O2投加量為 41 mmol·L-1,pH0為 3,反應(yīng)時(shí)間為 10 min時(shí),微波功率對(duì)體系中Cu和TOC去除效率的影響如圖 3(a)、(b)所示。隨著微波功率的增強(qiáng),污染物分子熱運(yùn)動(dòng)加劇,反應(yīng)體系升溫速率明顯加快,達(dá)到沸騰溫度所需的時(shí)間迅速縮短[圖3(c)]。Liu等[24]認(rèn)為高溫條件有利于加速H2O2解離形成?OH,增加污染物分子與?OH間的反應(yīng)概率。因此,該反應(yīng)階段(即0~6 min范圍內(nèi))微波功率的增強(qiáng)對(duì)體系中Cu和TOC的去除具有促進(jìn)作用。然而,恒定溫度條件下(即6~10 min范圍內(nèi)),微波功率的增強(qiáng)并未明顯改變Cu和TOC的去除效率,當(dāng)微波功率高于210 W時(shí)甚至表現(xiàn)出一定的降解抑制作用,這可能是由于在高微波功率下反應(yīng)體系劇烈的分子熱運(yùn)動(dòng)導(dǎo)致?OH之間的自由基終止反應(yīng)。Zalat等[25]指出,微波的致熱效應(yīng)主要源于水及極性分子對(duì)微波能量的吸收,而非熱效應(yīng)則對(duì)應(yīng)于溫度及其他過(guò)程參數(shù)恒定條件下反應(yīng)體系化學(xué)、生化或物理行為的改變??梢钥闯?,MW-H2O2工藝氧化降解Cu-EDTA過(guò)程中,微波具有雙重作用??紤]到高功率微波的能耗及其抑制作用,確定最佳微波功率為210 W。
圖3 微波功率對(duì)Cu和TOC去除效能的影響及反應(yīng)體系溫度的變化Fig.3 Effect of microwave power on removal efficiencies of Cu and TOC in MW-H2O2 systems and corresponding variation of temperature (Cu-EDTA initial concentration=1.57 mmol·L-1,initial pH=3,H2O2 dosage=41 mmol·L-1)
由圖4可知,Cl-存在情況下,反應(yīng)初期(< 4 min)Cu和TOC去除率明顯降低,可能是因?yàn)镃l-與Cu-EDTA氧化破絡(luò)釋放的游離態(tài)Cu2+反應(yīng)生成CuCl+、CuCl2等絡(luò)合物,阻礙Cu2+催化H2O2產(chǎn)生?OH[26];隨著體系溫度不斷上升,上述絡(luò)合物逐漸失穩(wěn)而重新解離,因此最終去除率與對(duì)照組幾乎無(wú)差異。理論上,在酸性條件下,可以與 Cu+發(fā)生氧化反應(yīng),降低?OH 生成量[式(11)],對(duì)有機(jī)物的氧化降解具有抑制作用。然而,隨著反應(yīng)的進(jìn)行,不斷被消耗并以NO2氣態(tài)形式逸出,表現(xiàn)為抑制作用的逐漸削減。在微波輻射作用下,Cu-EDTA的氧化破絡(luò)過(guò)程受干擾較小,Cu和TOC去除率變化趨勢(shì)幾乎與對(duì)照組完全一致。由于具有還原性,易與Cu-EDTA爭(zhēng)奪?OH[27],并被氧化為次磷酸根和磷酸根,因此反應(yīng)初期 Cu及TOC去除率相對(duì)較低;而反應(yīng)4 min后去除速率大幅增加,與對(duì)照組相比最終去除率略有提高,可能是因?yàn)?Cu2+與磷酸根生成的淡藍(lán)色Cu3(PO4)2沉淀在微波作用下具有“熱點(diǎn)”效應(yīng)[28],從而增強(qiáng)了體系的氧化效能。
圖4 共存物質(zhì)對(duì)Cu和TOC去除效能的影響Fig.4 Effect of coexistent substances on removal efficiencies of Cu and TOC in MW-H2O2 systems (Cu-EDTA initial concentration=1.57 mmol·L-1,initial pH=3,H2O2 dosage=41 mmol·L-1,microwave power=210 W)
酒石酸作為有機(jī)絡(luò)合劑,可以與Cu形成多配體絡(luò)合物,不利于Cu以及TOC的去除;同時(shí)由于親電子劑?OH幾乎可以與富電子有機(jī)化合物進(jìn)行非選擇性反應(yīng)[28],因此自身氧化降解過(guò)程中,酒石酸將競(jìng)爭(zhēng)性消耗?OH,從而導(dǎo)致Cu-EDTA氧化降解過(guò)程中Cu和TOC去除效率的顯著降低。
為進(jìn)一步了解MW-H2O2工藝處理Cu-EDTA的反應(yīng)機(jī)制,在Cu-EDTA初始濃度為1.57 mmol·L-1,pH0為 3,H2O2投加量為 41 mmol·L-1,微波功率為210 W情況下,考察了Cu-EDTA降解過(guò)程中紫外-可見(jiàn)光吸收光譜隨時(shí)間的變化,結(jié)果如圖5所示。Cu-EDTA紫外特征吸收峰位于240 nm附近[29],主要?dú)w因于重金屬-有機(jī)絡(luò)合物體系中電子給體EDTA與電子受體Cu(Ⅱ)間產(chǎn)生的電荷轉(zhuǎn)移躍遷。經(jīng)MW-H2O2工藝氧化處理3 min后,該特征峰吸光度略有減少,表明部分 Cu-EDTA絡(luò)合體系已被破壞。當(dāng)反應(yīng)時(shí)間延長(zhǎng)至4 min時(shí),240 nm處特征峰基本消失,主要特征吸收峰藍(lán)移至210 nm附近,并在240 nm處伴有肩峰產(chǎn)生。Xu等[21]認(rèn)為前者主要?dú)w屬于Cu-ED2A和Cu-EDMA,而后者主要?dú)w屬于 Cu-IMDA和 Cu-NTA??梢酝茰y(cè),在該階段Cu-EDTA幾乎被完全氧化,并生成 Cu-ED2A、Cu-EDMA、Cu-IMDA和Cu-NTA等多種中間產(chǎn)物。微波作用 4~6 min范圍內(nèi),上述中間產(chǎn)物大幅降解,表現(xiàn)為主要特征吸收峰的不斷藍(lán)移及肩峰吸光度的顯著降低,這與最佳條件下Cu和TOC的快速去除相吻合。當(dāng)反應(yīng)時(shí)間達(dá)到8~10 min時(shí),反應(yīng)基本達(dá)到平衡,僅206 nm處存在特征吸收峰。Huang等[7]指出,Cu-EDTA的降解路徑主要是去羧基化,在礦化不徹底時(shí)生成羧酸類(lèi)中間產(chǎn)物(如水合乙醛酸、草酸等)。因此,反應(yīng)體系中仍有部分羧酸類(lèi)物質(zhì)未完全降解,這與TOC最終去除效率(60.7%)相一致。
圖5 Cu-EDTA降解過(guò)程紫外吸收光譜變化Fig.5 Variations of ultraviolet adsorption spectrums of Cu-EDTA oxidized by MW-H2O2 process(Cu-EDTA initial concentration=1.57 mmol·L-1,initial pH=3,H2O2 dosage=41 mmol·L-1,microwave power=210 W)
Cu-EDTA氧化降解過(guò)程中對(duì)應(yīng)的氨氮(NH3-N)、無(wú)機(jī)碳濃度(IC)和pH變化如圖6所示。隨著反應(yīng)時(shí)間的增加,NH3-N濃度不斷累積。在微波作用2~4 min時(shí)其增長(zhǎng)速率最為明顯,表明經(jīng)微波作用,Cu-EDTA分子結(jié)構(gòu)中—N—(CH2—COOH)—官能團(tuán)優(yōu)先發(fā)生N—C斷裂生成水合乙醛酸,并進(jìn)一步氧化降解形成 NH3-N;而反應(yīng)后期NH3-N濃度的增長(zhǎng)則主要?dú)w因于Cu-EDTA脫酸中間產(chǎn)物形成的小分子有機(jī)酸的進(jìn)一步降解。對(duì)應(yīng)于NH3-N濃度的變化,反應(yīng)體系pH從初始值3自發(fā)增長(zhǎng)至8,可以推測(cè)其增加原因主要是NH3-N的生成以及脫酸中間體的質(zhì)子化作用[7,30]。此外,IC隨時(shí)間增加呈緩慢增長(zhǎng)趨勢(shì),表明有機(jī)物礦化產(chǎn)生的CO2對(duì)反應(yīng)體系pH的變化影響較小。
圖6 Cu-EDTA氧化降解過(guò)程N(yùn)H3-N、IC濃度及pH變化Fig.6 Variations of NH3-N,IC and pH in MW-H2O2 systems for Cu-EDTA treatment(Cu-EDTA initial concentration=1.57 mmol·L-1,initial pH=3,H2O2 dosage=41 mmol·L-1,microwave power=210 W)
對(duì)MW-H2O2工藝污泥產(chǎn)物組成進(jìn)行了XPS分析,結(jié)果如圖7(a)所示。由圖7(a)可知,沉淀產(chǎn)物主要由Cu和O兩種元素構(gòu)成,其中Cu元素結(jié)合能在933.6和953.7 eV處存在顯著特征峰,且在962.2和941.4 eV處具有明顯的震激伴峰[圖7(b)],表明Cu元素主要以+2價(jià)形式存在[31-32]。O元素結(jié)合能在529.9eV處存在最高吸收峰,對(duì)應(yīng)于CuO中O的結(jié)合能[1,33],因此推斷沉淀污泥的主要成分為CuO。
此外,污泥產(chǎn)物的XRD譜圖如圖8所示。通過(guò)MDI-Jade軟件分析,其與CuO晶型理論衍射峰基本相同[21],這與XPS結(jié)果相一致。綜合上述結(jié)論,推測(cè)在Cu-EDTA降解過(guò)程中,絡(luò)合態(tài)Cu逐漸轉(zhuǎn)換為游離態(tài)Cu,并形成氫氧化物沉淀,但受微波致熱效應(yīng)影響,Cu(OH)2在高溫條件下分解為 CuO與 H2O[34]。
在 Cu-EDTA 濃度為 1.57 mmol·L-1,初始 pH為3,H2O2投加量為41 mmol·L-1,反應(yīng)時(shí)間為10 min同等條件下,從氧化效能、出水電導(dǎo)率、產(chǎn)泥量及H2O2殘余濃度角度,綜合對(duì)比MW-H2O2工藝(微波功率為210 W)與Fenton工藝(Fe2+濃度為26.8 mmol·L-1)處理性能。
圖7 污泥產(chǎn)物的XPS全譜及Cu元素窄譜Fig.7 Full XPS spectrum of sludge formed in MW-H2O2 process and narrow spectrum of Cu element(Cu-EDTA initial concentration=1.57 mmol·L-1,initial pH=3,H2O2 dosage=41 mmol·L-1,microwave power=210 W)
圖8 污泥產(chǎn)物的XRD譜圖Fig.8 XRD pattern of sludge formed in MW-H2O2 process(Cu-EDTA initial concentration=1.57 mmol·L-1,initial pH=3,H2O2 dosage=41 mmol·L-1,microwave power=210 W)
如表1所示,相比Fenton工藝,MW-H2O2工藝表現(xiàn)出對(duì)過(guò)氧化氫的高效利用,具有優(yōu)越的氧化效能,反應(yīng)10 min后Cu和TOC去除率高達(dá)97.0%和60.7%。由于未額外投加Fe2+催化劑,其出水電導(dǎo)率及產(chǎn)泥量均較低,分別為 1.8 mS·cm-1和0.15 g·L-1,這無(wú)疑有利于生化反應(yīng)及污泥的后續(xù)處理。因此,針對(duì)含Cu-EDTA廢水的氧化處理,MW-H2O2工藝較傳統(tǒng)Fenton更具優(yōu)勢(shì)。
表1 不同工藝處理Cu-EDTA的氧化效能、出水電導(dǎo)率、產(chǎn)泥量及過(guò)氧化氫殘余濃度比較Table 1 Comparison of oxidation efficiency,effluent conductivity,sludge yield and residual H2O2 concentration in different systems for Cu-EDTA treatment
(1)采用 MW-H2O2工藝處理 1.57 mmol·L-1Cu-EDTA,當(dāng)初始 pH 為 3,H2O2投加量為 41 mmol·L-1,微波功率為210 W時(shí),反應(yīng)時(shí)間10 min后Cu和TOC去除率分別達(dá)到97.1%和60.6%,出水電導(dǎo)率低至 1.8 mS·cm-1,產(chǎn)泥量?jī)H為 0.15 g·L-1。
(3)微波作用4 min后,Cu-EDTA基本完全氧化,并生成多種中間降解產(chǎn)物,其在4~6 min內(nèi)急劇降解,最終形成小分子羧酸類(lèi)物質(zhì)、NH3-N和無(wú)機(jī)碳;反應(yīng)過(guò)程沉淀產(chǎn)物主要以CuO形式存在。
(4)與傳統(tǒng)Fenton工藝相比,MW-H2O2工藝在氧化效能、出水電導(dǎo)率及產(chǎn)泥量等方面表現(xiàn)出顯著優(yōu)勢(shì),可克服其存在的諸多缺陷。
[1]SHIH Y J,LIN C P,HUANG Y H.Application of Fered-Fenton and chemical precipitation process for the treatment of electroless nickel plating wastewater[J].Separation and Purification Technology,2013,104:100-105.
[2]PRIYA P G,BASHA C A,RAMAMURTHI V,et al.Recovery and reuse of Ni(II) from rinsewater of electroplating industries[J].Journal of Hazardous Materials,2009,163:899-909.
[3]LEE C G,LEE S,PARK J A,et al.Removal of copper,nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam[J].Chemosphere,2017,166:203-211.
[4]HOSSEINI S S,BRINGAS E,TAN N R,et al.Recent progress in development of high performance polymeric membranes and materials for metal plating wastewater treatment:a review[J].Journal of Water Process Engineering,2016,9:78-110.
[5]AL-SHANGNAG M,AL-QODAH Z,BANI-MELHEM K,et al.Heavy metal ions removal from metal plating wastewater using electrocoagulation:kinetic study and process performance[J].Chemical Engineering Journal,2015,260:749-756.
[6]MOUSSAVI G,JIANNI F,SHEKOOHIYAN S.Advanced reduction of Cr(Ⅵ) in real chrome-plating wastewater using a VUV photoreactor:batch and continuous-flow experiments[J].Separation and Purification Technology,2015,151:218-224.
[7]HUANG X F,XU Y,SHAN C,et al.Coupled Cu(Ⅱ)-EDTA degradation and Cu(Ⅱ) removal from acidic wastewater by ozonation:performance,products and pathways[J].Chemical Engineering Journal,2016,299:23-29.
[8]LI T,WANG H J,DONG W Y,et al.Phosphate removal during Fe(Ⅱ)oxidation in the presence of Cu(Ⅱ):characteristics and application for electro-plating wastewater treatment[J].Separation and Purification Technology,2014,132:388-395.
[9]KABDA?LI I,ARSLAN T,ARSLAN-ALATON I,et al.Organic matter and heavy metal removals from complexed metal plating effluent by the combined electrocoagulation/Fenton process[J].Water Science & Technology,2010,61:2617-2624.
[10]BABUPONNUSAMI A,MUTHUKUMAR K.A review on Fenton and improvements to the Fenton process for wastewater treatment[J].Journal of Environmental Chemical Engineering,2014,2:557-572.
[11]PLIEGO G,ZAZO J A,GARCIA-MU?OZ P,et al.Trends in the intensification of the Fenton process for wastewater treatment:an overview[J].Critical Reviews in Environmental Science and Technology,2015,45:2611-2692.
[12]JU Y M,YANG S G,DING Y C,et al.Microwave-enhanced H2O2-based process for treating aqueous malachite green solutions:intermediates and degradation mechanism[J].Journal of Hazardous Materials,2009,171(1/2/3):123-132.
[13]PRASANNAKUMAR B R,REGUPATHI I,MURUGESAN T.An optimization study on microwave irradiated decomposition of phenol in the presence of H2O2[J].Journal of Chemical Technology &Biotechnology,2009,84(1):83-91.
[14]RAVERA M,BUICO A,GOSETTI F,et al.Oxidative degradation of 1,5-naphthalenedisulfonic acid in aqueous solutions by microwave irradiation in the presence of H2O2[J].Chemosphere,2009,74(10):1309-1314.
[15]BI X Y,YANG H Y,SUN P S.Microwave-induced oxidation progress for treatment of imidacloprid pesticide wastewater[J].Applied Mechanics & Materials,2012,229/230/231:2489-2492.
[16]馬瑩瑩.銅類(lèi)芬頓反應(yīng)對(duì)電鍍廢水中有機(jī)物降解的研究[D].南昌:南昌航空大學(xué),2016:72.MA Y Y.Study on degradation of organic pollutants in electroplating waste water by Fenton-like reaction catalyzed by copper ions[D].Nanchang:Nanchang Hangkong University,2016:72.
[17]WANG N N,ZHENG T,JIANG J,et al.Cu(Ⅱ)-Fe(Ⅱ)-H2O2oxidative removal of 3-nitroaniline in water under microwave irradiation[J].Chemical Engineering Journal,2015,260:386-392.
[18]ZHONG X,BARBIER J,DUPREZ D,et al.Modulating the copper oxide morphology and accessibility by using micro-/mesoporous SBA-15 structures as host support:effect on the activity for the CWPO of phenol reaction[J].Applied Catalysis B:Environmental,2012,121:123-134.
[19]NIDHEESH P V,GANDHINATHI R.Trends in electro-Fenton process for water and wastewater treatment:an overview[J].Desalination,2012,299:1-15.
[20]KIM S M,VOGELPOHL A.Degradation of organic pollutants by the photo-Fenton-process[J].Chemical Engineering Technology,1998,21(2):187-191.
[21]XU Z,SHAN C,XIE B H,et al.Decomplexation of Cu(Ⅱ)-EDTA by UV/persulfate and UV/H2O2:efficiency and mechanism[J].Applied Catalysis B:Envrionmental,2017,200:439-447.
[22]SUN J H,SUN S P,FAN M H,et al.A kinetic study on the degradation ofp-nitroaniline by Fenton oxidation process[J].Journal of Hazardous Materials,2007,148(1/2):172-177.
[23]KABDA?LI I,ARSLAN T,?LMEZ-HANCI T,et al.Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes[J].Journal of Hazardous Materials,2009,165(1/2/3):838-845.
[24]LIU S T,HUANG J,YE Y,et al.Microwave enhanced Fenton process for the removal of methylene blue from aqueous solution[J].Chemical Engineering Journal,2013,215/216:586-590.
[25]ZALAT O A,ELSAYED M A.A study on microwave removal of pyridine from wastewater[J].Journal of Environmental Chemical Engineering,2013,1:137-143.
[26]STASINAKIS A S.Use of selected advanced oxidation processes(AOPs) for wastewater treatment—a mini review[J].Global NEST Journal,2008,10(3):376-385.
[27]馬瑩瑩,吳躍輝,李錦衛(wèi),等.鍍銅廢水中Cu-H2O2體系氧化降解硝基苯[J].環(huán)境工程學(xué)報(bào),2016,10(9):4775-4782.MA Y Y,WU Y H,LI J W,et al.Oxidative degradation of nitrobenzene catalyzed by Cu2+-H2O2system in copper rinse water[J].Chinese Journal of Environmental Engineering,2016,10(9):4775-4782.
[28]WANG N N,WANG P.Study and application status of microwave in organic wastewater treatment—a review[J].Chemical Engineering Journal,2016,283:193-214.
[29]孟令芝,龔淑玲,何永炳,等.有機(jī)波譜分析[M].4版.武漢:武漢大學(xué)出版社,2016:330-338.MENG L Z,GONG S L,HENG Y B,et al.Organic Spectrum Analysis[M].4th ed.Wuhan:Wuhan University Press,2016:335-338.
[30]ZHAO X,GUO L,ZHANG B,et al.Photoelectrocatalytic oxidation of Cu(Ⅱ)-EDTA at the TiO2electrode and simultaneous recovery of Cu(Ⅱ) by electrodeposition[J].Environmental Science & Technology,2013,47(9):4480-4488.
[31]MOULDER J F,STICKLE W F,SOBOL P E.Handbook of X-Ray Photoelectron Spectrometers[M].Minnesota:Perkin-Elemer Corporation Physical Electronics Division,1992:32-35
[32]VASQUEZ R P.CuO by XPS[J].Surface Science Spectra,1998,5(4):262-266.
[33]LAN S,XIONG Y,TIAN S,et al.Enhanced self-catalytic degradation of Cu-EDTA in the presence of H2O2/UV:evidence and importance of Cu-peroxide as a photo-active intermediate[J].Applied Catalysis B:Environmental,2016,183:371-376.
[34]AKHAVAN O,AZIMIRAD R,SAFA S,et al.CuO/Cu(OH)2hierarchical nanostructures as bactericidal photocatalysts[J].Journal of Materials Chemistry,2011,21(26):9634.
date:2017-06-15.
Dr.ZHAO Zilong,berthillon@hotmail.com
supported by the Urban Water Pollution Control and Management Generic Technology Integrated Program (2012ZX07206-002)and the Knowledge Innovation Program of Shenzhen Basic Research Project(JCYJ20160318093930497).
Treatment of Cu-EDTA containing wastewater by microwave-H2O2process
WANG Hongjie1,2,CAO Zhe1,2,ZHAO Zilong1,2,DONG Wenyi1,2
(1School of Civil and Environmental Engineering,Harbin Institute of Technology Shenzhen Graduate School,Shenzhen518055,Guangdong,China;2Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control,Shenzhen518055,Guangdong,China)
In the present study,microwave-H2O2(MW-H2O2) process was applied for the treatment of Cu-EDTA containing wastewater.The effects of reaction time,initial pH,H2O2dosage,microwave power and coexistent substances were investigated in detail.The corresponding degradation mechanism of Cu-EDTA was also described.The results showed that for the elimination of 1.57 mmol·L-1Cu-EDTA,the highest removal efficiencies of Cu(97.0%) and TOC (60.7%) were achieved under the optimum conditions (i.e.initial pH 3,H2O2dosage 41 mmol·L-1,microwave power 210 W,and reaction time 10 min).In this situation,the effluent conductivity decreased to 1.8 mS·cm-1,and only 0.15 g·L-1of the sludge yield was generated.The presence of coexistent substances such ashad nearly no effects on the degradation processes,while Cl-,and tartaric acid were unfavorable to the oxidation degradation of Cu-EDTA.After treated for 4 min,Cu-EDTA was almost totally oxidized to various Cu-intermediates,which rapidly degraded within 4—6 min,leading to the final formation of low molecular organic acids,NH3-N,and inorganic carbon.The solid sludge mainly presented in the forms of CuO.Compared with traditional Fenton process,MW-H2O2process exhibited more excellent performance in terms of oxidation efficiency,effluent conductivity and sludge yield.
microwave- hydrogen peroxide; Cu-EDTA; oxidation; wastewater; Fenton; pollution
X 78
A
0438—1157(2017)12—4756—08
10.11949/j.issn.0438-1157.20170776
2017-06-15收到初稿,2017-08-11收到修改稿。
聯(lián)系人:趙子龍。
王宏杰(1983—),男,博士,副研究員。
國(guó)家水體污染控制與治理科技重大專(zhuān)項(xiàng)(2012ZX07206-002);深圳市科技計(jì)劃項(xiàng)目(JCYJ20160318093930497)。