• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Control method for multi-input multi-output non-Gaussian random vibration test with cross spectra consideration

    2017-12-22 06:23:25RonghuiZHENGHuaihaiCHENXudongHE
    CHINESE JOURNAL OF AERONAUTICS 2017年6期

    Ronghui ZHENG,Huaihai CHEN,Xudong HE

    State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

    Control method for multi-input multi-output non-Gaussian random vibration test with cross spectra consideration

    Ronghui ZHENG,Huaihai CHEN*,Xudong HE

    State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

    Cross spectra; Kurtosis control; Multi-input multi-output; Non-Gaussian; Random vibration test

    A control method for Multi-Input Multi-Output(MIMO)non-Gaussian random vibration test with cross spectra consideration is proposed in the paper.The aim of the proposed control method is to replicate the speci fied references composed of auto spectral densities,cross spectral densities and kurtoses on the test article in the laboratory.It is found that the cross spectral densities will bring intractable coupling problems and induce dif ficulty for the control of the multioutput kurtoses.Hence,a sequential phase modi fication method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test.To achieve the speci fied responses,an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modi fication method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses.Then,an inverse system method is used in frequency domain to obtain the continuous stationary drive signals.At the same time,the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further.At the end of the paper,a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well.

    1.Introduction

    The traditional Multi-Input Multi-Output(MIMO)random vibration test is mainly to force the multiple outputs to have the speci fied reference power spectra and the test can only be used for the case of stationary Gaussian random vibration.However,non-Gaussian random vibration environments,such as the action of atmospheric turbulence on aircraft,the acoustic excitation by reaction engine and the vibration by combustion instability,are often encountered in aerospace engineering.It is important to monitor the dynamic behavior of the aerospace structures in these non-Gaussian vibration environments.Furthermore,a structure exposure of the same spectra by the Gaussian vibrations or non-Gaussian vibrations will have different damages.1–4Hence,it is necessary to research the method for MIMO non-Gaussian vibration environmental test.

    In recent years,method for the simulation of non-Gaussian random signal has become one of the important topics in many fields,especially in the simulation of wind forces,radar clutters,sea waves and road vehicle vibrations.5–10Some methods are used such as Zero Memory NonLinear(ZMNL)transformation,Auto Regressive Moving Average(ARMA)models,filtered Poisson process,phase modification,alpha stable process,and spherically invariant random vectors process.In the random vibration environmental test,the ZMNL transformation and phase modification are most widely applied.11–13

    ZMNL transformation method is based on ZMNL monotonic functions,among which the most classical one is Hermitian polynomial.Wint′erstein developed a Hermitian moment model to transform a Gaussian process into a non-Gaussian process.14But this method has some inherent shortcomings and some modified forms are suggested by other scholars later.15Smallwood presented three kinds of the ZMNL functions,and each covers similar but slightly different ranges of skewness and kurtosis.11The ZMNL transformation method is simple and computationally efficient,but it may induce harmonic distortion and significant dynamic range loss.11,16

    Phase modification is also a commonly used method to generate non-Gaussian random vibration signals.It is noted that the Auto Spectral Density(ASD)of a random vibration signal is only related to the amplitudes of its Fourier spectrum;hence the kurtosis of the signal can be adjusted by modifying the phase angles without changing its ASD.Steinwolf gave an analytic phase modification formula to generate a non-Gaussian signal with a specified kurtosis from a Gaussian signal.17,18Smallwood utilized a non-uniform phase distribution method to realize the non-Gaussian signal with specified skewness and kurtosis and only kurtosis greater than or equal to 3 can be produced by the method.19Seong and Peterka constructed the Fourier phases by using the four parameterized phase angles.20Hsueh and Hamernik set the Fourier phase to zero within the selected band of frequencies to synthesize the non-Gaussian signal.21Generally,phase modi fication method is a good technique to generate non-Gaussian random signal,but its computational efficiency is not very well if the speci fied kurtosis is large.

    Single Input Single Output(SISO)random vibration test has been widely performed in the laboratory for tens of years.But it is recognized that SISO test is inadequate to simulate the multi-dimensional vibration environments in the real fields.22,23MIMO random vibration test has been emerging and applied along with the advancement of hardware and software.Compared to SISO test,it is much dif ficult to generate the drive signals in MIMO test.Smallwood and Paez contributed to some methods for the generation of stationary Gaussian random drive signals for MIMO test.24But the methodsare difficultto be extended to the MIMO non-Gaussian case.25,26The spectra and kurtoses of the responses should be controlled simultaneously in an MIMO non-Gaussian random vibration test.The kurtoses are used to measure the amplitude distribution characteristics of the responses in time domain and the spectra are used to represent the vibration intensity in frequency domain.Note that the signal in random vibration test is always set to be zero-mean and zero-skewness,so in this paper we only use kurtosis to describe the non-Gaussian characteristic of a random signal.

    In some circumstances,the reference spectra are only de fined as a diagonal matrix of auto spectral densities in an MIMO random vibration test.22In such cases,MIMO random vibration test becomes relatively simple,because only the auto spectral densities need to be controlled and the intractable coupling problems induced by cross spectral densities need not to be considered.26But,the cross spectral densities are very important and they determine the phase and coherence relationships among the outputs.So,the cross spectral densities should also be controlled in order to simulate the vibration environments more realistically.However,in MIMO case,the control to non-Gaussian random vibration test will become very dif ficult if the cross spectral densities are taken into account.Thus,the authors aim to solve this problem in the paper.

    2.Generation of non-Gaussian random signal

    It is known that a Gaussian signal and a non-Gaussian signal can have the same ASD but different kurtoses.As shown in Fig.1,three random signals have the same ASD but different kurtoses.

    Zero-mean stationary Gaussian random signal can be completely determined by its standard deviation.But for zeromean zero-skewness stationary non-Gaussian signal,kurtosis must also be taken into consideration.Normalized kurtosis is de fined as the fourth statistical moment divided by the square of the second statistical moment as

    where x(t)is a random signal.With this definition,the kurtosis of a Gaussian signal is equal to 3 and the kurtosis of a non-Gaussian signal is not equal to 3.Random signal with a kurtosis greater than 3 is said to be leptokurtic or super-Gaussian and random signal with a kurtosis less than 3 is said to be platykurtic or sub-Gaussian.Because moment higher than the fourth is difficult to estimate,kurtosis is always the only parameter used to measure the non-Gaussian characteristic of a random signal in the engineering practice.

    As mentioned above,a non-Gaussian signal can be generated from a Gaussian signal by the ZMNL transformation method.Here,we suggest an improved ZMNL transformation method in order to overcome the defects from the original one.The improved ZMNL transformation method is based on a ZMNL function as

    where g(x)is the resulted non-Gaussian signal and x is the Gaussian signal.The constants a and b are selected to control the skewness and kurtosis of g(x).When a=b,skewness is equal to zero.K represents the kurtosis range of g(x).This improved method should be performed in an iterative process to search a set of proper a and b to obtain a desired kurtosis.At the same time,we back-substitute the Fourier amplitudes of the ZMNL transformed signal with its original ones,which will guarantee the Fourier spectrum of the signal not to be changed.With the improved ZMNL transformation method,the defects of the spectrum distortion and dynamic range loss by the original method can be overcome.

    The schematic of the improved ZMNL transformation method is shown in Fig.2.The Gaussian random signal is transformed to desired non-Gaussian random signal with the reference kurtosis Kfand tolerance kurtosis Ktolin an iterative process,where Eq.(2)is used in the ZMNL transformation.

    3.Description of reference spectra

    In MIMO random vibration test,not only the auto spectral densities need to be controlled,but also the cross spectral densities should be considered.The reference spectra matrix should be positive de finite or positive semi-de finite to be physically realizable.In general,in MIMO random vibration test,the reference spectra matrix is a positive de finite Hermitian matrix whose diagonal elements are real positive numbers and the corresponding off-diagonal elements are complex conjugate pairs.

    For a linear time invariant system with n excitations and n responses,the positive de finite three-dimensional reference spectral density matrix can be expressed as

    where Rjj(j=1,2,...,n)are the auto spectral densities and Rjk(j,k=1,2,...,n,j≠k)are the cross spectral densities.For convenience and brevity,the frequency notation ω will be omitted in the following expressions.The cross spectral densities can be de fined by the auto spectral densities as

    From the fact that the reference matrix should be positive de finite,the mathematical constraint conditions for positive de finite matrix R at each frequency line can be expressed as

    where Dkis the kth order principal minor determinant of R.Considering the general case that n=3,one can have

    Substituting Eqs.(4)and(5)into inequalities(7),one can obtain

    The former two inequalities in Eq.(8)are always true,and only the last inequality is required.Therefore,a reasonable set of coherences and phases is needed to make the reference spectra positive de finite.If the reference spectra are originated from the field measured data,there is no such concern because the reference spectra are always physically realizable.If we arti ficially de fine the reference spectra with coherences and phases as a function of frequency,the mathematical constraint conditions should be complied with.

    4.Control method

    The goal of MIMO non-Gaussian random vibration test is to control the kurtoses and the spectra of the response outputs to meet the references within speci fied tolerances.For a linear time invariant system with n excitations and n responses,we let

    where P is a diagonal matrix named random phase matrix,whose the jth diagonal element is eiθj(j=1,2,...,n)and the phase angle θjis uniformly distributed –π to π.L is the Cholesky decomposition of R as

    where the superscript ‘H’represents the complex conjugate transpose.

    Then one frame Gaussian random signal u can be achieved from U by IFFT,and the jth element of u can be expressed as24

    where F-1denotes IFFT and ljkis the element of L.The next step is to use the improved ZMNL transformation method as described in Section 2 and to modify the phase angles θj(j=1,2,...,n)in sequence to achieve one frame reference response signals unwith desired kurtoses.

    For simplicity and without loss of generality,we can describe the process in detail with n=2.When n=2,from Eqs.(9)and(11),one can have

    We first modify θ1to make the kurtosis of the first output(Line 1 in Eq.(13))meet its reference kurtosis,and then we modify θ2to make the kurtosis of the second output(Line 2 in Eq.(13))meet its reference.Note that the kurtosis of the first output is only affected by θ1and the kurtosis of the second output is affected by θ1and θ2,so θ1and θ2must be modi fied in sequence in order to avoid the cross affection between θ1and θ2.We call this method as Sequential Phase Modi fication(SPM)method.When n>2,we can continue to adjust the kurtoses from line 3 to n in sequence in Eq.(13).It is worthy to note that one cannot use the time domain randomization to u to obtain the continuous stationary non-Gaussian random signals25,27,otherwise the cross spectral structure will be destroyed.

    Up to now,we have obtained the outputs whose spectra and kurtoses are met to the references.In order to achieve the drive inputs,an inverse system method in the frequency domain is used.The Fourier spectra of reference response signals uncan be written as

    Table 1 Parameters of cantilever beam.

    where F denotes FFT.We de fine the frequency response function matrices of the MIMO system as G and its inverse as A.

    If G is ill-conditional at some frequencies,the Moore-Penrose pseudo inverse should be used.28,29Then,by the relationship between the outputs and inputs in the frequency domain,the drive spectra matrix can be obtained as

    Afterwards,one frame drive signals in time domain can be obtained as

    Table 2 Reference spectra for simulation test.

    Table 3 Reference kurtoses for simulation test.

    Repeat the above steps,and the continuously generated dnare windowed and overlapped to compose the continuous stationary drive signals d.It is obvious that the proposed method is different from time domain randomization technique.The time domain randomization technique uses one frame pseudo random signal to generate continuous stationary drive signals while the proposed method uses continuously generated dnto compose the continuous stationary drive signals by the windowing and overlapping.The function of the windowing and overlapping is to remove the discontinuities at the frame boundaries and to generate real drive signals.Here the Half-Sine window or Potter window with overlap factor of 2 is used to make d stationary and they have a good side lobe decaying.24It should be noted that the windowing and overlapping to a signal will decrease its kurtosis,but this in fluence is linear and does not affect the kurtosis control.30

    Because there are many factors which will affect the control process during the test31,one can hardly achieve reasonable responses by one-time inputs.It is essential to correct the drive signals for many times in order to obtain the responses with satisfactory spectra and kurtoses.The control algorithm is used to implement the correction process.Here the matrix power control algorithm is utilized for spectra correction,which has a good stability and does not need scale process.31The two main formulas of matrix power control algorithm are

    where Δlis the spectra error,Lris the Cholesky decomposition of the reference spectral density matrix R by Eq.(10)and Lcis the Cholesky decomposition of the spectral density matrix Scof the present responses.Lnewwill be used to substitute L in Eq.(9)to generate new U and Loldis L used in Eq.(9)last time.ε is the spectrum matrix power which is a constant between(0,1].Similarly,a control algorithm for the kurtosis correction is put forward.The two formulas are

    Table 4 Reference spectra for test.

    Table 5 Reference kurtoses for test.

    where Δkis the kurtoses error,Kris the reference kurtosis matrix which is a diagonal matrix with the reference kurtoses as the diagonal elements,and Kcis the kurtosis matrix of the present responses.Knewwill be used to generate one frame new reference response signals by the improved ZMNL transformation method in Eq.(11)and Koldis used last time.η is the kurtosis matrix power which is a constant between(0,1].

    Finally,the block diagram for the control method of MIMO non-Gaussian random vibration test is shown in Fig.3.

    5.Numerical example

    To verify the effectiveness of the proposed control method given in Fig.3,a simulation test was carried out by an aluminum cantilever beam.The parameters of the beam are listed in Table 1 and the locations of the excitation(input)and control(output)points are shown in Fig.4.Accordingly,the amplitude-frequency diagrams of Frequency Response Functions(FRFs)of the system are exhibited in Fig.5.The control frequency band for simulation was from 20 to 2000 Hz with 400 spectral lines.The reference spectral densities and kurtoses were set as described in Table 2 and Table 3 respectively.Only values at the break points are given and values at other frequency points are calculated by the linear logarithmic interpolation with the given values.

    The uncontrolled response spectra of two control points are shown in Fig.6.From Fig.6,we can see that the uncontrolled response spectra exceed the reference spectra at some frequencies because of the relatively large conditions of the FRF matrices at these frequency points,which make large errors during the inverse calculation of the FRF matrix.Fig.7 shows the controlled response spectra.It can be seen that the response spectra have been controlled within the±3 dB alarm limits after recurrent correction of the drive signals three times.Fig.8 shows the controlled response kurtoses.It is clearly to be seen that the kurtoses of the response signals have been stably controlled toward or around the reference values.The segment time histories of the drive signals and response signals are shown in Figs.9 and 10 respectively.

    6.Test

    6.1.Parameter setting

    To verify the feasibility of the proposed control method for MIMO non-Gaussian random vibration test,a two-input two-output test was carried out.A personal computer with the programmed control software and an Agilent VXI were used to control the x and y directions of a three-axis vibration shaker table.The test system is shown in Fig.11 and the amplitude-frequency diagrams of frequency response functions of the system are exhibited in Fig.12.The control frequency band was from 20 to 2000 Hz with 400 spectral lines.The reference spectral densities were de fined in Table 4 and reference kurtoses for two directions were given in Table 5.For the reference spectra in Table 4,only values at the break points were given and values at other frequency points were calculated by the linear logarithmic interpolation with the given values.The tolerances for the test were set as follows.

    (1)Auto spectral densities:set±3 dB as alarm limits and±6 dB as abort limits in all bandwidths.The relative error of the Root Mean Square(RMS)value of response acceleration at each controlled point should be within±10%according to its reference.

    (2)Cross spectral densities:

    (A)Coherence:set the tolerance to be±0.1 in the rangeand others are not set in this paper.

    (B)Phase:set the tolerance to be±10°in the range 0.5any phase is acceptable.

    (3)Kurtoses:set the tolerance to be±1 in the range K>3 and±0.5 in the range 0

    6.2.Test results

    As shown in Fig.13,the uncontrolled response spectra deviate from the references largely.The uncontrolled auto spectra are not completely within the±3 dB alarm limits and even some spectral lines are beyond the±6 dB abort limits at the frequency points about 1265 and 1675 Hz.It can be seen from Fig.12 that 1265 and 1675 Hz are the resonance peaks of the FRFs,which lead to errors in the inverse calculation of the FRF matrices.From Fig.13,we can also see that the uncontrolled coherence and phase deviate from the references largely.Fig.14 shows the controlled spectra with four spectral corrections and it can be seen that the spectra are all within the tolerance ranges and very close to the references.The spectral RMS errors between the controlled auto spectra and the references are listed in Table 6.Before the kurtoses corrections,the kurtoses of the response signals were all about 3.Fig.15 shows the kurtosis controlling process.Two segments of the two drive signals and controlled responses are shown in Figs.16 and 17 respectively.

    Table 6 Spectral RMS errors.

    7.Conclusions

    In this paper,a control method for MIMO non-Gaussian random vibration test with cross spectra consideration is proposed.The control method is composed of four parts which are the inverse system method,the improved ZMNL method,the sequential phase modi fication method and the matrix power control algorithm.

    Because of the coupling effects of the cross spectra,it is very difficult to generate the drive signals for the MIMO non-Gaussian random vibration test.The key idea of the inverse system method is to generate the reference response signals from the reference spectra and kurtoses in the time domain first and then to obtain the drive signals by inverse system in the frequency domain.The improved ZMNL method is set forth to adjust a random signal to have a desired kurtosis without dynamic range loss.The sequential phase modification method is introduced to eliminate the cross effects among the phase selections.The matrix power control algorithm is applied to the spectra and kurtoses iteration corrections.

    At last,the proposed control method is verified by a simulation example with a cantilever beam and a shaker test and the results are satisfactory.

    Acknowledgements

    This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX17_0234).

    1.Sarkani S,Kihl DP,Beach JE.Fatigue of welded joints under narrowband non-Gaussian loadings.Probabilist Eng Mech 1994;9(3):179–90.

    2.Benasciutti D,Tovo R.Fatigue life assessment in non-Gaussian random loadings.J Fatigue 2006;28(7):733–46.

    3.Kihm F,Rizzi SA,Ferguson NS,Halfpenny A.Understanding how kurtosis is transferred from input acceleration to stress response and its in fluence on fatigue life.11th international conference on recent advances in structural dynamics;2013 July 1–3;Pisa,Italy.Southampton:University of Southampton Press;2013.p.6.

    4.Kihm F,Ferguson NS,Antoni J.Fatigue life from kurtosis controlled excitations.Proc Eng 2015;133:698–713.

    5.Iii WHC.Comments on kurtosis of military vehicle vibration data.J IES 1991;34(6):38–41.

    6.Gioffre`M,Gusella V,Grigoriu M.Simulation of non-Gaussian if eld applied to wind pressure fluctuations.Probabilist Eng Mech 2000;15(4):339–45.

    7.Tatarskii VV,Tatarskii VI.Non-Gaussian statistical model of the ocean surface for wave-scattering theories.Waves Random Media 1996;6(4):419–35.

    8.Rangaswamy M.Spherically invariant random processes for modeling non-Gaussian radar clutter.1993 conference record of the 27th Asilomar conference on signals,systems and computers.Pacific Grove,USA;Piscataway:IEEE Press;1993.p.1106–10.

    9.Rouillard V.On the non-Gaussian nature of random vehicle vibrations.Lecture Notes Eng Comp Sci 2007;2166(1):1219–24.

    10.Grigoriu M.Applied non-Gaussian processes:Examples,theory,simulation,linear random vibration,and MATLAB solutions.Upper Saddle River:Prentice Hall;1995.p.1–232.

    11.Smallwood DO.Generating non-Gaussian vibration for testing purposes.Sound Vib 2005;39(10):18–24.

    12.Steinwolf A.Vibration testing by non-Gaussian random excitations with specified kurtosis.Part I:Discussion and methods.J Test Eval 2014;42(3):659–71.

    13.Steinwolf A.Vibration testing by non-Gaussian random excitations with specified kurtosis.Part II:Numerical and experimental results.J Test Eval 2014;42(3):672–86.

    14.Wint′erstein SR.Nonlinear vibration models for extremes and fatigue.J Eng Mech 1988;114(10):1772–90.

    15.Yang Q,Tian Y.Comparison of non-Gaussian peak factor formulae in wind engineering applications.8th Asia-Pacific conference on wind engineering;2013 Dec 10–14;Chennai,India;Singapore:Research Publishing;2013.p.885–94

    16.Baren PV.The missing knob on your random vibration controller.Sound Vib 2005;39(10):10–6.

    17.Steinwolf A.Approximation and simulation of probability distributions with a variable kurtosis value.Comput Stat Data An 1996;21(2):163–80.

    18.Steinwolf A.Random vibration testing with kurtosis control by IFFT phase manipulation.Mech Syst Signal Pr 2012;28:561–73.

    19.Smallwood D.Vibration with non-Gaussian noise.J IEST 2009;52(2):13–30.

    20.Seong SH,Peterka JA.Experiments on Fourier phases for synthesis of non-Gaussian spikes in turbulence time series.J Wind Eng Indust Aerodyn 2001;89(5):421–43.

    21.Hsueh KD,Hamernik RP.A generalized approach to random noise synthesis:Theory and computer simulation.J Acoust Soc Am 1990;87(3):1207–17.

    22.United States Department of Defense.Test method standard for environmental engineering considerations and laboratory tests.Washington,D.C.:United States Department of Defense;2014.Standard No:MIL-STD-810G_CHG-1.

    23.Underwood MA,Keller T.Recent system developments for multiactuator vibration control.Sound Vib 2001;35(10):16–23.

    24.Smallwood DO,Paez TL.A frequency domain method for the generation of partially coherent normal stationary time domain signals.Shock Vib 1993;1(1):45–53.

    25.Chen HH,Wang PY,Sun JY.Generation of multi-input multioutput non-Gaussian driving signal based on inverse system method.Acta Aeronautica etAstronautica Sinica 2016;37(5):1544–51[Chinese].

    26.Zheng R,Chen H,He X.Control method for multiple-input multiple-output non-Gaussian random vibration test.Packag Technol Sci 2017;30(7):331–45.

    27.Smallwood DO.Multiple shaker random vibration control—An update.Albuquerque:Sandia NationalLaboratories;1999.Report No.:SAND 98–2044C.

    28.Cui S,Chen HH,He XD,Zheng W.Multi-input multi-output random vibration control using Tikhonov filter.Chin J Aeronaut 2016;29(6):1649–63.

    29.Cui S,Chen HH,He XD.Time-domain approach for multi-exciter random environment test.J Sound Vib 2017;398:52–69.

    30.Jiang Y,Chen X,Tao JY.Study on the generation of super-Gaussian and true-random drive signals using time domain randomization.J Vibr Eng 2005;18(4):491–4.

    31.Cui XL,Chen HH,He XD,Jiang SY.Matrix power control algorithm for multi-input multi-output random vibration test.Chin J Aeronaut 2011;24(6):741–8.

    28 October 2016;revised 20 June 2017;accepted 11 August 2017

    Available online 16 October 2017

    ?2017 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.This is an open access a rticle under the CCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.

    E-mail addresses:rhzheng@nuaa.edu.cn(R.ZHENG),chhnuaa@nuaa.edu.cn(H.CHEN),hexudong@nuaa.edu.cn(X.HE).

    Peer review under responsibility of Editorial Committee of CJA.

    www日本在线高清视频| 男男h啪啪无遮挡| 国产亚洲欧美精品永久| av福利片在线| 街头女战士在线观看网站| 黄片无遮挡物在线观看| 国产欧美日韩综合在线一区二区| 少妇被粗大猛烈的视频| 精品久久久久久电影网| 亚洲精品乱久久久久久| 爱豆传媒免费全集在线观看| 男女边吃奶边做爰视频| 亚洲av电影在线观看一区二区三区| 久久精品亚洲熟妇少妇任你| 在线观看免费视频网站a站| 99国产综合亚洲精品| 久久这里只有精品19| 国产av国产精品国产| 精品国产超薄肉色丝袜足j| 国产午夜精品一二区理论片| 超色免费av| 欧美另类一区| 激情视频va一区二区三区| 久久毛片免费看一区二区三区| 满18在线观看网站| √禁漫天堂资源中文www| 国产精品熟女久久久久浪| 一个人免费看片子| 伊人亚洲综合成人网| 一边亲一边摸免费视频| 久久久久网色| 精品一区二区三卡| 这个男人来自地球电影免费观看 | 国产成人欧美| 亚洲精品美女久久久久99蜜臀 | 亚洲国产精品一区三区| 婷婷成人精品国产| 欧美激情极品国产一区二区三区| 亚洲欧美成人综合另类久久久| 欧美日韩视频高清一区二区三区二| 99热全是精品| www.av在线官网国产| 波多野结衣一区麻豆| 欧美日韩视频高清一区二区三区二| 亚洲熟女毛片儿| 亚洲人成网站在线观看播放| 在线观看免费日韩欧美大片| 一二三四中文在线观看免费高清| 精品亚洲成a人片在线观看| 老司机影院毛片| 亚洲av成人精品一二三区| 国产成人免费无遮挡视频| 晚上一个人看的免费电影| 亚洲精品美女久久久久99蜜臀 | 黄色怎么调成土黄色| 久久久久久免费高清国产稀缺| 亚洲国产精品999| 在线观看免费日韩欧美大片| 在线观看免费高清a一片| 午夜精品国产一区二区电影| 99国产综合亚洲精品| 亚洲免费av在线视频| 日韩免费高清中文字幕av| 在线观看人妻少妇| 日韩av在线免费看完整版不卡| 午夜久久久在线观看| 久久久久精品性色| 欧美人与善性xxx| 91aial.com中文字幕在线观看| 黄片播放在线免费| 久久久久久久国产电影| 一级毛片黄色毛片免费观看视频| 日韩大片免费观看网站| 五月天丁香电影| 精品视频人人做人人爽| 欧美精品一区二区免费开放| 免费观看性生交大片5| 女人被躁到高潮嗷嗷叫费观| 99国产综合亚洲精品| 亚洲一级一片aⅴ在线观看| 亚洲自偷自拍图片 自拍| 午夜影院在线不卡| 国产极品天堂在线| 久久久久久久精品精品| 新久久久久国产一级毛片| 叶爱在线成人免费视频播放| 美女扒开内裤让男人捅视频| 秋霞在线观看毛片| 美女高潮到喷水免费观看| 亚洲欧美成人综合另类久久久| netflix在线观看网站| 91成人精品电影| 黄频高清免费视频| 国产人伦9x9x在线观看| 国产精品一二三区在线看| 不卡视频在线观看欧美| 一级毛片 在线播放| 欧美 亚洲 国产 日韩一| 国产淫语在线视频| 国产一区二区三区av在线| av在线播放精品| 国产爽快片一区二区三区| 波野结衣二区三区在线| 成年女人毛片免费观看观看9 | 欧美97在线视频| 欧美精品一区二区大全| 欧美国产精品一级二级三级| 女人被躁到高潮嗷嗷叫费观| 制服丝袜香蕉在线| 中文字幕最新亚洲高清| www.自偷自拍.com| 亚洲,欧美精品.| 精品国产乱码久久久久久男人| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品av麻豆狂野| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品aⅴ在线观看| 激情五月婷婷亚洲| 热re99久久精品国产66热6| 看免费成人av毛片| 大码成人一级视频| 久久久久久免费高清国产稀缺| 九草在线视频观看| 精品久久蜜臀av无| 激情视频va一区二区三区| 岛国毛片在线播放| 少妇的丰满在线观看| 久久久久精品性色| 伦理电影大哥的女人| 一本—道久久a久久精品蜜桃钙片| 五月天丁香电影| 免费看不卡的av| 午夜av观看不卡| 在线观看免费高清a一片| 免费黄频网站在线观看国产| 国产精品偷伦视频观看了| 一二三四中文在线观看免费高清| avwww免费| 国产精品国产三级专区第一集| 免费观看性生交大片5| 亚洲少妇的诱惑av| 亚洲一区二区三区欧美精品| 高清av免费在线| 黄色毛片三级朝国网站| 久久久久精品性色| 免费黄频网站在线观看国产| 亚洲av日韩精品久久久久久密 | 精品人妻熟女毛片av久久网站| 久久久亚洲精品成人影院| 街头女战士在线观看网站| 国产成人免费观看mmmm| 国精品久久久久久国模美| 欧美乱码精品一区二区三区| 国产精品嫩草影院av在线观看| 欧美成人精品欧美一级黄| 80岁老熟妇乱子伦牲交| 午夜福利网站1000一区二区三区| 亚洲免费av在线视频| 中文字幕高清在线视频| 999精品在线视频| 热99久久久久精品小说推荐| 在线天堂最新版资源| 日本一区二区免费在线视频| 久久人人爽av亚洲精品天堂| 最近2019中文字幕mv第一页| 亚洲第一青青草原| 爱豆传媒免费全集在线观看| 飞空精品影院首页| 老鸭窝网址在线观看| 啦啦啦中文免费视频观看日本| 国产野战对白在线观看| 国产极品天堂在线| 日韩免费高清中文字幕av| 久久久欧美国产精品| 又大又黄又爽视频免费| 亚洲精品第二区| 亚洲国产精品999| 精品久久久久久电影网| 亚洲精品在线美女| 国产成人精品无人区| 国产一区二区 视频在线| 亚洲图色成人| 大香蕉久久成人网| www日本在线高清视频| 人人妻人人爽人人添夜夜欢视频| 亚洲av男天堂| 啦啦啦啦在线视频资源| 亚洲精品aⅴ在线观看| 色视频在线一区二区三区| 亚洲少妇的诱惑av| 亚洲熟女精品中文字幕| 欧美日韩精品网址| 国产熟女欧美一区二区| 9色porny在线观看| 精品国产一区二区三区四区第35| 看非洲黑人一级黄片| 女性被躁到高潮视频| 亚洲,欧美,日韩| 国产97色在线日韩免费| 国产精品国产三级国产专区5o| 亚洲av电影在线进入| 男女边吃奶边做爰视频| 丝袜喷水一区| 99热国产这里只有精品6| 久久久久网色| 老司机影院毛片| 亚洲精品国产色婷婷电影| 99久久人妻综合| 一级,二级,三级黄色视频| 一二三四中文在线观看免费高清| 久久亚洲国产成人精品v| 桃花免费在线播放| 欧美 日韩 精品 国产| 国产成人精品无人区| 久久97久久精品| 久久精品熟女亚洲av麻豆精品| 最黄视频免费看| a级毛片黄视频| 18禁国产床啪视频网站| 母亲3免费完整高清在线观看| 十八禁高潮呻吟视频| 国产亚洲精品第一综合不卡| 亚洲人成77777在线视频| 七月丁香在线播放| 啦啦啦视频在线资源免费观看| 国产精品99久久99久久久不卡 | av在线观看视频网站免费| av天堂久久9| 超碰97精品在线观看| 日韩,欧美,国产一区二区三区| 99热国产这里只有精品6| 亚洲成人手机| 91成人精品电影| 精品免费久久久久久久清纯 | 大香蕉久久成人网| 曰老女人黄片| 亚洲人成77777在线视频| 亚洲国产精品一区三区| 午夜福利一区二区在线看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品成人av观看孕妇| 黑丝袜美女国产一区| h视频一区二区三区| 制服诱惑二区| 日韩一区二区三区影片| 精品国产乱码久久久久久男人| 人人妻人人添人人爽欧美一区卜| 国产精品久久久人人做人人爽| 七月丁香在线播放| 老熟女久久久| 午夜av观看不卡| 亚洲欧美中文字幕日韩二区| 欧美日韩一区二区视频在线观看视频在线| 美女福利国产在线| 两个人免费观看高清视频| 少妇人妻久久综合中文| 亚洲国产成人一精品久久久| 午夜av观看不卡| 午夜激情av网站| 亚洲成人av在线免费| 我的亚洲天堂| 亚洲精华国产精华液的使用体验| 夫妻午夜视频| 国产免费又黄又爽又色| 中国三级夫妇交换| 九九爱精品视频在线观看| 一区二区三区精品91| 大片免费播放器 马上看| 国产在线一区二区三区精| 中文天堂在线官网| netflix在线观看网站| 91成人精品电影| 亚洲人成电影观看| 亚洲精品第二区| 大话2 男鬼变身卡| 老司机深夜福利视频在线观看 | 亚洲第一青青草原| 国产视频首页在线观看| 久久国产精品男人的天堂亚洲| 亚洲国产av新网站| 久久人人97超碰香蕉20202| 青草久久国产| 韩国高清视频一区二区三区| 汤姆久久久久久久影院中文字幕| 国产精品99久久99久久久不卡 | 建设人人有责人人尽责人人享有的| 久久精品国产亚洲av高清一级| 男男h啪啪无遮挡| 男女床上黄色一级片免费看| 中国国产av一级| 国产xxxxx性猛交| 极品人妻少妇av视频| 亚洲av综合色区一区| 日韩一本色道免费dvd| 我要看黄色一级片免费的| 女人久久www免费人成看片| 91老司机精品| 男女床上黄色一级片免费看| 久久久久久久久免费视频了| 涩涩av久久男人的天堂| 国产一区二区三区综合在线观看| 亚洲精品国产av蜜桃| 国产一区二区三区综合在线观看| 亚洲精品视频女| 亚洲精品国产色婷婷电影| 亚洲av综合色区一区| 亚洲中文av在线| 午夜激情久久久久久久| 国产日韩欧美视频二区| 亚洲国产精品999| 日本色播在线视频| 亚洲成人手机| 日韩电影二区| 中文欧美无线码| 在线观看免费高清a一片| 欧美在线黄色| 91国产中文字幕| 亚洲国产欧美网| 日韩精品免费视频一区二区三区| 国产精品成人在线| 美女福利国产在线| 久久精品aⅴ一区二区三区四区| 亚洲激情五月婷婷啪啪| 亚洲精品av麻豆狂野| 巨乳人妻的诱惑在线观看| 久久99精品国语久久久| 99久久99久久久精品蜜桃| 一区二区日韩欧美中文字幕| 国产一区二区三区av在线| 亚洲综合精品二区| 18禁国产床啪视频网站| 日本一区二区免费在线视频| 久久久久网色| 永久免费av网站大全| netflix在线观看网站| 成人免费观看视频高清| av卡一久久| av有码第一页| 高清不卡的av网站| av有码第一页| 大片免费播放器 马上看| 亚洲中文av在线| 一区二区三区四区激情视频| 黄色一级大片看看| 校园人妻丝袜中文字幕| 欧美日本中文国产一区发布| 国产1区2区3区精品| 老汉色av国产亚洲站长工具| av国产精品久久久久影院| 亚洲,欧美,日韩| 久久人人爽av亚洲精品天堂| 国产精品二区激情视频| 免费观看性生交大片5| 久久精品国产亚洲av涩爱| 在线观看国产h片| av视频免费观看在线观看| 国产男女内射视频| 热99久久久久精品小说推荐| 国产一区二区 视频在线| 亚洲第一青青草原| 久久久久久久精品精品| 19禁男女啪啪无遮挡网站| 日本爱情动作片www.在线观看| 亚洲成av片中文字幕在线观看| 亚洲情色 制服丝袜| 18禁国产床啪视频网站| 日韩成人av中文字幕在线观看| 亚洲成av片中文字幕在线观看| 91老司机精品| 亚洲中文av在线| 毛片一级片免费看久久久久| 国产av码专区亚洲av| 最近手机中文字幕大全| 久久精品国产亚洲av高清一级| 99久国产av精品国产电影| 制服丝袜香蕉在线| 九色亚洲精品在线播放| 在线观看免费日韩欧美大片| 欧美 日韩 精品 国产| 别揉我奶头~嗯~啊~动态视频 | xxxhd国产人妻xxx| 久久久国产精品麻豆| 中文字幕高清在线视频| 一级毛片黄色毛片免费观看视频| 五月天丁香电影| 亚洲av日韩在线播放| 亚洲欧美中文字幕日韩二区| 汤姆久久久久久久影院中文字幕| 婷婷成人精品国产| 亚洲美女视频黄频| 欧美av亚洲av综合av国产av | 亚洲男人天堂网一区| 午夜免费鲁丝| 人人妻人人澡人人爽人人夜夜| 99久久综合免费| 99国产综合亚洲精品| 一本大道久久a久久精品| 天堂中文最新版在线下载| 国产老妇伦熟女老妇高清| 伊人亚洲综合成人网| 久久久久国产精品人妻一区二区| 欧美精品一区二区免费开放| 成年av动漫网址| 日韩制服骚丝袜av| 国产成人系列免费观看| 男女边吃奶边做爰视频| 人妻一区二区av| 久久99热这里只频精品6学生| 国产午夜精品一二区理论片| 日韩大片免费观看网站| 97精品久久久久久久久久精品| 日韩熟女老妇一区二区性免费视频| 亚洲av福利一区| 性色av一级| 免费观看人在逋| 人人澡人人妻人| 国产日韩欧美在线精品| 亚洲精品国产色婷婷电影| 伊人久久大香线蕉亚洲五| 国产黄色免费在线视频| 欧美乱码精品一区二区三区| 久久鲁丝午夜福利片| 久久久精品94久久精品| 一级爰片在线观看| 少妇人妻 视频| 在线观看www视频免费| 纵有疾风起免费观看全集完整版| 久久精品国产综合久久久| 99re6热这里在线精品视频| 欧美少妇被猛烈插入视频| 日本91视频免费播放| 美女主播在线视频| 91成人精品电影| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧洲国产日韩| 日本午夜av视频| 婷婷色av中文字幕| 亚洲精品,欧美精品| 久久人人爽人人片av| 麻豆av在线久日| 无限看片的www在线观看| 久久久久久久久久久免费av| 高清不卡的av网站| 欧美日本中文国产一区发布| www.熟女人妻精品国产| 亚洲第一av免费看| 最新在线观看一区二区三区 | 又黄又粗又硬又大视频| 国产av码专区亚洲av| 好男人视频免费观看在线| 久久久国产精品麻豆| 搡老乐熟女国产| 国产不卡av网站在线观看| 青春草亚洲视频在线观看| 日韩视频在线欧美| 成年女人毛片免费观看观看9 | 国产av国产精品国产| 国产精品二区激情视频| 精品少妇一区二区三区视频日本电影 | 夜夜骑夜夜射夜夜干| 中文字幕人妻丝袜一区二区 | 国产在线视频一区二区| 多毛熟女@视频| 日韩电影二区| 桃花免费在线播放| 精品少妇一区二区三区视频日本电影 | 欧美日韩亚洲综合一区二区三区_| 久久久久人妻精品一区果冻| 在线观看免费视频网站a站| 亚洲一级一片aⅴ在线观看| 日韩制服丝袜自拍偷拍| 男人操女人黄网站| 久久精品久久久久久久性| 亚洲精品久久久久久婷婷小说| 国产精品嫩草影院av在线观看| 欧美日韩一区二区视频在线观看视频在线| 精品少妇内射三级| 色94色欧美一区二区| 亚洲色图综合在线观看| 捣出白浆h1v1| 精品少妇久久久久久888优播| 亚洲男人天堂网一区| 丰满迷人的少妇在线观看| 1024香蕉在线观看| 中文字幕最新亚洲高清| 赤兔流量卡办理| 国产精品三级大全| 一区二区日韩欧美中文字幕| 2018国产大陆天天弄谢| 日韩 欧美 亚洲 中文字幕| 中文精品一卡2卡3卡4更新| 欧美精品高潮呻吟av久久| av一本久久久久| 九草在线视频观看| 国产片特级美女逼逼视频| 国产黄频视频在线观看| 女人高潮潮喷娇喘18禁视频| 欧美精品av麻豆av| 人人妻人人澡人人爽人人夜夜| a级毛片黄视频| 久久精品亚洲av国产电影网| 男女午夜视频在线观看| 搡老乐熟女国产| 国产成人精品在线电影| 午夜激情av网站| 看非洲黑人一级黄片| 国产色婷婷99| av国产精品久久久久影院| 男女之事视频高清在线观看 | 国产深夜福利视频在线观看| 欧美中文综合在线视频| 看免费成人av毛片| 在线 av 中文字幕| 欧美日韩视频精品一区| tube8黄色片| 在线观看国产h片| 成人亚洲欧美一区二区av| 国产精品99久久99久久久不卡 | 欧美97在线视频| 日本av手机在线免费观看| 黄频高清免费视频| 999精品在线视频| 精品午夜福利在线看| 91精品三级在线观看| 2021少妇久久久久久久久久久| 国产精品成人在线| 免费黄频网站在线观看国产| 人人澡人人妻人| 欧美日韩一区二区视频在线观看视频在线| 国产亚洲一区二区精品| 桃花免费在线播放| 人人妻人人爽人人添夜夜欢视频| 欧美人与性动交α欧美软件| 亚洲熟女精品中文字幕| 欧美97在线视频| 一区二区三区四区激情视频| 亚洲av欧美aⅴ国产| 狠狠精品人妻久久久久久综合| 国产激情久久老熟女| 黄色一级大片看看| 九色亚洲精品在线播放| 久久这里只有精品19| 免费看不卡的av| 丰满少妇做爰视频| 91国产中文字幕| 亚洲成人免费av在线播放| 久久人人爽av亚洲精品天堂| 制服丝袜香蕉在线| 亚洲国产成人一精品久久久| 国产亚洲午夜精品一区二区久久| 性高湖久久久久久久久免费观看| 亚洲欧美精品综合一区二区三区| 日韩一卡2卡3卡4卡2021年| 亚洲精品一二三| 无限看片的www在线观看| 国产一区二区三区av在线| 国产又爽黄色视频| 国精品久久久久久国模美| 久久久久久久久久久久大奶| 久久精品国产a三级三级三级| 成人影院久久| 欧美日韩亚洲综合一区二区三区_| 性色av一级| 亚洲国产欧美在线一区| 国产欧美亚洲国产| 777久久人妻少妇嫩草av网站| 一区二区av电影网| 欧美激情 高清一区二区三区| 夜夜骑夜夜射夜夜干| 免费观看a级毛片全部| 97在线人人人人妻| av网站在线播放免费| 精品国产超薄肉色丝袜足j| 久久久国产精品麻豆| 亚洲欧美一区二区三区久久| 国产有黄有色有爽视频| 女性被躁到高潮视频| 麻豆av在线久日| 欧美成人精品欧美一级黄| 十八禁人妻一区二区| 久久人人爽人人片av| 国产精品成人在线| 纯流量卡能插随身wifi吗| 精品一区二区免费观看| 国产精品麻豆人妻色哟哟久久| 爱豆传媒免费全集在线观看| 人妻 亚洲 视频| 人人澡人人妻人| 亚洲成色77777| 在线 av 中文字幕| 只有这里有精品99| 18禁观看日本| 国产一区亚洲一区在线观看| 少妇被粗大的猛进出69影院| 看免费av毛片| 精品国产乱码久久久久久男人| 亚洲欧美一区二区三区国产| 亚洲天堂av无毛| 亚洲成人免费av在线播放| 黑人猛操日本美女一级片| 精品一品国产午夜福利视频| 9色porny在线观看| 久久精品人人爽人人爽视色| 亚洲四区av| 午夜av观看不卡| 精品人妻在线不人妻| 一本大道久久a久久精品| 99热国产这里只有精品6| 欧美av亚洲av综合av国产av | av网站在线播放免费| 亚洲av成人不卡在线观看播放网 | 岛国毛片在线播放| 王馨瑶露胸无遮挡在线观看| 大陆偷拍与自拍| 国产精品99久久99久久久不卡 |