• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hybrid task priority-based motion control of a redundant free- floating space robot

    2017-12-22 06:24:18ChengZHOUMingheJINYechaoLIUZongwuXIEHongLIU
    CHINESE JOURNAL OF AERONAUTICS 2017年6期

    Cheng ZHOU,Minghe JIN,Yechao LIU,Zongwu XIE,Hong LIU

    State Key Laboratory of Robotics and System,Harbin Institute of Technology,Harbin 150001,China

    Hybrid task priority-based motion control of a redundant free- floating space robot

    Cheng ZHOU,Minghe JIN*,Yechao LIU,Zongwu XIE,Hong LIU

    State Key Laboratory of Robotics and System,Harbin Institute of Technology,Harbin 150001,China

    Base attitude control; Hybrid task-priority; Motion planning; Multiple constraints; Redundant space robot

    This paper presents a novel hybrid task priority-based motion planning algorithm of a space robot.The satellite attitude control task is de fined as the primary task,while the leastsquares-based non-strict task priority solution of the end-effector plus the multi-constraint task is viewed as the secondary task.Furthermore,a null-space task compensation strategy in the joint space is proposed to derive the combination of non-strict and strict task-priority motion planning,and this novel combination is termed hybrid task priority control.Thus,the secondary task is implemented in the primary task’s null-space.Besides,the transition of the state of multiple constraints between activeness and inactiveness will only in fluence the end-effector task without any effect on the primary task.A set of numerical experiments made in a real-time simulation system under Linux/RTAI shows the validity and feasibility of the proposed methodology.

    1.Introduction

    With advances in space applications,space robots are essential to implement space exploration missions including assembling a space station,on-orbit servicing,space debris removal,and so on.The development of space robots impels space exploration to be ef ficient and safe.Hence,the last 40 years have witnessed an increasing interest towards robotic applications in space.1–5

    Different types of space robots have different research priorities,such as the flexible issue of a manipulator with long links,6the con figuration and control issue of a soft robot,7the base attitude disturbance of a free- floating space robot,and so on.Meanwhile,free- floating space robots,like manipulator mounted8satellites or tethered space robots,9have always been a focused research object in the field of space exploration.The base attitude is disturbed by the movement of a manipulator,while it is so important when considering solar supplement and information communication.The satellite attitude control task is typically achieved by the attitude control system of a satellite,so limited fuel will be consumed.Besides,the coupling relationship between a satellite base and a manipulator can be utilized to adjust or maintain the satellite attitude.10,11Furthermore,other degrees of freedom(DOFs)will be used to achieve a manipulator’s end-effector task.In this paper,we address this issue from the view of a path planning strategy.

    In literature,Dubowsky and Torres planned the trajectory of a space manipulator using an enhanced disturbance map(EDM)to minimize the disturbance of the base attitude.12They took a 2-DOF manipulator for example;however,it is dif ficult to obtain the EDMs of manipulators with more DOFs.Vafa and Dubowsky used a virtual manipulator model to develop path planning that reduced the base disturbance,which is called the self-correcting path planning algorithm.13In this method,a system is considered as a linear system with the assumption that the movements of joints are small enough.Nakamura and Mukherjee utilized the Lyapunov function to achieve regulations of both the satellite orientation and the manipulator joint angles simultaneously.14However,the stability of this method was not demonstrated strictly and the planned joint angles were not smooth.Fernandes et al.proposed a near-optimal nonholonomic motion planning algorithm to achieve attitude control inspired by the fact that a falling cat can change its orientation in midair.15Nenchev et al.originally utilized the notation of reaction null-space(RNS)to achieve base attitude control.16

    RNS was originally proposed in Nenchev’s study,17and it was applied to achieve a vibration suppression task,a reactionless end-point control task,and a combined motion control task.Then it was utilized to achieve reactionless manipulation or zero reaction maneuver(ZRM).18It was also veri fied in the flight experiments of ETS-VII.To sum up,the RNS method is the only real-time method that can achieve base attitude regulation and end-effector trajectory planning simultaneously.However,algorithmic singularity(AS),representation singularity(RS),and dynamics singularity(DS)19exist in conventionalRNS-based motion planning algorithms.Some preliminary improvements on algorithmic singularity avoidance and dynamics singularity avoidance have been made,19,20but an algorithmic error exists.Furthermore,conventional RNS-based motion planning methods ignore physical constraints like joint limits,whereas physical constraints avoidance is of vital importance in the real-time motion control of a space robot.

    In addition,singularity robust,especially AS-free,motion control for base attitude control with multiple constraints of a space robot is a new issue that should be considered.Additionally,an AS-free motion control law subject to multi constraints will give a more stable result.Besides,a task hierarchical framework will be introduced to guarantee that activated multi constraints will be transferred in the nullspace of the primary task.

    In this paper,a strict task priority strategy is adopted to realize singularity robust and hierarchical motion planning of a space robot;21besides,a non-strict task-priority strategy is also utilized to achieve multiple constraints avoidance,22,23and the least squares problem consisting of a multi-constraint task and an antecedent secondary task(end-effector path tracking)is implemented in the nullspace of the primary task.Therefore,in this paper,a task hierarchical control algorithm for satellite base attitude control under multi constraints is derived.Besides,a null-space task compensation strategy in the joint space is proposed to give an AS-free derivation of the task hybrid hierarchybased solution.

    2.Preliminaries

    From the rotational momentum conservation equation,the following expression can be obtained:

    Furthermore,assuming that the dimension of the Cartesian space task is m,the end-effector can be expressed as

    The non-minimum-norm solutions of Eq.(1),noted ascan be written in a general form as

    where P=(I-I+MIM),I denotes the identity matrix.(·)+is the Moore–Penrose pseudoinverse.˙ζ is an arbitrary vector.is the speci fic solution of Eq.(1).

    Furthermore,substituting Eq.(5)into Eq.(3),we can obtain

    where P(HP)+=(HP)+,as P being a symmetrical and idempotent projectional matrix.

    Assume that L0=0 and˙x0=0.From Eqs.(1)and(2),we can get the following equation:

    where JEis the extended Jacobian.

    3.Problem formulation

    3.1.Singularity issues

    The task hierarchy is re flected in the RNS algorithm.However,there are DS,AS,and RS in the RNS method,and the DS issue occurs in the following case:

    rank(IM)<l or rank(JM)<m

    where rank(·)represents the rank of a matrix.

    AS occurs when the projection Jacobian JMP drops rank24as follows:

    3.2.Hard constraints in the path planning algorithm

    In this article,we consider a set of kinematic inequality constraints,i.e.,

    where ρiis a kinematic function,and θiis the angle of joint i.Ciis a constant,and r is the total number of constraints.ρi(θi),i=1,2,...,r can be concluded into a kinematic related vector ρ(θ).The joint limitations of joint i can be described as

    Moreover,the above inequality constraintscan be described in the velocity level as

    where ciis the previous moment value ofis a threshold value to bind ρi.

    3.3.Conception of hybrid task priority-based path planning

    There are always two ways to achieve online path planning of a robot.The first way is known as the non-strict task priority strategy,22,23,25which is also called as weighted least-squares(WLS).The second way is the strict task priority solution,like an RNS algorithm.In an RNS algorithm,algorithmic singularity issues exist,and constraints limitations are not considered.Besides,the other task priority solution type is only focused on algorithmic singularity-free issues.21,26In this paper,the former hierarchical planning is abbreviated as TP1,while the latter one is abbreviated as TP2.In addition,the main task is made up of Task 1 and Task 2.In a strict task priority solution,Task 1 is de fined as the primary task,while Task 2 is de fined as the secondary task.

    In order to absorb the advantages of the above three strategies,a combination of non-strict task priority and strict task priority strategies is needed,and this idea is de fined as the hybrid task priority(HTP)strategy in this paper.Fig.1 demonstrates the difference between these four strategies.

    In the above,the HTP concept is explained.Moreover,in the HTP strategy,the multiple constraints task and the end-effector task will act as subtasks implemented in the null-space of the primary satellite attitude control task,so the primary task will not be in fluenced by the multiconstraint task,while in the WLS solution,the main task will be influenced by the activated constraint task simultaneously.Besides,the algorithmic singularity should be eliminated,and the dynamics singularity and the representation singularity should be avoided.

    4.Satellite attitude control algorithm

    4.1.Null-space task compensation strategy

    Through Eq.(5),we can know that the algorithmic singularity can be avoided by choosing a proper null-space velocity to satisfy the secondary task.Letand in Ref.19,20,the null-space vector is derived by the following equation in the Cartesian space:

    The above equation is established under the condition ofbut it is not always established.In order to get a general solution to this hierarchical motion control problem,let us consider this problem again.

    As for Eq.(2),its least-squares minimum-norm(LM)solutioncan be expressed as

    Then we look for a proper solution of˙ζ by combining Eq.(13)and Eq.(3)as follows:

    That is to say,to satisfy these two tasks,the null-space vector is selected to compensate the disparity in the joint space.Thus˙ζ can be derived as

    Substituting Eq.(15)into Eq.(3)obtains

    Furthermore,the above derivation Eq.(14)can be concluded in the following general formulation:

    Eq.(12)derived in the Cartesian space is just a special case of Eq.(17).Besides,the null-space vector is utilized to compensate the disparity between Task 1 and Task 2.In this paper,the above stated strategy is de fined as the null-space task compensation strategy.

    4.2.Hybrid task priority motion planning of a space robot

    Consider the following weighted optimal problem as the secondary task:

    Fig.1 Sketch map of the hybrid task priority motion planning strategy.

    where wi,i=1,2,...,r is the weight of the constraint of joint i,and λEis the damping coef ficient.

    De fine the following matrices:

    where w is the weight matrix of joint constraints,and^w is the total weight matrix of main task and joint constraints.

    so the forward problem of this optimal problem is

    The weighted least-squares solution of Eq.(20),which is de fined asis also the optimization solution of Eq.(18).It can be presented as

    Then a uniform expression can be obtained through the singular value decomposition(SVD)of JwCas follows:

    where UEis the orthonormal matrix of the output singular vectors uiE,ΣEis the matrix whose diagonal submatrix contains the singular values σiEof matrix JwC,and VEis the orthonormal matrix of the input singular vectors viE.

    The above unified formulation by the SVD can achieve a transition of the state of multiple constraints between activeness and in activeness.

    Furthermore,the null-space task compensation derivation which is described as Eq.(17)is utilized as follows:

    The above null-space vector compensation is operated in the joint space,while in the Cartesian space,the null space vector cannot be derived becausewhen n≥m+r.Thus,the null-space vector is derived as

    It is obvious to see that the above null-space vector is derived in the joint space,and it cannot be derived as the way in Eq.(12).Hence,the angular velocities can be given by

    In Eq.(26),the secondary task is achieved in the null space of the primary task.Thus,the idea of hybrid task priority as elaborated in Fig.1 is achieved.

    4.3.Hybrid task priority motion planning without an algorithmic error

    Let RE1and RE2be the residual errors of the primary task and the secondary task respectively,and RE2is presented as

    It can be seen that the secondary task has a nonzero residual error.

    Let Im(·)be the image space of a matrix.When n ≥ m+r,the secondary task cannot be accomplished except thatWe can take a weighted pseudoinverseto achieve a rotation of the image space ofso as to adjust the intersection angle.Therefore,Eq.(26)can be transformed as

    which yields

    and

    To eliminate the residual of the secondary task,W is selected to rotate Im(I+M).The following lemma can be useful in the selection of W.

    Lemma:

    Hence,we can obtain

    so

    Considering the singularity avoidance of W,a small but proper positive number δ can be introduced.Therefore,the modi fied weighted matrixW~can be obtained as

    δ is essential if rank(~W)<n,and if rank(~W)=n,δ=0.

    In addition,the relationship between the activated constraints and main task accuracy is shown in Table 1.

    Furthermore,following the analogous derivation from Eq.(13)to Eq.(17),the HTP-based satellite base attitude control with multi constraints can be expressed as

    4.4.Singularity robust implementation of the algorithm

    In practical applications,supposing that the orientation is represented by Euler angles ψ =[α, β,γ],the relationship between the angular velocity w and the rotational velocityrepresented as,where T is the transformation which is not invertible for β = ±90°,and we call this RS.A robust solution to this problem can be formulated with the utilization of unit quaternion.The unit quaternion can be de fined as

    To better know the notation of the DS,let us consider the SVD of matrix IMas

    with the known notation as in the SVD of Eq.(23).Furthermore,the singularity inis related to that in,so we have

    A way to conquer the singularity is based on the damped least-squares inversewith the damping factor λBas

    Thus,the DS-robust implementation of Eq.(32)is

    Furthermore,supposing the desired angular velocity of the satellite wband L0=0,Eq.(36)can also achieve reactionless manipulation.is also a set of reactionless joint angular velocities.This novel reactionless kernel is de fined as the weighted pseudoinverse RNS.

    5.Real-time simulator of a space robot and algorithm verification

    5.1.Control scheme of a redundant space robot

    We take a seven-DOF space robot for example.The body fixed frame of the space robot is shown in Fig. 2.xi,yi,zi, i=0,1,...,n are the coordinate axes of the fixed frame of body i.xE,yE,zEare the coordinate axes of the end-effector’s body fixed frame.The kinematic parameters and the dynamic parameters are listed in Table 2.In Table 2,the ranges of seven angles are also given,and as for joint i,the upper limit iswhile the low limit ismi(kg),i=0,1,...,7 is the mass of body i,and m0represents the mass of the satellite base.riand ciare the positions of the frame origin and the center of the mass of body i,respectively.ICi(kg·m2) is the inertia matrix of body i, and ICi=[Ixx,Ixy,Ixz;Iyx,Iyy,Iyz;Izx,Izy,Izz].Fig.3 illustrates the control scheme of the space robot,in which 1/S represents the integrator to solve joint angles.

    Table 1 Relationship between multiple tasks.

    Fig.2 Body fixed frame of a 7-DOF redundant space robot.

    5.2.Real-time simulator under Linux/RTAI

    Diverse simulators are widely used in aerospace engineering.27The ground hardware-based veri fication systems of a space robot like air-bearing table,28airplane flying or free-falling motion,29and suspension system30are costly built.Recently,a kind of hybrid simulation method following the principle of dynamics simulation and kinematics equivalence has been presented,which is called hardware-in-the-loop simulation system.31The above veri fication systems are also costly built.In this article,we build a real-time simulation system under Linux/RTAI to explore the capabilities and limitations of the proposed method.The functional architecture of the simulator is shown in Fig.4.

    In this simulator,a dynamic model is built in SimMechanics,and the MATLAB Real-Time Workshop is utilized to port the virtual prototype model into C codes for online simulation.The controller of the real space robot system consists of a central controller and a joint controller.The modules mentioned above are made into three real-time tasks and run in three independent threads.32

    5.3.Experiment results

    The performance of the proposed algorithm is illustrated by the following simulation examples.The initial joint angles of a space robot are(0°,-90°,0°,0°,0°,0°,0°)and the base attitude is(0°,0°,0°)(Cardan angle).Furthermore,we adopt trapezium trajectories to plan the velocity and angular velocity.The control cycle is 0.01 s.

    The varied weight is de fined as

    where εiis a threshold value to ensure safety,d is a positive scalar selected by the demand of increasing rate,and˙ρiis the derivative term of ρi.In this paper,the threshold value εiis designed as

    where ρimaxis the maximum value of ρi.The coefficient N will determine the value of εifinally.

    Besides,the damping factor is determined by the balance between the task accuracy and the singularity.We adopt the minimum singular value as the criterion to measure the singularity.The varied damping factors are determined as

    where σBminand σEminare the minimum singular values of IMand JwC. σrBand σrEde fine the size of the singular region.λ0Band λ0Eare the maximum values of the damping factor.In addition, we adopt σrB= σrE=0.005 andto avoid the dynamics singularity.

    Case 1:

    In this example,a comparison to analyze the proposed HTP motion planning algorithm,the RNS-based motion planning algorithm,and the EJ-based motion planning algorithm is made.Assuming that the desired base attitude(α,β,γ)is(1°,1°,0°),the desired Cartesian end-effectordisplacement(x,y,z)can be divided into 4 cases:one case is(-35.7,30.6,35.7)mm,and the other cases are 1.5 times,2.0 times,and 2.5 times respectively,that are(-53.5,45.9,53.5)mm,(-71.4,61.2,71.4)mm,and(-89.2,76.5,89.2)mm.The corresponding tracking errors(Δx,Δy,Δz)and(Δα,Δβ,Δγ)in the aforementioned three methods are shown in Figs.5–7,respectively.

    The above results shown in Figs.5 and 6 demonstrate that the tracking errors in the HTP-based solution Eq.(36)aresmaller than those in the antecedent solution Eq.(6),that is to say,the former is more stable than the latter.This is because the former solution is without the algorithmic singularity,while the latter is easy to diverge with the increasing task dependence.Besides,Fig.7 shows that the EJ-based solution will bring about larger task errors in the satellite base attitude adjustment,which is because these two tasks(satellite base attitude adjustment and end-effector path tracking)are in the same priority,and these tasks will be in fluenced by each other.

    Table 2 Mass properties of the 7-DOF space robot.

    Fig.3 Control scheme of the 7-DOF space robot.

    Fig.4 Functional architecture of the simulator.

    Fig.5 Tracking errors of different tasks in the HTP-based solution Eq.(36).

    Fig.6 Tracking errors of different tasks by the antecedent RNS-based solution Eq.(6).

    Case 2:

    In this example,the proposed HTP method is used to achieve satellite attitude adjustment.The desired Cartesian displacement(x,y,z)is(-81,52.7,68)mm,and the desired base attitude(α,β,γ)is(1°,1°,0°).The simulation results of these two tasks are shown in Fig.8,and Fig.9 shows the errors(Δx,Δy,Δz)and(Δα,Δβ,Δγ)between the actual posture and the desired posture. The joint angles(qi,i=1,2,...,7)are reported in Fig.10,and Fig.11 shows the weights w3and w7in the constraints limits avoidance of joint 3 and joint 7,respectively.

    Fig.7 Tracking errors of different tasks by the EJ-based solution Eq.(8).

    Fig.8 Attitude of the base and position of the end-effector.

    Fig.9 Tracking errors of both tasks.

    Fig.10 Angles of the redundant space robot.

    Fig.11 Weights in constraints limit avoidance of joint 3 and joint 7.

    It is obvious that the proposed motion planning algorithm works successfully.The angle of joint 3 approaches the safe threshold value in 15.4 s,as shown in Fig.10,and the ascending weight prevents joint3’s motion,as shown in Figs.10 and 11.However,Fig.10 also shows that the other joint angles are changed to remedy the suspension of joint 3.While in 18.28 s,joint 7’s angle also approaches its border,there is no redundancy to solve two constraints simultaneously.Hence,the accuracy of end-effector continuous path tracking is affected by the ascending weight of joint 7’s limit constraint.However,in this stage,the accuracy of the primary satellite base attitude adjustment task will not be influenced,as shown in Figs.8 and 9.

    Case 3:

    In this example,the proposed HTP method is used to achieve reaction less control.The desired Cartesian displacement(x,y,z)is(-151.2,109.8,-189)mm.The simulation results of these two tasks are shown in Fig.12,and Fig.13 shows the errors(Δx,Δy,Δz)and(Δα,Δβ,Δγ).The joint angles(qi,i=1,2,...,7)are reported in Fig.14,and Fig.15 shows the weights w2and w7in the constraints limits avoidance of joint 2 and joint 7,respectively.

    Fig.12 Attitude of the base and position of the end-effector in reaction less control.

    Fig.13 Tracking errors in reaction less control.

    It can be seen that the end-effector path tracking task is achieved without influence of the satellite attitude.However,in 13.3 s,joint 2 is close to the scheduled limit,and the increased weights(as shown in Fig.15)will activate the constraint,and then the angle of joint 2 will be adjusted.Furthermore,in 15 s,joint 7 approaches the scheduled limit,so the weight increases dramatically.Thus,as shown in Fig.14,joint 7’s motion stops;besides,the motions of joint 1,joint 3,and joint 4 are changed correspondingly.Because only one constraint is activated in 13.3 s,the redundancy can achieve constraint avoidance by a proper recon figuration of the manipulator;besides,in 15 s,two constraints are activated,the end-effector path tracking accuracy will be influenced to some degree without influence on the main task,as shown in Figs.12 and 13.

    6.Conclusions

    Fig.14 Angles of the redundant space robot in reaction less control.

    Fig.15 Weights in constraint limit avoidance of joint 2 and joint 7 in reaction less control.

    (1)A null-space task compensation in the joint space is proposed to obtain HTP-based motion planning for base attitude control with multiple constraints of a redundant space robot.Thus,the secondary task consists of end-effector path tracking,and the multiconstraint avoidance task is implemented in the nullspace of the primary task which is termed the weighted pseudoinverse RNS,where the joint motion in this reactionless kernel will have no effect on attitude control.Furthermore,the weighted pseudoinverse solution eliminates the residual error of the secondary task.Hence,a hybrid task priority motion planning algorithm is derived.

    (2)Besides,the null-space task compensation strategy guarantees no algorithmic singularity in the proposed hybrid task priority algorithm,and a varied damping factor is also introduced to settle the dynamics singularity problem.Hence,a singularity robust path planning algorithm is derived to implement the prioritized task of base attitude adjustment with multiple constraints.

    (3)Furthermore,a real-time simulator under Linux/RTAI of a free- floating space robot is built in this paper to verify the online calculation of the proposed method.Thus,the real-time base control task is implemented in the simulator.

    Acknowledgements

    This project was supported in part by the National Program on Key Basic Research Project(No.2013CB733103)and the Program for New Century Excellent Talents in University(No.NCET-10-0058).

    1.Flores-Abad A,Ma O,Pham K,Ulrich S.A review of space robotics technologies for on-orbit servicing.Prog Aerosp Sci 2014;68:1–26.

    2.Xu W,Liang B,Xu Y.Survey of modeling,planning,and ground verification of space robotic systems.Acta Astronaut 2011;68(11):1629–49.

    3.Huang P,Wang M,Meng Z.Attitude takeover control for postcapture of target spacecraft using space robot.Aerosp Sci Technol 2016;51:171–80.

    4.Wen Z,Wang Y,Kuijper A,Di N,Luo J,Zhang L,et al.On-orbit real-time robust cooperative target identification in complex background.Chin J Aeronaut 2015;28(5):1451–63.

    5.Zhang L,Jia Q,Chen G,Sun H.Pre-impact trajectory planning for minimizing base attitude disturbance in space manipulator systems for a capture task.Chin J Aeronaut 2015;28(4):1199–208.

    6.Xu B,Yuan Y.Two performance enhanced control of flexible-link manipulator with system uncertainty and disturbances.Sci Chin Informa Sci 2017;60(5):050202.

    7.Jing Z,Qiao L,Pan H,Yang Y,Chen W.An overview of the con figuration and manipulation of soft robotics for on-orbit servicing.Sci Chin Informa Sci 2017;60(5):050201.

    8.Jia Y,Xu S.Decentralized adaptive sliding mode control of a space robot actuated by control moment gyroscopes.Chin J Aeronaut 2016;29(3):688–703.

    9.Huang P,Wang D,Meng Z,Zhang F,Liu Z.Impact dynamic modeling and adaptive target capturing control for tethered space robots with uncertainties.IEEE/ASME Trans Mecha 2016;21(5):2260–71.

    10.Dubowsky S,Papadopoulos E.The kinematics,dynamics,and control of free- flying and free- floating space robotic systems.IEEE Trans Robot Autom 1993;9(5):531–43.

    11.Fernandes C,Gurvits L,Li ZX.Attitude control of space platform/manipulatorsystem using internalmotion.Space Robotics:Dynamics and Control,1992 May 12–14,IEEE Press,Piscataway,NJ;1993.p.131–63.

    12.Dubowsky S,Torres M.Path planning for space manipulators to minimize spacecraft attitude disturbances.IEEE international conference on robotics and automation,1991 April,IEEE Press,Piscataway,NJ;1991.p.2522–8.

    13.Vafa Z,Dubowsky S.On the dynamics of space manipulators using the virtual manipulator,with applications to path planning.Space Robotics:Dynamics and Control;1993.p.45–76.

    14.Nakamura Y,Mukherjee R.Nonholonomic motion planning of free- flying space robots via a bi-directional approach.Space Robotics:Dynamics and Control;1993.p.101–30.

    15.Fernandes C,Gurvits L,Li Z.Near-optimal nonholonomic motion planning for a system of coupled rigid bodies.IEEE Trans Autom Control 1994;39(3):450–63.

    16.Nenchev D,Umetani Y,Yoshida K.Analysis of a redundant freeflying spacecraft/manipulator system.IEEE Trans Robot Autom 1992;8(1):1–6.

    17.Nenchev DN,Yoshida K,Vichitkulsawat P,Uchiyama M.Reaction null-space control of flexible structure mounted manipulator systems.IEEE Trans Robot Autom 1999;15(6):1011–23.

    18.Nenchev DN.Reaction null space of a multibody system with applications in robotics.Mecha Sci 2013;4(1):97–112.

    19.Jin M,Zhou C,Liu Y,Liu H.Cartesian path planning for base attitude adjustment of space robot.In:IEEE international conference on mechatronics and automation,2015 Aug 2–5,Beijing,China.IEEE Press,Piscataway,NJ;2015.p.582–7.

    20.Chiaverini S.Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators.IEEE Trans Robot Autom 1997;13(3):398–410.

    21.Park J,Choi Y,Chung WK,Youm Y.Multiple tasks kinematics using weighted pseudo-inverse for kinematically redundant manipulators.In:IEEE international conference on robotics and automation;2001 May 21–26,IEEE Press,Piscataway,NJ;2001.p.4041–7.

    22.Chiaverini S,Egeland O,Kanestrom RK.Achieving user-de fined accuracy with damped least-squares inverse kinematics.In:Fifth international conference on advanced robotics,1991 June 19–22,IEEE Press,Piscataway,NJ;1991.p.672–7.

    23.Xiang J,Zhong C,Wei W.A varied weights method for the kinematic control of redundant manipulators with multiple constraints.IEEE Trans Robot 2012;28(2):330–40.

    24.Antonelli G.Stability analysis for prioritized closed-loop inverse kinematic algorithms for redundant robotic systems.IEEE Trans Robot 2009;25(5):985–94.

    25.Seraji H,Colbaugh R.Improved con figuration control for redundant robots.J Robot Sys 1990;7(6):897–928.

    26.An S,Lee D.Prioritized inverse kinematics using QR and Cholesky decompositions.In:IEEE international conference on robotics and automation,2014 May 31–June 7,IEEE Press,Piscataway,NJ;2014.p.5062–9.

    27.Wang C,Jiao Z,Wu S,Shang Y.An experimental study of the dual-loop control of electro-hydraulic load simulator(EHLS).Chin J Aeronaut 2013;26(6):1586–95.

    28.Umetani Y,Yoshida K.Experimental study on two dimensional free- flying robot satellite model.In:Proceedings of the NASA conference on space telerobotics,1989 Jan 31,NASA,Washington,D.C.;1989.p.89–97.

    29.Menon C,Aboudan A,Cocuzza S.Free- flying robot tested on parabolic flights:kinematic control.J Guidance Control Dyn 2005;28(4):623–30.

    30.Fujii H,Uchiyama K,Yoneoka H,Maruyama T.Ground-based simulation of space manipulators using test bed with sus-pension system.Chem Eng Commun 1996;19(5):985–91.

    31.Krenn R,Schaefer B.Limitations of hardware-in-the-loop simulations of space robotics dynamics using industrial robots.European Space Agency-Publications-ESA SP 1999;440:681–6.

    32.Jin M,Zhou C,Xie Z.The electrical simulator for the space station manipulator under Linux/RTAI.In:IEEE international conference on robotics and biomimetics;2016 Dec 3–7,Qingdao,China,IEEE Press,Piscataway,NJ;2016.p.402–7.

    23 December 2016;revised 9 March 2017;accepted 30 April 2017

    Available online 9 September 2017

    ?2017 Production and hosting by Elsevier Ltd.on behalf of Chinese Society of Aeronautics and Astronautics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.

    E-mail address:mhjin@hit.edu.cn(M.JIN).

    Peer review under responsibility of Editorial Committee of CJA.

    九九爱精品视频在线观看| 精品免费久久久久久久清纯| 国产一区二区在线观看日韩| 中文字幕av成人在线电影| 亚洲中文字幕日韩| 成年版毛片免费区| 99热这里只有是精品50| 亚洲图色成人| 三级毛片av免费| 一区二区三区免费毛片| 欧美性猛交黑人性爽| 3wmmmm亚洲av在线观看| 神马国产精品三级电影在线观看| 特级一级黄色大片| 国产激情偷乱视频一区二区| 亚洲人成网站在线播| 亚洲国产色片| 天美传媒精品一区二区| 免费高清视频大片| 久久精品久久久久久噜噜老黄 | 日韩欧美精品v在线| 99久久九九国产精品国产免费| 国产综合懂色| 夜夜夜夜夜久久久久| 六月丁香七月| 成人特级av手机在线观看| 草草在线视频免费看| 悠悠久久av| 精品少妇黑人巨大在线播放 | 亚洲乱码一区二区免费版| 亚洲av免费高清在线观看| 天堂√8在线中文| 男人舔奶头视频| 国产精品1区2区在线观看.| 精品久久久噜噜| 蜜桃亚洲精品一区二区三区| 俺也久久电影网| 欧美性猛交黑人性爽| 九九久久精品国产亚洲av麻豆| 久久热精品热| 亚洲性久久影院| 尤物成人国产欧美一区二区三区| 少妇人妻精品综合一区二区 | 三级国产精品欧美在线观看| 亚洲无线观看免费| 国产精品久久电影中文字幕| 成人无遮挡网站| 久久久久久国产a免费观看| 97人妻精品一区二区三区麻豆| 国产午夜福利久久久久久| 亚洲,欧美,日韩| 国产高清三级在线| 性欧美人与动物交配| 人妻少妇偷人精品九色| 六月丁香七月| 天美传媒精品一区二区| 国国产精品蜜臀av免费| 国产蜜桃级精品一区二区三区| 2021天堂中文幕一二区在线观| 国产精品久久久久久久电影| 99久久九九国产精品国产免费| 国产激情偷乱视频一区二区| 精品午夜福利视频在线观看一区| 国产麻豆成人av免费视频| 午夜老司机福利剧场| 观看美女的网站| 国国产精品蜜臀av免费| 亚洲一级一片aⅴ在线观看| 3wmmmm亚洲av在线观看| 午夜福利在线在线| 国产午夜福利久久久久久| 婷婷亚洲欧美| 在线播放无遮挡| 国产高清三级在线| 午夜福利成人在线免费观看| 精品人妻熟女av久视频| 99riav亚洲国产免费| 精品免费久久久久久久清纯| 亚洲熟妇熟女久久| 日本色播在线视频| 国产乱人视频| 插逼视频在线观看| 熟妇人妻久久中文字幕3abv| 欧美一级a爱片免费观看看| 精品久久久久久成人av| 国产中年淑女户外野战色| 一本久久中文字幕| 成人午夜高清在线视频| 精品久久国产蜜桃| 香蕉av资源在线| 少妇丰满av| av天堂在线播放| 不卡一级毛片| 免费看光身美女| 天堂av国产一区二区熟女人妻| 国产av麻豆久久久久久久| a级一级毛片免费在线观看| 午夜福利成人在线免费观看| 美女 人体艺术 gogo| 男人和女人高潮做爰伦理| av卡一久久| 日本爱情动作片www.在线观看 | 亚洲人成网站在线播| 在线看三级毛片| 午夜福利视频1000在线观看| 色播亚洲综合网| 久久久精品欧美日韩精品| 国产一区亚洲一区在线观看| 国产伦精品一区二区三区视频9| 亚洲自拍偷在线| 久久久午夜欧美精品| 一区二区三区高清视频在线| 成人亚洲欧美一区二区av| 国产精品一区二区三区四区免费观看 | 久久精品国产亚洲av天美| 99热这里只有精品一区| 极品教师在线视频| 性欧美人与动物交配| 免费在线观看成人毛片| 亚洲成人av在线免费| 亚洲,欧美,日韩| 日日摸夜夜添夜夜添av毛片| 国产在线男女| 免费一级毛片在线播放高清视频| 亚洲在线观看片| 久久久精品大字幕| 十八禁国产超污无遮挡网站| av黄色大香蕉| 免费黄网站久久成人精品| 国产v大片淫在线免费观看| 男人狂女人下面高潮的视频| 久久精品国产亚洲网站| 97超级碰碰碰精品色视频在线观看| 非洲黑人性xxxx精品又粗又长| 午夜福利视频1000在线观看| 国产亚洲av嫩草精品影院| 禁无遮挡网站| 日本欧美国产在线视频| 午夜精品在线福利| 亚洲精品国产av成人精品 | 久久久久免费精品人妻一区二区| 91在线观看av| 久久久久免费精品人妻一区二区| 特级一级黄色大片| 伊人久久精品亚洲午夜| 欧美激情国产日韩精品一区| 日日摸夜夜添夜夜添av毛片| 国产精品亚洲美女久久久| 天天一区二区日本电影三级| 久久久久国产网址| 国产午夜精品论理片| 一个人看视频在线观看www免费| 国产伦在线观看视频一区| 精品久久久久久久人妻蜜臀av| 赤兔流量卡办理| 亚洲中文日韩欧美视频| 亚洲欧美成人精品一区二区| 久久久久免费精品人妻一区二区| 欧美日本视频| 尾随美女入室| 搞女人的毛片| 亚洲欧美日韩东京热| 国产精品一区二区三区四区免费观看 | 日本色播在线视频| 国产精品一区二区性色av| 亚洲av二区三区四区| 白带黄色成豆腐渣| 国产精品国产高清国产av| 国产精品国产高清国产av| 久久久久国产网址| 国产高清不卡午夜福利| 亚洲人成网站在线播放欧美日韩| 九九在线视频观看精品| 日本黄大片高清| 99久久久亚洲精品蜜臀av| 国产精品久久久久久亚洲av鲁大| 成人三级黄色视频| 久久精品夜夜夜夜夜久久蜜豆| 在线观看一区二区三区| 搡女人真爽免费视频火全软件 | 变态另类丝袜制服| 波多野结衣高清作品| 国产成年人精品一区二区| 久久精品影院6| 亚洲av.av天堂| 国产成年人精品一区二区| 国模一区二区三区四区视频| 熟女人妻精品中文字幕| 亚洲av中文字字幕乱码综合| 欧美日韩一区二区视频在线观看视频在线 | 久久久久久九九精品二区国产| 日韩精品有码人妻一区| 久久久精品94久久精品| 一区二区三区四区激情视频 | 狠狠狠狠99中文字幕| 在现免费观看毛片| 别揉我奶头 嗯啊视频| 日韩欧美国产在线观看| 亚洲丝袜综合中文字幕| 久久鲁丝午夜福利片| 国产三级中文精品| 美女大奶头视频| 日韩三级伦理在线观看| 观看美女的网站| 久久国内精品自在自线图片| 亚洲欧美精品综合久久99| 亚洲国产精品国产精品| 少妇的逼水好多| 欧美日韩综合久久久久久| 久久欧美精品欧美久久欧美| 日本色播在线视频| 久久精品影院6| 欧美在线一区亚洲| 成人性生交大片免费视频hd| 亚洲美女搞黄在线观看 | 国产精品无大码| 少妇人妻精品综合一区二区 | 免费不卡的大黄色大毛片视频在线观看 | av.在线天堂| 亚洲精品一区av在线观看| 搡老岳熟女国产| 国产成年人精品一区二区| 亚洲七黄色美女视频| 午夜精品在线福利| 午夜激情欧美在线| 又黄又爽又刺激的免费视频.| 国产白丝娇喘喷水9色精品| 国产乱人视频| 日本精品一区二区三区蜜桃| 嫩草影院精品99| 精品久久久久久久末码| 少妇人妻精品综合一区二区 | 亚洲熟妇熟女久久| 日韩欧美免费精品| 一本久久中文字幕| 少妇熟女欧美另类| 中出人妻视频一区二区| 午夜精品国产一区二区电影 | 97碰自拍视频| 99国产极品粉嫩在线观看| 99久久中文字幕三级久久日本| 九九热线精品视视频播放| 我要搜黄色片| 国内精品宾馆在线| 成人二区视频| 日本一本二区三区精品| 国产伦在线观看视频一区| 国产极品精品免费视频能看的| 日本-黄色视频高清免费观看| 久久欧美精品欧美久久欧美| 国产精品久久久久久亚洲av鲁大| 欧美又色又爽又黄视频| 97碰自拍视频| 亚洲av中文av极速乱| 亚洲精品色激情综合| 日韩av在线大香蕉| 性欧美人与动物交配| 青春草视频在线免费观看| 伊人久久精品亚洲午夜| 国产乱人视频| 久久久久久久久久黄片| 色播亚洲综合网| 99热这里只有是精品在线观看| 亚洲在线观看片| 亚洲最大成人中文| 久久热精品热| 国产高清激情床上av| 深爱激情五月婷婷| 一本一本综合久久| 人妻久久中文字幕网| 久久久久久久久久久丰满| 亚洲丝袜综合中文字幕| 国产成人freesex在线 | 听说在线观看完整版免费高清| 一区二区三区免费毛片| 国产精品一区www在线观看| 99热这里只有精品一区| 97超碰精品成人国产| 国产精品亚洲一级av第二区| 99久久久亚洲精品蜜臀av| 精品国产三级普通话版| 我要看日韩黄色一级片| 午夜福利视频1000在线观看| 麻豆乱淫一区二区| 国产又黄又爽又无遮挡在线| 午夜免费男女啪啪视频观看 | 黑人高潮一二区| 一级毛片久久久久久久久女| 久久午夜亚洲精品久久| 国产精品伦人一区二区| 国产探花在线观看一区二区| 日日摸夜夜添夜夜添av毛片| 国产精品一区二区三区四区免费观看 | 99国产极品粉嫩在线观看| 最新中文字幕久久久久| 麻豆国产97在线/欧美| 日韩高清综合在线| 午夜久久久久精精品| 久久久久国产网址| 国产男靠女视频免费网站| 九色成人免费人妻av| 毛片一级片免费看久久久久| 狂野欧美白嫩少妇大欣赏| 大又大粗又爽又黄少妇毛片口| 精品福利观看| av在线蜜桃| 国产精品一及| 亚洲av熟女| 一级黄片播放器| 人妻丰满熟妇av一区二区三区| 看十八女毛片水多多多| 国产一区二区三区av在线 | 午夜a级毛片| 偷拍熟女少妇极品色| 亚洲成a人片在线一区二区| 亚洲精华国产精华液的使用体验 | 亚洲欧美精品自产自拍| 少妇被粗大猛烈的视频| 国产成人影院久久av| 在线播放国产精品三级| 人妻制服诱惑在线中文字幕| 亚洲精品日韩在线中文字幕 | 久久国产乱子免费精品| or卡值多少钱| 免费看av在线观看网站| 大香蕉久久网| 色在线成人网| 男女边吃奶边做爰视频| videossex国产| 国产高清三级在线| 亚洲色图av天堂| eeuss影院久久| 亚洲av一区综合| 夜夜夜夜夜久久久久| 日日摸夜夜添夜夜添小说| 免费观看在线日韩| 亚洲自偷自拍三级| 欧美色视频一区免费| 久久久精品大字幕| 欧美三级亚洲精品| 国产私拍福利视频在线观看| 最后的刺客免费高清国语| 观看免费一级毛片| 精品不卡国产一区二区三区| 久久精品国产自在天天线| 夜夜爽天天搞| 国内久久婷婷六月综合欲色啪| 欧美不卡视频在线免费观看| 久久国产乱子免费精品| 超碰av人人做人人爽久久| 99在线视频只有这里精品首页| 十八禁国产超污无遮挡网站| 亚洲国产高清在线一区二区三| 亚洲一级一片aⅴ在线观看| 1024手机看黄色片| 久久人妻av系列| 日本黄色视频三级网站网址| 亚洲熟妇中文字幕五十中出| 久久久国产成人免费| 可以在线观看毛片的网站| 午夜福利在线在线| 我要看日韩黄色一级片| 麻豆乱淫一区二区| 国产精品不卡视频一区二区| 看非洲黑人一级黄片| 嫩草影院入口| 97热精品久久久久久| 又爽又黄无遮挡网站| 99热精品在线国产| 亚洲色图av天堂| 国产蜜桃级精品一区二区三区| 99久久精品国产国产毛片| 国产高清三级在线| 亚洲专区国产一区二区| 国产成人91sexporn| 一边摸一边抽搐一进一小说| av在线老鸭窝| 国产一区二区三区av在线 | 高清日韩中文字幕在线| 亚洲va在线va天堂va国产| 亚洲天堂国产精品一区在线| 在线a可以看的网站| 国产一区二区激情短视频| 最近的中文字幕免费完整| 一个人看视频在线观看www免费| 久久国产乱子免费精品| 卡戴珊不雅视频在线播放| 国产在视频线在精品| 欧美三级亚洲精品| 最近视频中文字幕2019在线8| 成人鲁丝片一二三区免费| 欧美区成人在线视频| 国产黄a三级三级三级人| 成人鲁丝片一二三区免费| 国产精品国产高清国产av| 一进一出好大好爽视频| 亚洲最大成人手机在线| 国产伦精品一区二区三区四那| 少妇人妻一区二区三区视频| 欧美成人a在线观看| 别揉我奶头 嗯啊视频| 久久精品91蜜桃| 成人漫画全彩无遮挡| 九九爱精品视频在线观看| 1000部很黄的大片| 成人漫画全彩无遮挡| 久久精品国产鲁丝片午夜精品| 一进一出抽搐gif免费好疼| 亚洲欧美日韩卡通动漫| 亚洲欧美成人精品一区二区| 搡女人真爽免费视频火全软件 | 最新在线观看一区二区三区| 特级一级黄色大片| 久久精品国产清高在天天线| 国产亚洲欧美98| 国产老妇女一区| 亚洲综合色惰| 亚洲欧美中文字幕日韩二区| av在线亚洲专区| 久久精品久久久久久噜噜老黄 | 中文资源天堂在线| 搡老岳熟女国产| videossex国产| 中文字幕久久专区| 神马国产精品三级电影在线观看| а√天堂www在线а√下载| 欧洲精品卡2卡3卡4卡5卡区| 国产午夜福利久久久久久| 欧美性猛交黑人性爽| 成年免费大片在线观看| av福利片在线观看| 在线观看美女被高潮喷水网站| 日本在线视频免费播放| 美女大奶头视频| 欧美xxxx性猛交bbbb| 亚洲精品一卡2卡三卡4卡5卡| 欧美一区二区国产精品久久精品| 欧美高清性xxxxhd video| 欧美日本亚洲视频在线播放| 禁无遮挡网站| 日韩欧美在线乱码| 久久中文看片网| a级毛色黄片| 精品熟女少妇av免费看| 久久韩国三级中文字幕| 成人二区视频| 久久久久久九九精品二区国产| 国产亚洲av嫩草精品影院| 国产精品亚洲一级av第二区| 亚洲七黄色美女视频| 久久久久久久久中文| 精品人妻视频免费看| 久久久久精品国产欧美久久久| 成年女人看的毛片在线观看| 亚洲av不卡在线观看| 午夜日韩欧美国产| 国产一区二区三区av在线 | 综合色av麻豆| 蜜桃久久精品国产亚洲av| 国产免费一级a男人的天堂| 国产一区二区三区在线臀色熟女| 国产精品久久电影中文字幕| av在线蜜桃| 嫩草影院新地址| 最近最新中文字幕大全电影3| 神马国产精品三级电影在线观看| 亚洲国产精品成人综合色| 国产探花在线观看一区二区| 国产一区二区三区av在线 | 亚洲欧美日韩卡通动漫| 久久久精品大字幕| 国产真实伦视频高清在线观看| 国模一区二区三区四区视频| 日韩一区二区视频免费看| 国产一区二区在线观看日韩| 久久午夜亚洲精品久久| 国产成人一区二区在线| 日韩欧美三级三区| 美女高潮的动态| 免费观看在线日韩| 日韩欧美免费精品| 国产成人a区在线观看| 国产 一区精品| 久久久色成人| 国产亚洲精品综合一区在线观看| 国产蜜桃级精品一区二区三区| 精品无人区乱码1区二区| 变态另类成人亚洲欧美熟女| 色综合站精品国产| 久久久久久久久久久丰满| 97人妻精品一区二区三区麻豆| 亚洲成人久久爱视频| 久久精品91蜜桃| 99国产精品一区二区蜜桃av| 亚洲av中文字字幕乱码综合| 我的女老师完整版在线观看| 久久草成人影院| 中文字幕av成人在线电影| 一级毛片我不卡| 日韩精品中文字幕看吧| 九九热线精品视视频播放| 国产大屁股一区二区在线视频| 亚洲精品日韩av片在线观看| 亚洲欧美日韩高清专用| 成年版毛片免费区| 乱人视频在线观看| 成人综合一区亚洲| 99热网站在线观看| 蜜桃亚洲精品一区二区三区| 国产乱人视频| 午夜福利视频1000在线观看| 变态另类成人亚洲欧美熟女| 国产黄色小视频在线观看| 国产激情偷乱视频一区二区| 亚州av有码| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品亚洲一区二区| 99久久精品国产国产毛片| 成人高潮视频无遮挡免费网站| 偷拍熟女少妇极品色| 少妇的逼水好多| 天堂动漫精品| 久久久久精品国产欧美久久久| 日本色播在线视频| 亚洲人与动物交配视频| 插逼视频在线观看| 精品免费久久久久久久清纯| 中文字幕av在线有码专区| 国产亚洲91精品色在线| 久久久久精品国产欧美久久久| 日韩人妻高清精品专区| 免费观看的影片在线观看| 精品福利观看| 俄罗斯特黄特色一大片| 可以在线观看毛片的网站| 国产精品免费一区二区三区在线| 欧美成人精品欧美一级黄| 亚洲激情五月婷婷啪啪| 亚洲av免费高清在线观看| h日本视频在线播放| 免费搜索国产男女视频| 不卡视频在线观看欧美| 黄色视频,在线免费观看| 免费人成在线观看视频色| 天堂动漫精品| 成人一区二区视频在线观看| 国产av不卡久久| 一级毛片aaaaaa免费看小| 国产成人91sexporn| 亚洲av不卡在线观看| 亚洲精品成人久久久久久| 国产单亲对白刺激| 亚洲精品日韩av片在线观看| 免费在线观看成人毛片| 午夜福利在线在线| 99热这里只有是精品在线观看| 亚洲国产精品sss在线观看| 国产亚洲精品久久久com| 国内精品美女久久久久久| 亚洲av免费高清在线观看| 午夜福利在线观看免费完整高清在 | 久久久久国产网址| 最近中文字幕高清免费大全6| 搞女人的毛片| 亚洲av第一区精品v没综合| 久久久久国产精品人妻aⅴ院| 69av精品久久久久久| 日韩国内少妇激情av| 免费观看人在逋| 日日摸夜夜添夜夜添av毛片| 最近视频中文字幕2019在线8| 麻豆一二三区av精品| 国产一区二区在线av高清观看| 久久久久久久亚洲中文字幕| 我的女老师完整版在线观看| 国产精品永久免费网站| 搡女人真爽免费视频火全软件 | 可以在线观看毛片的网站| 国产国拍精品亚洲av在线观看| 精品一区二区三区av网在线观看| 色吧在线观看| 又黄又爽又刺激的免费视频.| 免费电影在线观看免费观看| av黄色大香蕉| 日本 av在线| 99久国产av精品| 精品久久久久久久久亚洲| 桃色一区二区三区在线观看| 男人舔奶头视频| 麻豆成人午夜福利视频| 一进一出抽搐gif免费好疼| 精品欧美国产一区二区三| 亚洲中文字幕一区二区三区有码在线看| 男插女下体视频免费在线播放| 欧美区成人在线视频| 精品久久久久久久末码| 久久久久国产网址| 欧美zozozo另类| 97超碰精品成人国产| 亚洲内射少妇av| 99久久精品一区二区三区| 欧美精品国产亚洲| 老师上课跳d突然被开到最大视频| 日日撸夜夜添| 中文在线观看免费www的网站| 国产精品一及| 国产色爽女视频免费观看| 国产精品人妻久久久影院| 最近最新中文字幕大全电影3| 亚洲av免费在线观看| 免费观看精品视频网站| 麻豆国产97在线/欧美| 赤兔流量卡办理| 最近视频中文字幕2019在线8| 91狼人影院|