賈淑媛,王淑瑩,趙驥,李夕耀,張瓊,彭永臻
(北京工業(yè)大學(xué),國家工程實(shí)驗(yàn)室,北京市水質(zhì)科學(xué)與水環(huán)境恢復(fù)工程重點(diǎn)實(shí)驗(yàn)室,北京 100124)
賈淑媛,王淑瑩,趙驥,李夕耀,張瓊,彭永臻
(北京工業(yè)大學(xué),國家工程實(shí)驗(yàn)室,北京市水質(zhì)科學(xué)與水環(huán)境恢復(fù)工程重點(diǎn)實(shí)驗(yàn)室,北京 100124)
在序批式(sequencing batch reactor,SBR)反應(yīng)器中,通過分段厭氧-好氧(厭氧后排水)運(yùn)行方式,在以葡萄糖為碳源、P/C比小于2/100的條件下,成功實(shí)現(xiàn)了聚糖菌(glycogen accumulating organisms,GAOs)的馴化富集,厭氧段磷酸鹽的釋放量(phosphorus release amounts,PRA)穩(wěn)定在1.0 mg·L-1以內(nèi),胞內(nèi)糖原(glycogen,gly)含量是初始階段的1.2倍。馴化后的GAOs分別以為電子受體經(jīng)厭氧-缺氧運(yùn)行方式,可進(jìn)行內(nèi)源反硝化反應(yīng)過程。GAOs在內(nèi)源反硝化過程中依次利用胞內(nèi)的聚β-羥基戊酸酯(poly-β-hydroxyvalerate,PHV)、聚β-羥基丁酸酯(poly-β-hydroxyvalerate,PHB)和gly作為內(nèi)碳源。在22℃時(shí),反硝化聚糖菌(denitrifying glycogen accumulating organisms,DGAOs)以為電子受體平均比內(nèi)源反硝化速率分別為0.067 g N·(g VSS)-1·d-1、0.023 g N·(g VSS)-1·d-1,常溫短程內(nèi)源反硝化速率約是全程內(nèi)源反硝化速率的3倍。
聚糖菌;厭氧;需氧;曝氣;富集;內(nèi)源反硝化
富營養(yǎng)化已經(jīng)成為我國面臨的重要環(huán)境問題之一,水體中氮磷污染易引起富營養(yǎng)化。強(qiáng)化生物除磷(enhanced biological phosphate removal,EBPR)工藝是目前行之有效的生物除磷工藝[1],被廣泛接受和認(rèn)可。該工藝厭氧-好氧交替運(yùn)行以富集聚磷菌(phosphorus accumulating organisms,PAOs)[2]。在厭氧階段,PAOs吸收水中的可揮發(fā)性脂肪酸(volatile fatty acids,VFAs)以聚β-羥基烷酸(poly-β-hydroxyalkanoates,PHA)的形式貯存于細(xì)胞內(nèi)。細(xì)胞內(nèi)聚磷(polyphosphates,Poly-P)水解和糖原酵解為該過程提供能量和還原力,水解的磷酸鹽釋放,導(dǎo)致水體中磷含量升高。在好氧階段,PAOs氧化分解細(xì)胞內(nèi)的PHA,過量地吸收正磷酸鹽,完成糖原合成和細(xì)胞生長,通過排放剩余污泥完成系統(tǒng)除磷。同時(shí),部分PAOs能在缺氧條件下以硝酸鹽氮為電子受體,分解胞內(nèi) PHA吸收正磷酸鹽,這類菌被稱為反硝化聚磷菌(denitrifying phosphorus accumulating organisms,DPAOs)。研究表明DPAOs和PAOs非常相似,甚至可能是同一微生物類型[3]。
但有文獻(xiàn)曾報(bào)道,即使在有利于EBPR系統(tǒng)運(yùn)行的條件下,除磷效果惡化的現(xiàn)象也時(shí)有發(fā)生[4-7]。近年來研究表明,在EBPR系統(tǒng)中除PAOs外還有一類微生物——聚糖菌(glycogen accumulating organisms,GAOs)[8]。厭氧時(shí) GAOs吸收 VFAs合成PHA但不釋磷;好氧時(shí)分解PHA合成gly而不積聚磷,對(duì)除磷沒有貢獻(xiàn)。Liu等[5]實(shí)驗(yàn)發(fā)現(xiàn),通過控制進(jìn)水中的磷濃度與基質(zhì)濃度之比(P/C)可以富集培養(yǎng)GAOs。類似DPAOs,在缺氧環(huán)境下也存在反硝化聚糖菌(denitrifying glycogen accumulating organisms,DGAOs)以硝酸鹽氮為電子受體,分解胞內(nèi)儲(chǔ)藏的PHA,以達(dá)到脫氮的目的[9-11]。但目前對(duì)于馴化后的 GAOs內(nèi)源反硝化過程的研究未見報(bào)道。
本文首先通過控制進(jìn)水P/C比[5],在分段厭氧-好氧的運(yùn)行方式下,以葡萄糖為碳源,培養(yǎng)聚糖菌為優(yōu)勢(shì)菌種;然后分別以亞硝酸鹽氮和硝酸鹽氮作為電子受體,利用馴化后的GAOs進(jìn)行內(nèi)碳源反硝化脫氮,使系統(tǒng)成功啟動(dòng)并穩(wěn)定運(yùn)行;最后確定了不同電子受體條件下內(nèi)碳源反硝化速率和內(nèi)碳源利用量。
試驗(yàn)在序批式反應(yīng)器(SBR)中進(jìn)行。母反應(yīng)器(編號(hào)為0#)為富集GAOs使用,批次試驗(yàn)反應(yīng)器(編號(hào)分別為 1#、2#)為不同電子受體 DGAOs內(nèi)源反硝化使用,反應(yīng)器由圓柱形有機(jī)玻璃制成。
0#SBR反應(yīng)器有效容積為10 L,排水比為0.4。在反應(yīng)器壁的垂直方向設(shè)置取樣、進(jìn)水和出水口。采用蠕動(dòng)泵進(jìn)水、重力排水。厭氧階段采用IKA機(jī)械攪拌器攪拌使活性污泥處于懸浮狀態(tài);好氧階段采用空氣壓縮機(jī)將空氣鼓入反應(yīng)器中。反應(yīng)器在富集培養(yǎng)階段采用分段厭氧-好氧運(yùn)行方式,每天連續(xù)運(yùn)行3個(gè)周期,每個(gè)周期480 min。通過時(shí)間控制器自動(dòng)控制,具體運(yùn)行方式如圖1所示。此運(yùn)行方式的特點(diǎn)在于在厭氧階段結(jié)束后,將厭氧階段富含磷的上清液排出系統(tǒng),之后再加入不含 COD的試驗(yàn)用水進(jìn)行好氧曝氣,篩選和馴化 GAOs。該方式可以限制系統(tǒng)中PAOs的生長,為培養(yǎng)馴化GAOs創(chuàng)造理想的環(huán)境,提高GAOs在活性污泥體系中的數(shù)量和活性。
圖1 厭氧-好氧SBR反應(yīng)器運(yùn)行方式Fig.1 Anaerobic-aerobic SBR operation mode
1#、2#SBR反應(yīng)器有效容積均為3 L,排水比為1/3,厭氧-缺氧方式運(yùn)行,每天運(yùn)行1個(gè)周期。各反應(yīng)器具體運(yùn)行時(shí)間見表 1。該運(yùn)行方式的特點(diǎn)在于在厭氧階段結(jié)束后,將厭氧階段含外碳源的上清液排出系統(tǒng),再加入不含 COD但含有亞硝態(tài)氮或硝態(tài)氮的溶液,以保證在缺氧過程中利用厭氧階段貯存的內(nèi)碳源對(duì)不同電子受體進(jìn)行反硝化過程。之后向 1#、2#反應(yīng)器中分別加入溶液和溶液。
表1 厭氧-缺氧SBR反應(yīng)器運(yùn)行時(shí)間Table 1 Anaerobic-anoxic SBR operating time
本試驗(yàn)均采用人工配水,葡萄糖作碳源,加入少量磷元素以達(dá)到磷限制條件。為滿足微生物生長過程的需要,加入少量的微量元素營養(yǎng)液。在富集GAOs過程中,模擬廢水成分和微量元素營養(yǎng)液的組成[12]如表 2;在 DGAOs內(nèi)源反硝化啟動(dòng)和穩(wěn)定運(yùn)行過程中,模擬廢水成分和微量元素營養(yǎng)液的組成在表2的基礎(chǔ)上,缺氧時(shí)向1#、2#反應(yīng)器中分別加入溶液和溶液,使兩個(gè)反應(yīng)器中缺氧混合初始的濃度約為 20.0 mg·L-1。
表2 模擬廢水成分及微量元素組成Table 2 Content of simulated wastewater
接種污泥取自北京市某高校生活污水處理中型試驗(yàn)SBR,具有正常的脫氮除磷能力。
水樣采用0.45μm濾紙過濾,COD采用蘭州連華5B-1型COD快速測定儀測定;由Lachat Quikchem 8500型流動(dòng)注射儀(Lachat Instrument,Milwaukee,Wiscosin)測定;MLVSS采用標(biāo)準(zhǔn)方法[13]測定;PHA采用氣相色譜法[14]測定;gly采用蒽酮法[15]測定;pH、DO采用WTW Multi 3420 pH/DO儀在線監(jiān)測。
厭氧段磷酸鹽的釋放量[16](phosphorus release amount,PRA)是指厭氧段結(jié)束時(shí)與進(jìn)水混合時(shí)系統(tǒng)中磷酸鹽濃度的差值,計(jì)算方法為
2.1.1 磷限制條件下有機(jī)物吸收與釋磷特性 為觀測接種污泥除磷性能及體系中PAOs和GAOs相對(duì)數(shù)量關(guān)系,在富集GAOs之前,0#反應(yīng)器先采用傳統(tǒng)強(qiáng)化生物除磷的運(yùn)行方式,即在厭氧結(jié)束后不排出富含磷的上清液,直接進(jìn)行好氧曝氣。在培養(yǎng)的第10個(gè)周期,0#反應(yīng)器中活性污泥PRA明顯增多。連續(xù)運(yùn)行 15個(gè)周期后趨于穩(wěn)定,由初始的 12.1 mg·L-1提高至 17.2 mg·L-1,該現(xiàn)象表明接種的活性污泥在厭氧-好氧交替運(yùn)行的環(huán)境中已具備厭氧釋磷、好氧吸磷的能力。從第16個(gè)周期起,0#反應(yīng)器嚴(yán)格按照?qǐng)D1的運(yùn)行方式培養(yǎng)馴化污泥以選擇和富集GAOs??刂圃?.0 mg·L-1左右,約為1.0 mg·L-1。厭氧結(jié)束后,將富含磷的上清液排出系統(tǒng),之后再加入不含磷和 COD的模擬廢水,曝氣進(jìn)行好氧階段。如圖2所示,在厭氧階段伴隨著有機(jī)物的迅速減少,且減少量變化幅度不大,平均為36 mg·L-1,PRA也逐漸減少,連續(xù)運(yùn)行至第60個(gè)周期,PRA穩(wěn)定在1.0 mg·L-1,與持平。說明有機(jī)物快速吸收所需能量已不再來自Poly-P的水解,而是來自于gly。因?yàn)樵诹紫拗茥l件下,PAOs在好氧時(shí)不能在胞內(nèi)充分積累Poly-P,厭氧時(shí)因能量不足影響 PAOs吸收 VFAs和合成PHA。在本系統(tǒng)中,厭氧階段通過胞內(nèi)糖原酵解產(chǎn)生的能量和還原力,有機(jī)物仍被不斷吸收,并以PHA的形式儲(chǔ)存在細(xì)胞內(nèi)。這說明PAOs數(shù)量逐漸減少,GAOs數(shù)量逐漸增多,成為活性污泥的優(yōu)勢(shì)菌種。
圖2 厭氧階段有機(jī)物吸收量(a)和釋磷量(b)Fig.2 Organic substances absorption (a) and phosphate release(b) in anaerobic phase
2.1.2 不同運(yùn)行階段系統(tǒng)除磷和底物儲(chǔ)存特性 在0#反應(yīng)器按照強(qiáng)化生物除磷方式運(yùn)行至第 15個(gè)周期,活性污泥PRA已基本達(dá)到穩(wěn)定狀態(tài)。在一個(gè)完整周期內(nèi)各物質(zhì)濃度變化如圖3(a)所示。在厭氧初始階段,系統(tǒng)中的濃度均為零,因此厭氧段通過反硝化去除的 COD量為零。厭氧過程中COD的去除量均是由PAOs和GAOs儲(chǔ)存為內(nèi)碳源的量。進(jìn)水COD濃度為247.0 mg·L-1,厭氧混合后系統(tǒng)內(nèi)COD值約為123.0 mg·L-1,前30 min COD濃度迅速減少,厭氧結(jié)束時(shí)COD含量為80.0 mg·L-1,厭氧階段 COD 實(shí)際的吸收量為 43.0 mg·L-1;為 2.0 mg·L-1,為1.0 mg·L-1,前30 min磷迅速釋放,150 min時(shí)磷的釋放量達(dá)到最高為 17.2 mg·L-1,PRA 為 16.2 mg·L-1;此階段單位COD的釋磷量為376.7 mg P·(g COD)-1。伴隨著COD濃度的降低,污泥中PHA含量由初始117.0 mg COD·(g VSS)-1逐漸增多,厭氧180 min時(shí)PHA含量為152.0 mg COD·(g VSS)-1,其中PHB含量約為PHV的1.5倍;gly含量降低,由初始 155.0 mg COD·(g VSS)-1降至 120.0 mg COD·(g VSS)-1,減少量為 35 mg COD·(g VSS)-1;好氧階段磷被過量吸收,在整個(gè)周期結(jié)束時(shí),磷濃度僅為 0.6 mg·L-1,磷凈吸收量約為 0.4 mg·L-1。由此可見,接種污泥本身含有 PAOs,具有正常的釋磷和吸磷功能,且厭氧釋磷與好氧吸磷的效果良好。
反應(yīng)進(jìn)行至第60個(gè)周期,GAOs富集基本完成,在一個(gè)完整周期內(nèi)各物質(zhì)濃度變化如圖3(b)所示。進(jìn)水COD濃度為255.0 mg·L-1,厭氧混合后系統(tǒng)內(nèi)COD值約為127.0 mg·L-1,前30 min COD迅速下降,厭氧末COD含量為87.0 mg·L-1,厭氧階段COD實(shí)際的吸收量為 40.0 mg·L-1;為 1.8 mg·L-1,約為 0.8 mg·L-1,為 1.2 mg·L-1,PRA 為 0.4 mg·L-1,此階段單位 COD 的釋磷量為10.5 mg P·(g COD)-1,與富集GAOs前相比大幅度下降,此時(shí)EBPR功能已被破壞,GAOs對(duì)COD去除的貢獻(xiàn)遠(yuǎn)多于 PAOs。在厭氧階段隨著COD濃度的降低,污泥中PHA含量由初始114.0 mg COD·(g VSS)-1逐漸增多,厭氧180 min時(shí)PHA含量為169.0 mg COD·(g VSS)-1,其中PHV含量約為PHB的1.7倍,這與GAOs以葡萄糖為基質(zhì)進(jìn)行代謝過程的途徑有關(guān)[17-20];gly含量降低,由初始185.0 mg COD·(g VSS)-1降至 140.0 mg COD·(g VSS)-1,減少量為45 mg COD·(g VSS)-1,但gly含量是GAOs富集初始階段的1.2倍,這也反映出系統(tǒng)內(nèi) GAOs已逐漸成為優(yōu)勢(shì)菌種,GAOs富集基本完成。
2.2.1 DGAOs內(nèi)源反硝化缺氧階段的長期運(yùn)行 0#反應(yīng)器GAOs富集完成后,將活性污泥平均分至1#、2#SBR反應(yīng)器中,每個(gè)反應(yīng)器的 MLSS約為 3500 mg·L-1。均采用厭氧-缺氧方式運(yùn)行,每天1個(gè)周期。
1#、2#反應(yīng)器在缺氧時(shí)分別以為電子受體,圖4是反應(yīng)器在內(nèi)源反硝化啟動(dòng)和穩(wěn)定運(yùn)行期間,缺氧進(jìn)出水中濃度以及去除率的變化。在啟動(dòng)階段,將濃度控制在10.0 mg·L-1左右。第1~10天為啟動(dòng)階段,1#反應(yīng)器進(jìn)水濃度約為11.0 mg·L-1,反應(yīng)4 h后出水濃度約為3.0 mg·L-1,去除約平均去除率約為72.7%。2#反應(yīng)器進(jìn)水濃度約為10.0 mg·L-1,反應(yīng)8 h后出水濃度約為1.5 mg·L-1,濃度降為0 mg·L-1,去除約平均去除率約為85.0%。
圖3 第15、60個(gè)周期COD和-P及內(nèi)碳源濃度變化Fig.3 Concentration of COD & -P and intracellular storage polymers in cycle 15 and cycle 60
從第21天開始,1#反應(yīng)器進(jìn)水濃度穩(wěn)定在 20.0 mg·L-1左右,出水濃度從 5.0 mg·L-1逐漸降低到 1.0 mg·L-1,在 60 d 后平均去除率穩(wěn)定在95.0%左右。2#反應(yīng)器進(jìn)水濃度約為 20.0 mg·L-1,濃度為 0~1.0 mg·L-1,出水濃度為 1.0~2.0 mg·L-1,平均去除量為18.5 mg·L-1,平均去除率約為 92.5%。由于污泥系統(tǒng)內(nèi)反硝化菌的數(shù)量和反硝化能力的局限性,當(dāng)反硝化菌的還原能力達(dá)到極限時(shí),反硝化速率達(dá)到穩(wěn)定狀態(tài)[23]。因此,在1#、2#反應(yīng)器內(nèi)分別以為電子受體的DGAOs內(nèi)源反硝化過程趨于穩(wěn)定。
圖4 以(a)、(b)為電子受體DGAOs缺氧段進(jìn)出水和濃度及去除率Fig.4 Concentration of & and removal rate in anoxic phase of DGAOs used of (a) & (b)as electron acceptors
圖5 以為電子受體DGAOs內(nèi)源反硝化過程典型周期各物質(zhì)變化Fig.5 Concentration of COD & (a) and intracellular storage polymers (b) in a typical SBR cycle of DGAOs made using of as electron acceptor
圖6 以為電子受體DGAOs內(nèi)源反硝化過程典型周期各物質(zhì)變化Fig.6 Concentration of COD & (a) and intracellular storage polymers (b) in a typical SBR cycle of DGAOs made using of as electron acceptor
22℃時(shí),DGAOs平均內(nèi)源反硝化速率為0.023 g N·(g VSS)-1·d-1,是短程內(nèi)源反硝化速率的 1/3,且低于常規(guī)外源反硝化速率[26-29]。細(xì)胞內(nèi) PHV、PHB的含量均逐漸減少,PHV、PHB減少量分別約為 39.0 mg COD·(g VSS)-1、18.0 mg COD·(g VSS)-1,DGAOs優(yōu)先且主要利用 PHV進(jìn)行內(nèi)源反硝化反應(yīng);糖原含量增加了60.0 mg COD·(g VSS)-1,為下一周期 DGAOs吸收并儲(chǔ)存外碳源提供能量和還原力。
(1)本文采用分段厭氧-好氧(厭氧后排水)運(yùn)行方式,在SBR反應(yīng)器中以葡萄糖為唯一碳源,限制進(jìn)水磷濃度在2 mg·L-1以內(nèi)且P/C比小于2/100,成功抑制PAOs的生長。接種含有PAOs、具有釋磷和吸磷效果的活性污泥,其厭氧段單位 COD釋磷量為376.7 mg P·(g COD)-1,PHB是PHV含量的1.5倍,gly減少量為35.0 mg COD·(g VSS)-1,COD快速吸收所需能量來自Poly-P的水解。經(jīng)過60 d的培養(yǎng),厭氧段單位 COD 釋磷量降為 10.5 mg P·(g COD)-1,PHV是PHB含量的1.7倍,gly減少量為45.0 mg COD·(g VSS)-1且gly含量是馴化前的1.2倍,COD快速吸收所需能量來自糖原酵解。此時(shí)完成GAOs的選擇和富集。
(3)厭氧階段,DGAOs利用糖原酵解提供的能量和還原力,吸收葡萄糖,合成PHV和PHB儲(chǔ)存在胞內(nèi),為反硝化過程提供電子供體和能量。在缺氧階段,DGAOs先后利用PHV、PHB和gly為電子供體和內(nèi)碳源進(jìn)行反硝化過程,消耗的 PHV含量約為PHB含量的2.2倍。
[1]FUHS G W,CHEN M.Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater[J].Microbial Ecology,1975,2(2):119-138.
[2]SEVIOUR R J,MINO T,ONUKI M.The microbiology of biological phosphorus removal in activated sludge systems[J].Microbiology Reviews,2003,27(1):99-127.
[3]AHN J,SCHROEDER S,BEER M,et al.Ecology of the microbial community removing phosphate from wastewater under continuously aerobic conditions in a sequencing batch reactor[J].Applied and Environmental Microbiology,2007,73(7):2257-2270.
[4]FILIPE C D M,DAIGGER G T,GRADY C P L.pH as a key factor in the competition between glycogen-accumulating organisms and phosphorus-accumulating organisms[J].Water Environment Research,2001,73(2):223-232.
[5]LIU W T,NAKAMURA K,MATSUO T,et al.Internal energy-based competition between polyphosphate- and glycogen-accumulating bacteria in biological phosphorus removal reactors—effect of P/C feeding ratio[J].Water Research,1997,31(6):1430-1438.
[6]SAUNDERS A M,OEHMEN A,BLACKALL L L,et al.The effect of GAOs (glycogen accumulating organisms) on anaerobic carbon requirements in full-scale Australian EBPR (enhanced biological phosphorus removal) plants[J].Water Science and Technology,2003,47(11):37-43.
[7]SATOH H.Deterioration of enhanced biological phosphate removal by the domination of microorganisms without poly-P accumulating[J].Water Science and Technology,1994,30(6):203-211.
[8]MINO T,LIU W,KURISU F,et al.Modeling gloycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal process[J].Water Science and Technology,1995,31(2):25-34.
[9]ZENG R J,YUAN Z G,KELLER J.Enrichment of denitrifying glycogen-accumulating organisms in anaerobic/anoxic activated sludge system[J].Biotechnology and Bioengineering,2003,81(4):397-404.
[10]MIAO L,WANG S Y,LI B K,et al.Advanced nitrogen removalvianitrite using stored polymers in a modified sequencing batch reactor treating landfill leachate[J].Bioresource Technology,2015,192:354-360.
[11]JI J T,PENG Y Z,WANG B,et al.Achievement of high nitrite accumulationviaendogenous partial denitrification (EPD)[J].Bioresource Technology,2017,224:140-146.
[12]李安安,李勇智,祝貴兵,等.活性污泥體系中聚糖菌的富集與鑒定[J].環(huán)境工程學(xué)報(bào),2009,3(5):927-931.LI A A,LI Y Z,ZHU G B,et al.Enrichment and identification of glycogen accumulating organism in activated sludge system[J].Chinese Journal of Environmental Engineering,2009,3(5):927-931.
[13]魏復(fù)盛.水和廢水監(jiān)測分析方法指南[M].北京:中國環(huán)境科學(xué)出版社,1994.WEI F S.Guidelines for Monitoring and Analyzing Water and Wastewater[M].Beijing:China Environmental Science Press,1994.
[14]OEHMEN A,KELLER-LEHMANN B,ZENG R J,et al.Optimisation of poly-beta-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems[J].Journal of Chromatography A,2005,1070 (1/2):131-136.
[15]OEHMEN A,ZENG R J,YUAN Z G,et al.Anaerobic metabolism of propionate by polyphosphate-accumulating organisms in enhanced biological phosphorus removal systems[J].Biotechnology and Bioengineering,2005,91(1):43-53.
[16]WANG X X,WANG S Y,XUE T L,et al.Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrificationendogenous denitrification and phosphorous removal (SNDPR)systems by strengthening anaerobic intracellular carbon storage[J].Water Research,2015,77:191-200.
[17]CECH J S,HARTMAN P.Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems[J].Water Research,1993,27(7):1219-1225.
[18]SATCH H,MINO T,MATSUO T.Deterioration of enhanced biological phosphorus removal by the domination of microorganisms without polyphosphate accumulation[J].Water Science and Technology,1994,30(6):203-211.
[19]MINO T,SATOH H.Metabolisms of different bacterial populations in enhanced biological phosphate removal process[J].Water Science& Technology,1994,29(7):67-70.
[20]BEGUM S A,BATISTA J R.Microbial selection on enhanced biological phosphorus removal systems fed exclusively with glucose[J].World Journal of Microbiology and Biotechnology,2012,28(5):2181-2193.
[21]馬勇,彭永臻,王淑瑩.不同外碳源對(duì)污泥反硝化特性的影響[J].北京工業(yè)大學(xué)學(xué)報(bào),2009,35(6):820-824.MA Y,PENG Y Z,WANG S Y.Sludge denitrification characteristics with different external carbon source[J].Journal of Beijing University of Technology,2009,35(6):820-824.
[22]HALLIN S,LINDBERG C F,PELL M.Microbial adaptation,process performance and a suggested control strategy in a pre-denitrifying system with ethanol dosage[J].Water Science & Technology,1996,34(1/2):91-99.
[23]鄭平.新型生物脫氮理論與技術(shù)[M].北京:科學(xué)出版社,2004.ZHENG P.New Biological Denitrification Theory and Technology[M].Beijing:Science Press,2004.
[24]MINO T,LIU W T,KURISU F,et al.Modeling gloycogen storaged denitrification capability of microorganisms in enhanced biological phosphate removal process[J].Water Science and Technology,1995,31(2):25-34.
[25]葛士建,李夕耀,彭永臻,等.改良 UCT分段進(jìn)水深度脫氮除磷工藝反硝化動(dòng)力學(xué)性能[J].北京工業(yè)大學(xué)學(xué)報(bào),2011,37(3):433-439.GE S J,LI X Y,PENG Y Z,et al.The modified UCT subsection water depth dephosphorization process denitrification kinetics performance[J].Journal of Beijing University of Technology,2011,37(3):433-439.
[26]HENZE M,HARREMOE S P.Chemical biological nutrient removal:the HYPRO concept[C]//Proceedings of the 4th Gothenburg Symposium Chemical Water and Wastewater Treatment.Madrid:Springer Verlag,1990:145-149.
[27]HENZE M.Nitrate versus oxygen utilization rates in wastewater and activated sludge systems[J].Water Science and Technology,1986,18(6):115-122.
[28]HENZE M.The influence of raw wastewater biomass on activated sludge oxygen respiration rates and denitrification rates[J].Water Science and Technology,1989,21(6/7):603-607.
[29]HENZE M.Capabilities of biological nitrogen removal processes from wastewater[J].Water Science and Technology,1991,23(4/5/6):669-679.
date:2017-06-08.
Prof.WANG Shuying,wsy@bjut.edu.cn
supported by National Natural Science Foundation of China(51578014) and the Funding Projects of Beijing Municipal Commission of Education.
Effect of endogenous denitrification rate of domesticated GAOs onand
JIA Shuyuan,WANG Shuying,ZHAO Ji,LI Xiyao,ZHANG Qiong,PENG Yongzhen
(National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology,Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering,Beijing University of Technology,Beijing100124,China)
Glycogen accumulating organisms (GAOs) has been enriched in the anaerobic-aerobic sequencing batch reactor (AO-SBR) (drained after anaerobic) with glucose as the carbon source and the P/C ratio less than 2/100.PRA was less than 1.0 mg·L-1.The content of gly was 1.2 times the initial stage of GAOs enrichment.The domesticated GAOs cultured in anaerobic-anoxic operation could proceed endogenous denitrification reaction withandas endogenous carbon source.GAOs used intracellular poly-β-hydroxyvalerate (PHV),poly-β-hydroxyvalerate (PHB) and glycogen (gly) in turns as carbon source in endogenous denitrification process.The average endogenous denitrification rate of DGAOs usingandas electron acceptors were 0.067 g N·(g VSS)-1·d-1and 0.023 g N·(g VSS)-1·d-1at 22℃,respectively.Short-range endogenous denitrification rate was about three times as much as endogenous denitrification rate at normal temperature.
glycogen accumulating organisms (GAOs); anaerobic; aerobic; aeration; enrichment; endogenous denitrification
X 703.1
A
0438—1157(2017)12—4731—08
10.11949/j.issn.0438-1157.20170734
2017-06-08收到初稿,2017-09-07收到修改稿。
聯(lián)系人:王淑瑩。
賈淑媛(1993—),女,碩士研究生。
國家自然科學(xué)基金項(xiàng)目(51578014);北京市教委資助項(xiàng)目。