• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of a cabin ventilation subsystem in a space station oriented real-time system

    2017-12-22 06:22:50ZezhengQIULipingPANGGuoxingLIHelinZHANG
    CHINESE JOURNAL OF AERONAUTICS 2017年6期

    Zezheng QIU,Liping PANG,*,Guoxing LI,Helin ZHANG

    aSchool of Aeronautic Science and Engineering,Beihang University,Beijing 100083,China

    bAviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration,Nanjing Engineering Institute of Aircraft Systems,Nanjing 211102,China

    Numerical simulation of a cabin ventilation subsystem in a space station oriented real-time system

    Zezheng QIUa,Liping PANGa,*,Guoxiang LIa,Helin ZHANGb

    aSchool of Aeronautic Science and Engineering,Beihang University,Beijing 100083,China

    bAviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration,Nanjing Engineering Institute of Aircraft Systems,Nanjing 211102,China

    Numerical integration method; Real-time simulation; Stability; THCS; Time-variant system

    An environment control and life support system(ECLSS)is an important system in a space station.The ECLSS is a typical complex system,and the real-time simulation technology can help to accelerate its research process by using distributed hardware in a loop simulation system.An implicit fixed time step numerical integration method is recommended for a real-time simulation system with time-varying parameters.However,its computational efficiency is too low to satisfy the real-time data interaction,especially for the complex ECLSS system running on a PC cluster.The instability problem of an explicit method strongly limits its application in the ECLSS real-time simulation although it has a high computational efficiency.This paper proposes an improved numerical simulation method to overcome the instability problem based on the explicit Euler method.A temperature and humidity control subsystem(THCS)is firstly established,and its numerical stability is analyzed by using the eigenvalue estimation theory.Furthermore,an adaptive operator is proposed to avoid the potential instability problem.The stability and accuracy of the proposed method are investigated carefully.Simulation results show that this proposed method can provide a good way for some complex time-variant systems to run their real-time simulation on a PC cluster.

    1.Introduction

    A space station is a unique laboratory for humans to explore the outer space,1and its environment control and life support system(ECLSS)is one of the important systems because it can provide a basic living environment for astronauts.The ECLSS includes some coupled operating subsystems,such as an atmosphere control and supply subsystem(ACSS),a temperature and humidity control subsystem(THCS),a carbon dioxide removal subsystem(CDRS),a trace contaminants control subsystem(TCCS),a water recovery and management subsystem(WRMS),and a vacuum subsystem(VS).2,3These coupling subsystems are connected by certain fluid pipe networks which are everywhere in the cabin,such as an air ventilation pipe network and a liquid cooling pipe network.4The fluid pipe networks can provide the working pressure and flow rate for components so as to implement flow,heat,and mass transfer or some special chemical reaction processes dynamically.Therefore,correct simulation of pressure- flow coupling performance is the premise of accurate ECLSS dynamic simulation.

    Scholars have carried out a lot of research on the dynamic modeling and simulation of ECLSSs.Jones5analyzed the relationship between static and dynamic models,and established an environment simulation system including cabin environment,crew metabolic,and waste management models.Boscheri et al.6built mechanism models for some processes,such as water treatment and carbon dioxide removal and reduction.Their models can reflect the regenerative performance of an ECLSS.The European Space Agency(ESA)developed EcosimPro software to simulate non-regenerative ECLSSs and an electrolytic oxygen process.7Kortenkamp and Bell8set up energy supply and food management models to enrich the ECLSS simulation system.Furthermore,a large number of physical-chemical and biological simulation studies about ECLSSs have emerged in recent years.9–11These studies have promoted the development of ECLSS simulation technology,and played an important role in the research and development of ECLSSs.

    Traditional dynamic simulation can put forward constructive opinions about system design and optimization.However,it is not so efficient as to simulate and test dynamic working performance because many high-precision models of subsystems need to be built and calibrated.In this case,the research period is too long to satisfy the requirements of rapid research and development for complex ECLSSs.For this type of complex system,it is urgent to find a new effective way.

    Real-time simulation is a very effective way which considers hardware subsystems as virtual simulation models.Hence,hardware models do not need to be built at all,which will obviously save the research period and cut down the research expenditure at the same time.12,13For a complex ECLSS,its real-time simulation system is a very efficient way.

    However,the real-time simulation technology has an inherent feature of fixed clock frequency.14The simulation time step should be fixed and set larger enough than the model solution time in each time step.15For this reason,current successful applications of real-time simulation are only some systems with a small number of models,such as some simulations for kinematics behaviors of trajectories16and motion control equations.17There are few real-time simulation applications about the ECLSS of a space station due to the following disadvantageous features.

    (1)Coupling relationship between the pressure p and the mass flow rate˙m

    In order to solve the values of p andm˙ at any position in a fluid network,it needs to solve all the momentum and mass conservation equations of the flow network together.Hence,the number of equations will be huge if the fluid network system is a relatively complex one.18,19

    (2)Time-varying characteristics of model parameters

    A change of the valve opening degree will lead to a change of the system eigenvalues correspondingly,which will easily lead to the instability of the simulation system.One way to overcome this issue is to adopt an implicit numerical integration method.

    (3)A large amount and various types of subsystem models

    An ECLSS includes various components,and their mathematical models include a set of linear or nonlinear differential and algebraic equations.In addition,some models of regenerative components in the ECLSS are complex partial differential equations,such as the models of adsorption beds in the CDRS and the TCCS.In order to obtain their numerical solutions,they need to be transformed into a large number of ordinary differential equations.20

    Therefore,the above disadvantageous features will undoubtedly and finally lead to a large amount of ordinary differential equations in the ECLSS simulation system.For time-varying real-time simulation,an implicit fixed time step numerical integration method with a better convergence performance is a preferred way.21However,its computational time in each step is much longer than that of an explicit numerical integration method,especially for a large complex system running on a PC cluster.22The computational time of an implicit method will dramatically increase with an increase of the number of ECLSS models,which cannot satisfy the real-time performance of the system.In contrast,an explicit numerical integration method has a higher computational efficiency in each step than an implicit one,but its simulation result may be not convergent for stiff systems.23If the simulation stability of the ECLSS system can be guaranteed very well,an explicit fixed step numerical integration method will be a good choice to solve a real-time ECLSS simulation system on a PC cluster.24

    Oriented to the application of a real-time simulation system on a PC cluster,this paper mainly discuss a simulation method for ECLSSs using an explicit fixed step integral method.A simplified ventilation pipe network in the THCS of an ECLSS is taken as an example to discuss the models and numerical solution.The Gersˇgorin theorem25is adopted to analyze the stability of the large ordinary differential system.By analyzing the eigenvalue distribution of the simulation system,an adaptive operator is proposed to ensure the stability of numerical simulation.Based on the above study,a new modeling method is proposed to ensure the convergence of the system with the explicit numerical integration method.The simplified ECLSS example is used again to explain the application of the new modeling method and the adaptive operator.Furthermore,the simulation stability and simulation error are discussed.The studied simulation method can provide a good way to avoid the numerical divergence problem using the explicit fixed step numerical integration method and ensure the simulation efficiency of a complex real-time system on a PC cluster.

    2.ECLSS models

    A typical ECLSS distribution of the on-orbit international space station(ISS)is shown in Fig.1(a),which includes a THCS,a CDRS,a TCCS,etc.23The subsystems exchange their mass and heat flows through a ventilation pipe network.In this way,the ECLSS can control cabin air temperature and humidity as well as carbon dioxide and trace contaminant concentrations.A schematic diagram of a simplified ventilation pipe network in a laboratory module is shown in Fig.1(b),which will be taken as an example to discuss the modeling process and the solution method of ill-conditioned linear equations.

    The ventilation pipe network of the ECLSS includes many common components,such as fans,pipes,valves,and a condensing heat exchanger(CHE).In addition,it also includes some special components,such as a four-bed molecular sieve(4BMS)in the CDRS and adsorption beds in the TCCS.In this paper,we will study the numerical stability of the ventilation subsystem as shown in Fig.1(b)considering its application in a real-time system.

    In the following discussion,we focus on the pressure- flow numerical stability analysis of the time-varying ventilation system using an explicit fixed step integral method.Because of the following two reasons,the influence of a temperature change is considered separately.(A)The eigenvalues of the heat and mass transfer processes are much smaller than that of the pressure process,so the change of the temperature is much slower than that of the pressure.(B)When the change of the temperature is small,its effect on the eigenvalues of differential equations can be ignored,so it has little influence on the stability of the pressure- flow network.

    The components in the ECLSS can be generally divided into four types:cabin node,resistance component,pressurization component,and adsorption component.Their models will be introduced as follows.

    (1)Cabin node

    A cabin node represents the total air in a constant cabin volume.Assume that the cabin air obeys the ideal gas law and mass conservation equation,and then the pressure model of the cabin air can be expressed as26,27

    where p is the cabin air pressure,Pa;t is time,s;Rgrepresents the gas constant of atmosphere,J/(mol·K);T is the cabin air absolute temperature,K;V is the effective volume of the cabin,m3;winand woutrepresent the mass flow rates in and out of the cabin,respectively,kg/s.

    (2)Resistance component

    Some components in the ECLSS can be abstracted as resistance components,such as pipes,valves,the CHE,and adsorption beds.When fluid flows through them,their resistance characteristics will lead to a pressure loss.According to the momentum conservation law,the momentum equation of a pipe can be expressed as26

    where pinand poutare the inlet and outlet pressures of the pipe,respectively,Pa;w is the inlet mass flow rate,kg/s;ξ is the pressure loss coefficient;ρinis the fluid density at the inlet of the pipe,kg/m3;A is the cross sectional area of the pipe,m2;wrefis the reference mass flow rate,kg/s;ρrefis the reference density,kg/m3;Δprefis the pressure loss at reference conditions,Pa;nexpis the flow exponent in the user-given pressure loss.R donates an equivalent linear resistance of a resistance component,Pa·s2/kg2.

    The mass conservation equation of a resistance component can be divided into two types according to the mass loss term based on whether there exists a mass loss term,that is,

    where wdis the mass flow rate removed from the fluid,kg/s,such as the mass flow rate of condensate water in the CHE,the CO2mass flow rate in the 4BMS,and the mass flow rates of trace contaminants in the TCCS.

    (3)Pressurization component

    Pressurization components can provide necessary dynamic head to circulate the fluid network,such as fans and pumps.The relationship between the pressure difference and the mass flow rate is usually nonlinear.Therefore,their momentum equations can be expressed as26

    where g is the gravitational acceleration,9.806 m/s2;h(w)is the total dynamic head at the rated speed,m;Δp0is the total pressure difference on the fan,Pa.

    3.Numerical method comparison

    Common methods to solve the differential equations in a realtime simulation system are implicit and explicit fixed step numerical integration methods.Hence,the advantages and disadvantages of implicit and explicit fixed step methods will be discussed in detail.

    The normalized form of an ordinary differential autonomous system can be expressed as

    Explicit and implicit fixed step numerical methods are shown in Eqs.(7)and(8),respectively.

    From Eq.(7),we can see that an explicit fixed step method can obtain a solution without any iteration in each step,so its algorithm complexity is O(N)and it has a high computational efficiency.Meanwhile,the solution of an implicit fixed step method at every step has to iterate many times to get a suitable solution,as shown in Eq.(9).Hence,the algorithm complexity of the implicit method is O(N2),so its computational time will increase dramatically with an increase of the differential equations number.

    Even though an implicit fixed step method has a better convergence feature,21its computational efficiency is much worse than that of an explicit method,especially for the complicated ECLSS system described by a large number of differential equations.Compared to an implicit fixed step method,an explicit fixed step method has a high computational efficiency in each fixed time step.However,its stability domain is finite,so the explicit fixed step method may face numerical instability problems,which will lead to incorrect results.In order to avoid the instability problems,the system eigenvalue should distribute in the stability domain.

    In order to compare the computational efficiency of explicit and implicit fixed step methods,several systems are established with a different number of differential equations.The investigated simulation systems are time-invariant and convergent,that is,the eigenvalues of the systems are in the stability domain no matter for an explicit or implicit method.The Euler method and the backward Euler method are used for comparison,and represent explicit and implicit fixed step numerical integration methods,respectively.By testing in a real-time simulation system on a PC cluster,their computational times at each time step are shown in Fig.2.n is the number of differential equations.Tiand Teare the computational times in a time step by using the implicit and explicit methods,respectively.Conclusions can be drawn from Fig.2 as follows:

    (1)For a certain value of n,the implicit method needs greatly more computational time than that of the explicit method,and it is obvious when n is large.

    (2)The algorithm complexity of the implicit method is O(N2)while that of the explicit method is O(N).When the number of equations,n,is increased linearly by ten times from 100 to 1100,the computational time at each time step using the implicit method is increased quadratically from 0.11 s up to 18 s.However,the computational time at each time step using the explicit method is increased nearly linearly from 0.54×10-3s to 0.76×10-3s.

    Therefore,the implicit method is much more inefficient than the explicit method,especially for a large complex system.The computational time of the implicit method will dramatically increase with an increase of the scales of the ECLSS.The explicit method is a better choice to solve the huge complex ECLSS system than the implicit one.However,the stability of the system should be considered carefully for a time-variant system.The rest of the paper will focus on the stability analysis of the ECLSS simulation system based on the explicit Euler method.

    4.Numerical stability analysis and modeling

    4.1.Eigenvalue estimation theory

    The explicit Euler method is used in the THCS simulation system in this paper.Hence,the distribution of eigenvalues and the absolute stability domain of the Euler method should be studied clearly.23For the explicit Euler method,its stability domain is given as|1+hλ|<1,where h is the simulation time step and λ is the eigenvalue.The stability domain is a closed disc with a radius of 1 centered at point(-1,0)in the complex(hλ)-plane.Only when the system eigenvalues distribute in the stability domain,this system can be stable.

    In order to analyze the stability characteristic of an ordinary differential system described by Eq.(6),the Gersˇgorin theorem is adopted to estimate the eigenvalues distribution of the system.28,29The stability using the explicit Euler method is further discussed to solve the THCS simulation models.

    4.2.Numerical stability analysis of ELCSS

    The function of the THCS is to control the temperature and humidity of cabin air.As shown in Fig.1,in the cabin-pipefan-CHE-valve fluid network,the ventilation fan drives moist air from the cabin to the CHE to realize a mass and energy transfer process.In this way,the air temperature and humidity are decreased,and the condensate water is drained to a water tank.In the following discussion,we use this simplified THCS ventilation network to analyze the numerical simulation stability.As shown in Fig.3,it includes a cabin,a fan,three pipes,a valve,and a CHE.

    In Fig.3,w and p denote the inlet mass flow rate and the outlet pressure of the components,respectively,kg/s and Pa.Superscript i(i=1,2,...,6)denotes the ID number of a component.wdrainis the mass flow rate of the condensate water,kg/s.

    The momentum equations are as follows:

    where wi+1is the outlet mass flow rate of the ith component.According to the mass conservation equations as shown in Eqs.(3)and(4),the momentum equation in Eq.(10)can be rearranged by substituting the outlet mass flow rate of each component,and the corresponding differential system is shown as29

    where wdrain=εxliqw5is the mass flow rate of the condensate water,kg/s;ε is the separation coefficient of the water and the vapor;xliqis the mass fraction of the liquid water.

    Obviously,the solution of Eq.(10)is the only singularity of the system in Eq.(11).The Jacobian matrix of the differential system in Eq.(11)is shown as follows:

    With a change of the valve opening degree,the coefficient matrix J and its eigenvalues will change correspondingly.The valve resistance,R5,increases with its opening degree decreasing.According to the Gersˇgorin theorem,the corresponding eigenvalues in the last row of the coefficient matrix J will decrease de finitely.It is difficult to ensure the eigenvalues of the coefficient matrix J in the stability domain of the explicit Euler method(|1+hλ|<1).

    The system eigenvalue curves are shown in Fig.4.When the valve opening degree C is above 20%,the eigenvalues of the system change slightly and keep in the stability domain(-2

    4.3.Adaptive operator

    According to the numerical stability theorem,21only if the eigenvalues of the coefficient matrix distribute in the stability domain of the explicit Euler method,the system will be convergent and stable.Considering the time-varying characteristic,an adaptive operator,φi,is proposed in this paper to avoid potential instability problems,as shown in the following equation:

    The corresponding improved Jacobian matrix of Eq.(12)is shown as follows:

    According to the Gersˇgorin theorem,we can estimate that all of the improved Jacobian matrix eigenvalues,hλJ’,are in the closed disc of radius 1 centered at(-1,0).Fig.6 shows the eigenvalue curves of the improved system with changes of the valve opening degree.From Fig.6,we can see that the eigenvalues of the improved system,hλJ’,are kept in the stability domain(|1+hλ|<1)no matter what the valve opening degree is.With the adaptive operator,φi,the convergence and stability of the system can be guaranteed very well.The simulation result in Fig.7 can verify this analysis.The mass flow rate of the improved system converges to 90 g/s in the first ten seconds,and then is stable at 4 g/s when the valve opening degree decreases from 100%to 2%.

    Compared with Fig.5,we can draw a conclusion that numerical simulation using the adaptive operator can avoid potential instability problems and keep convergent as shown in Fig.7 when the explicit fixed step Euler method is used to solve the time-variant system.

    4.4.Error analysis

    In this section,we will discuss the numerical error of the proposed modeling method using the explicit Euler solver.The ECLSS ventilation system as shown in Fig.3 is established in both AMESim25and MATLAB/Simulink.22AMESim is one of the mature commercial simulation software,and its standard solver is a strongly robust and intelligent implicit sol-ver.The solver is composed of some implicit integral methods and can select which one is the optimal integral method intelligently according to the mathematic characteristic of user models.Both of the implicit solver and the component models in the AMESim software have been verified very well.The solution solved in AMESim by its standard implicit solver can be considered as an approximate real solution of the system,but its solution speed is normally slow for a big simulation system.We will use the approximate real solution as the standard for comparisons.

    In our study,we will use the explicit Euler solver to obtain the solution of an ECLSS.The test system includes some com-mon components,such as a cabin,a ventilation fan,pipes,a CHE,and a valve.The parameters of the system are listed in Table 1,C denotes the opening degree of the valve,10-5-1.

    Table 1 Parameters of simulation system.

    From Fig.2,we have known that the computational time of the explicit Euler method can be limited to less than 0.001 s for most systems(n<1100).Therefore,the fixed time step in Simulink can be set as 0.001 s.In addition,a larger time step of 0.01 s is also tested in this study.The valve opening degree decreases from 100%to 2%at 10 s,and it takes 1 s to complete the valve adjustment.The stability performance of the improved model is tested in this way.The mass flow rate response of each component is recorded and analyzed.

    The simulation results solved in Simulink are compared with the approximate real solution as shown in Fig.8.In Fig.8,the solid line is the approximate real solution,and the dash-dot line and the dash line are the simulation curves solved in Simulink by the explicit Euler method with time steps of 0.001 s and 0.01 s,respectively.

    The results in Fig.8 indicate that:

    (1)For the fixed time steps,0.001 s and 0.01 s,their simulation results can converge to the approximate real solution very well without a divergence problem when the valve opening degree is changed from 100%to 2%.

    (2)When the valve opening degree adjusts from 100%to

    2%,the steady state values of the approximate real solution are 86.4776 g/s and 4.0594 g/s,respectively.Meanwhile,the simulation results of the improved model in Simulink are 86.4783 g/s and 4.0456 g/s.Their relative errors are 0.0009%and-0.3412%,respectively.Hence,the steady-state solution has high numerical simulation accuracy.

    (3)The fixed time step will slightly affect the simulation accuracy of the transient process in 10–11 s.There is almost no transient state simulation error when the fixed time step is 0.001 s.When the fixed time step increases to 0.01 s,the transient state error of numerical simulation will increase correspondingly.

    In conclusion,this stable simulation method proposed in this paper can solve the instability issue in the time-variant ECLSS simulation system using the explicit Euler algorithm.The simulation result is relatively close to the approximate real solution,especially when the time step is not too big.Its disadvantage is that the transient state error will be affected by the time step slightly.Fortunately,the general transient simulation process is relatively short,and it has a relatively small impact on the whole simulation.

    5.Conclusions

    This paper mainly studies a simulation method for an ECLSS in space station oriented real-time simulation application.The explicit Euler method is recommended to solve the complex ECLSS system due to its high computational efficiency.To ensure the stability of the system simulation using the explicit Euler algorithm,this paper proposes a stable simulation method to solve the time-variant ECLSS simulation system.Due to the potential instability problem,an adaptive operator deduced by the Gersˇgorin theorem is proposed further.This proposed numerical simulation method can improve the computational efficiency greatly on the premise of ensuring the system stability.Therefore,it provides a good method for some huge complex time-invariant simulation systems to run their real-time simulation on a PC cluster.

    In order to introduce this method in detail,a simplified example of ECLSS ventilation pipe network in a space station is used to analyze its stability and explain its modeling method.Based on the study in this paper,the following conclusions can be drawn:

    (1)This method supports the explicit numerical method as its solver,so it can satisfy the requirement to conduct a real-time simulation of a complex system on a PC cluster,such as a complex ECLSS simulation system.

    (2)The adaptive operator proposed in this paper can ensure the stability of the time-variant system,and avoid the divergence problem of simulation caused by using the explicit fixed time step method.

    (3)Based on the adaptive operator,the proposed modeling method can set unified ports for every component,which makes it very convenient to apply this method practically.A uniform interface model for each component can simplify the connection relationship between models and make the simulation convenient.

    (4)The steady-state simulation solution is relatively accurate.Though there is a transient state error when the fixed time step is large,it has a relatively small impact on the whole simulation.

    Acknowledgement

    This work was supported by the Aeronautical Science Foundation of China(No.2014ZC09002).

    1.Chen S,Chen J,Jiang G,Liu W.Achievements of manned space program and construction of space station in China.Space Med Med Eng 2012;25(6):391–6[Chinese].

    2.Carrasquillo RL.ISS ECLSS technology evolution for exploration.43rd AIAA aerospace sciences meeting and exhibit.Reston:AIAA;2005.

    3.Williams DE,Dake JR,Gentry GJ.International space station environmental control and life support system status for the prior year:2010-2011.42nd international conference on environmental systems;Reston:AIAA;2012.p.3162–7.

    4.Klingberg T.A stability analysis of the active thermal control system of the Columbus space laboratory[dissertation].Goteborg:Chalmers University of Technology;2011.

    5.Jones H.Dynamic modeling of ALS system.33rd international conference on environmental systems.Warrendale:SAE Technical Paper;2003.p.2543–60.

    6.Boscheri G,Lavagna M,Lamantea M.Multidisciplinary preliminary sizing of advanced life support systems for space.39rd international conference on environmental systems.Warrendale:SAE Technical Paper;2009.p.2581–93.

    7.Pe′rez-Vara R,Mannu S,Pin O,Müller R.Overview of European applications of EcosimPro to ECLSS,CELSS,and ATCS.33rd international conference on environmental systems.Warrendale:SAE Technical Paper;2003.p.2439–48.

    8.Kortenkamp D,BellS.Simulating advanced life support systems for integrated controls research.33rd international conference on environmental systems.Warrendale:SAE;2003.p.2546–56.

    9.Eckart P.Space flight life support and biospherics.1st ed.New York:Springer;1996.p.1–7.

    10.Chang CH,Chan CC,Cheng KJ,Lin JS.Computational fluid dynamics simulation of air exhaust dispersion from negative isolation wards of hospitals.Eng Appl Comput Fluid Mech 2011;5(2):276–85.

    11.Mulgundmath VP,Jones RA,Tezel FH,Thibault J.Fixed bed adsorption for the removal of carbon dioxide from nitrogen:breakthrough behaviour and modelling for heat and mass transfer.Sep Purif Technol 2012;85(6):17–27.

    12.Viehweider A,Lauss G,Felix L.Stabilization of power Hardwarein-the-loop simulations of electric energy systems.Simul Model Pract Theory 2011;19(7):699–1708.

    13.Wolff R,Preusche C,Gerndt A.A modular architecture for an interactive real-time simulation and training environment for satellite on-orbit servicing.J Simul 2014;8(1):50–63.

    14.Gonza′lez D,Cueto E,Chinesta F.Real-time direct integration of reduced solid dynamics equations.Int J Numer Meth Eng 2014;99(9):633–53.

    15.Ba?t?a?us■M,Maciac A,Oprean M,Vasiliu N.Automotive clutch models for real time simulation.Proc Rom Acad,Ser A 2011;12(2):109–16.

    16.Qi ZC,Liu L,Long T,Xing C.The research of trajectory scene Quasi-real-time simulation based on vega prime.J Project Rock Missiles Guid 2013;1:145–55[Chinese].

    17.Zebenay M,Boge T,Krenn R,Choukroun D.Analytical and experimental stability investigation of a hardware-in-the-loop satellite docking simulator.Proc Inst Mech Eng,Part G:J Aerospace Eng 2015;229(4):666–81.

    18.Ni WD,Gou JB,Sun X.Research on fluid network in thermal power system.J Syst Simul 1997;9(3):78–83[Chinese].

    19.Zhou Y,Zhou K,Ma Y,Sui Z.Thermal hydraulic simulation of reactor of HTR-PM based on thermal- fluid network and SIMPLE algorithm.Prog Nucl Energy 2013;62(8):83–93.

    20.Liu M,Yang D,Pang L,Huang Y.Experimental and computational investigation of adsorption performance of TC-5A and PSA-5A formanned spacecraft.ChinJAeronaut2015;28(6):1583–92.

    21.Bressan N,Carmeli S,Castelli-Dezza F,Iacchetti MF.Numerical integration of ODEs in real-time systems like state observers:Stability aspects.IEEE Trans Ind Appl 2010;48(1):1–7.

    22.。Aman R,Handroos H,Eskola T.Computationally efficient two regime flow orifice model for real-time simulation.Simul Model Pract Theory 2008;16(8):945–61.

    23.Yang D,Jin T,Wu Z,Zou HF.Dual step size explicit numerical integration method and applications.Power and energy society general meeting-conversion and delivery of electrical energy in the 21st Century.Piscataway:IEEE Press;2008.p.1–8.

    24.Macdonald CL,Bhattacharya N,Sprouse BP,Silva GA.Efficient computation of the Grünwald-Letnikov fractional diffusion derivative using adaptive time step memory.J Comput Phys 2015;297(C):221–36.

    25.Wu JL,Zhang PP,Wang Y.Numerical methods for determine the equilibrium point’s stability of multidimensional nonlinear dynamic system.Int J Numer Meth Fluids 2011;67(4):531–5.

    26.Ecosimpro,environmental and control life support systems library(version 2.2)[Computer Software].EA International;2004.

    27.Li K,Liu W,Wang J,Huang Y.An intelligent control method for a large multi-parameter environmental simulation cabin.Chin J Aeronaut 2013;26(6):1360–9.

    28.Deu flhard P.A modi fied Newton method for the solution of illconditioned systems of nonlinear equations with application to multiple shooting.Numer Math 1974;22(4):289–315.

    29.Wu XY.A numerical method of stiff problems for ill-conditioned linear systems of algebraic equations.Mathematica Numerica Sinica 1999;21(2):157–62.

    24 October 2016;revised 20 November 2016;accepted 14 December 2016

    Available online 30 August 2017

    ?2017 Production and hosting by Elsevier Ltd.on behalf of Chinese Society of Aeronautics and Astronautics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.

    E-mail address:pangliping@buaa.edu.cn(L.PANG).

    Peer review under responsibility of Editorial Committee of CJA.

    在线观看免费高清a一片| 国产区一区二久久| 午夜福利乱码中文字幕| 欧美+亚洲+日韩+国产| 丰满饥渴人妻一区二区三| 女人被躁到高潮嗷嗷叫费观| 久久久久久久国产电影| 成人av一区二区三区在线看 | 国产野战对白在线观看| 国产精品影院久久| 一区二区三区激情视频| 国产一级毛片在线| 999精品在线视频| 亚洲自偷自拍图片 自拍| 黑人操中国人逼视频| 无限看片的www在线观看| 色播在线永久视频| 久久99热这里只频精品6学生| 精品久久久久久久毛片微露脸 | 日本撒尿小便嘘嘘汇集6| 亚洲国产精品一区二区三区在线| 国产福利在线免费观看视频| 91av网站免费观看| 91av网站免费观看| 男女边摸边吃奶| 啦啦啦 在线观看视频| 乱人伦中国视频| av天堂在线播放| 人人妻,人人澡人人爽秒播| 国产1区2区3区精品| www.精华液| 亚洲av片天天在线观看| 久久国产精品人妻蜜桃| 久久人人爽av亚洲精品天堂| av在线播放精品| 欧美乱码精品一区二区三区| 免费在线观看视频国产中文字幕亚洲 | 人人妻人人澡人人看| 成年人黄色毛片网站| 一级片免费观看大全| 伊人亚洲综合成人网| 这个男人来自地球电影免费观看| 色精品久久人妻99蜜桃| 老鸭窝网址在线观看| 亚洲精品久久久久久婷婷小说| 青草久久国产| 成人黄色视频免费在线看| 极品人妻少妇av视频| 精品国产一区二区久久| 日本vs欧美在线观看视频| 老司机午夜福利在线观看视频 | 成年美女黄网站色视频大全免费| 99国产综合亚洲精品| 黄色视频,在线免费观看| 国产三级黄色录像| 国产三级黄色录像| 大香蕉久久网| 国产伦理片在线播放av一区| 丝袜喷水一区| 在线观看免费视频网站a站| 热99久久久久精品小说推荐| 精品人妻熟女毛片av久久网站| 人妻一区二区av| 99re6热这里在线精品视频| 黄色视频不卡| 岛国毛片在线播放| 国产成人精品在线电影| 老司机影院毛片| 亚洲精品中文字幕一二三四区 | 国产精品九九99| 90打野战视频偷拍视频| 国产精品av久久久久免费| 国产有黄有色有爽视频| 1024视频免费在线观看| 亚洲人成电影观看| 中文字幕人妻熟女乱码| 国产国语露脸激情在线看| 日本wwww免费看| 99热网站在线观看| 国产亚洲欧美精品永久| 亚洲精品国产色婷婷电影| 免费高清在线观看视频在线观看| 亚洲精品中文字幕一二三四区 | 成人免费观看视频高清| 久久人妻福利社区极品人妻图片| 欧美黄色片欧美黄色片| 国产精品九九99| 久久人妻福利社区极品人妻图片| 中亚洲国语对白在线视频| 18在线观看网站| 后天国语完整版免费观看| 三级毛片av免费| 视频区图区小说| 国产激情久久老熟女| 淫妇啪啪啪对白视频 | 欧美日韩av久久| 国产老妇伦熟女老妇高清| 一级a爱视频在线免费观看| 一边摸一边做爽爽视频免费| 热re99久久精品国产66热6| 韩国精品一区二区三区| 国产精品影院久久| 国产精品麻豆人妻色哟哟久久| 在线亚洲精品国产二区图片欧美| 国产熟女午夜一区二区三区| 久久精品亚洲av国产电影网| 日韩有码中文字幕| 成人国产av品久久久| 国产日韩欧美在线精品| 精品国产一区二区三区四区第35| 老熟女久久久| 久久久精品免费免费高清| 巨乳人妻的诱惑在线观看| tube8黄色片| 国产精品久久久久久精品古装| 日韩制服丝袜自拍偷拍| 精品人妻一区二区三区麻豆| 亚洲第一av免费看| 日本精品一区二区三区蜜桃| 女人久久www免费人成看片| 亚洲av电影在线进入| 丝袜美腿诱惑在线| 大陆偷拍与自拍| 亚洲精品久久久久久婷婷小说| 亚洲人成电影免费在线| 日本vs欧美在线观看视频| 久久九九热精品免费| 黄色视频不卡| 91av网站免费观看| 欧美成狂野欧美在线观看| 亚洲av男天堂| 少妇的丰满在线观看| 男女高潮啪啪啪动态图| 色播在线永久视频| 亚洲精品成人av观看孕妇| 成人国产一区最新在线观看| 亚洲国产成人一精品久久久| 一个人免费看片子| 热99久久久久精品小说推荐| 美女高潮喷水抽搐中文字幕| 国产欧美日韩精品亚洲av| 母亲3免费完整高清在线观看| 日本av免费视频播放| 男女边摸边吃奶| 国产黄色免费在线视频| 日韩有码中文字幕| 久久精品久久久久久噜噜老黄| 69精品国产乱码久久久| 午夜福利在线观看吧| 日本wwww免费看| 久久午夜综合久久蜜桃| 欧美 亚洲 国产 日韩一| 啦啦啦中文免费视频观看日本| 欧美 亚洲 国产 日韩一| 建设人人有责人人尽责人人享有的| 男女午夜视频在线观看| 无遮挡黄片免费观看| 日韩熟女老妇一区二区性免费视频| 亚洲精品一二三| 肉色欧美久久久久久久蜜桃| 日韩有码中文字幕| 亚洲avbb在线观看| 美女福利国产在线| 九色亚洲精品在线播放| 不卡一级毛片| av天堂在线播放| 国产真人三级小视频在线观看| 亚洲国产毛片av蜜桃av| 老汉色av国产亚洲站长工具| 亚洲精品中文字幕一二三四区 | 久久人妻熟女aⅴ| 麻豆av在线久日| 精品国产一区二区久久| 真人做人爱边吃奶动态| 一级a爱视频在线免费观看| 黑人巨大精品欧美一区二区蜜桃| 久久毛片免费看一区二区三区| 精品国产乱码久久久久久男人| 汤姆久久久久久久影院中文字幕| 十分钟在线观看高清视频www| 中文字幕av电影在线播放| 97人妻天天添夜夜摸| 男人添女人高潮全过程视频| 十八禁网站免费在线| 桃红色精品国产亚洲av| 国产一卡二卡三卡精品| 人人妻,人人澡人人爽秒播| 国产色视频综合| 好男人电影高清在线观看| 伊人久久大香线蕉亚洲五| 在线亚洲精品国产二区图片欧美| 国产精品1区2区在线观看. | 在线精品无人区一区二区三| 亚洲成人免费av在线播放| 久久久久久人人人人人| 久久久精品区二区三区| 中文字幕精品免费在线观看视频| 在线天堂中文资源库| 婷婷色av中文字幕| 曰老女人黄片| 人妻人人澡人人爽人人| 亚洲av成人一区二区三| 99久久99久久久精品蜜桃| 亚洲一区中文字幕在线| 热99国产精品久久久久久7| 欧美精品av麻豆av| 一级片'在线观看视频| 久久青草综合色| 欧美 亚洲 国产 日韩一| 飞空精品影院首页| 国产精品香港三级国产av潘金莲| 在线观看一区二区三区激情| 99精品欧美一区二区三区四区| videosex国产| 久久久久久久久久久久大奶| 如日韩欧美国产精品一区二区三区| 亚洲avbb在线观看| 亚洲欧美一区二区三区久久| 亚洲精品第二区| 在线观看www视频免费| 丝袜美足系列| 亚洲欧美清纯卡通| 婷婷成人精品国产| 久久精品国产综合久久久| 日日爽夜夜爽网站| 黑人操中国人逼视频| 亚洲精品第二区| 久热这里只有精品99| 国产一区二区三区在线臀色熟女 | 午夜免费成人在线视频| 在线永久观看黄色视频| 亚洲性夜色夜夜综合| 亚洲色图 男人天堂 中文字幕| 亚洲第一欧美日韩一区二区三区 | 亚洲久久久国产精品| 亚洲视频免费观看视频| 精品国产乱码久久久久久男人| 69av精品久久久久久 | 午夜福利,免费看| 美女脱内裤让男人舔精品视频| 亚洲国产精品一区二区三区在线| 成年女人毛片免费观看观看9 | 高清欧美精品videossex| 亚洲中文日韩欧美视频| 无限看片的www在线观看| 精品久久久精品久久久| 飞空精品影院首页| 啦啦啦 在线观看视频| www日本在线高清视频| 脱女人内裤的视频| 国产一区二区 视频在线| 久久精品亚洲熟妇少妇任你| 一级黄色大片毛片| 欧美亚洲日本最大视频资源| 日韩欧美国产一区二区入口| av在线老鸭窝| 日韩欧美一区二区三区在线观看 | av在线老鸭窝| 一本一本久久a久久精品综合妖精| 考比视频在线观看| 国产在线视频一区二区| 最近最新中文字幕大全免费视频| 视频在线观看一区二区三区| 91国产中文字幕| 亚洲国产av新网站| 国产av国产精品国产| 美女福利国产在线| 老汉色∧v一级毛片| 欧美av亚洲av综合av国产av| 精品国产一区二区三区久久久樱花| 久久久精品国产亚洲av高清涩受| 国产成人av激情在线播放| 在线 av 中文字幕| 日韩一区二区三区影片| 久久人人97超碰香蕉20202| 老熟女久久久| 一区福利在线观看| 久久久水蜜桃国产精品网| 午夜福利在线观看吧| 日本vs欧美在线观看视频| 成人18禁高潮啪啪吃奶动态图| 久久久久精品国产欧美久久久 | 美女国产高潮福利片在线看| 老熟女久久久| 国产在线视频一区二区| 亚洲精品中文字幕一二三四区 | 亚洲国产欧美一区二区综合| 国产伦人伦偷精品视频| 中文字幕另类日韩欧美亚洲嫩草| 肉色欧美久久久久久久蜜桃| 精品免费久久久久久久清纯 | 亚洲色图 男人天堂 中文字幕| 五月开心婷婷网| 十八禁网站网址无遮挡| 日韩 欧美 亚洲 中文字幕| 在线亚洲精品国产二区图片欧美| 一边摸一边抽搐一进一出视频| 国产精品久久久久久人妻精品电影 | 久久久精品94久久精品| 青春草亚洲视频在线观看| 亚洲精品成人av观看孕妇| 韩国精品一区二区三区| 五月开心婷婷网| 国产一区二区三区av在线| 国产一区二区在线观看av| 中文字幕高清在线视频| 亚洲专区国产一区二区| 国产在线观看jvid| 亚洲中文av在线| 青草久久国产| 国产成人啪精品午夜网站| 欧美日韩精品网址| 国产日韩欧美亚洲二区| 黄色视频不卡| 老鸭窝网址在线观看| 91麻豆av在线| 日韩免费高清中文字幕av| 一个人免费看片子| 丝袜美腿诱惑在线| 色婷婷av一区二区三区视频| 91精品伊人久久大香线蕉| 黄网站色视频无遮挡免费观看| 91麻豆精品激情在线观看国产 | 男女午夜视频在线观看| 青春草视频在线免费观看| 国产伦人伦偷精品视频| 一区二区av电影网| 国产成人av激情在线播放| 亚洲熟女毛片儿| 美女中出高潮动态图| cao死你这个sao货| 极品人妻少妇av视频| 久久热在线av| av电影中文网址| 一区福利在线观看| 国产福利在线免费观看视频| 亚洲综合色网址| 99久久综合免费| 99久久99久久久精品蜜桃| 在线 av 中文字幕| 黑人巨大精品欧美一区二区蜜桃| 日韩欧美一区二区三区在线观看 | 亚洲精华国产精华精| 大码成人一级视频| 亚洲av片天天在线观看| videos熟女内射| 午夜福利在线免费观看网站| 国产精品偷伦视频观看了| 国产亚洲午夜精品一区二区久久| 亚洲专区字幕在线| 日本欧美视频一区| 日本a在线网址| 国产麻豆69| 老司机深夜福利视频在线观看 | 十分钟在线观看高清视频www| 久久午夜综合久久蜜桃| 亚洲三区欧美一区| 精品乱码久久久久久99久播| 国产欧美日韩一区二区精品| 三级毛片av免费| 国产精品一区二区免费欧美 | 国产在线一区二区三区精| 亚洲精品久久成人aⅴ小说| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美激情在线| 啦啦啦啦在线视频资源| 人妻 亚洲 视频| 精品免费久久久久久久清纯 | 免费在线观看日本一区| 蜜桃国产av成人99| 19禁男女啪啪无遮挡网站| 99热国产这里只有精品6| 亚洲精品av麻豆狂野| 伊人久久大香线蕉亚洲五| 一个人免费在线观看的高清视频 | 日韩大片免费观看网站| 亚洲欧美一区二区三区久久| 日韩精品免费视频一区二区三区| 日韩熟女老妇一区二区性免费视频| 亚洲精品日韩在线中文字幕| 夫妻午夜视频| 国产精品国产三级国产专区5o| 亚洲精品美女久久av网站| 日本av免费视频播放| 国产成人a∨麻豆精品| 久久久久久久国产电影| 国产男女超爽视频在线观看| 两性夫妻黄色片| 国产精品欧美亚洲77777| 一区二区三区乱码不卡18| 一级a爱视频在线免费观看| www.av在线官网国产| 大香蕉久久成人网| 欧美另类一区| 菩萨蛮人人尽说江南好唐韦庄| 人妻人人澡人人爽人人| 欧美变态另类bdsm刘玥| 亚洲国产日韩一区二区| 大香蕉久久成人网| 一区二区三区四区激情视频| 国产精品久久久久久精品古装| 欧美黑人精品巨大| 女人久久www免费人成看片| 美女主播在线视频| 大片免费播放器 马上看| 久久亚洲精品不卡| 欧美人与性动交α欧美精品济南到| 欧美人与性动交α欧美软件| 国产不卡av网站在线观看| 在线观看免费午夜福利视频| 男女国产视频网站| 女人高潮潮喷娇喘18禁视频| 免费观看av网站的网址| 777米奇影视久久| 精品国产超薄肉色丝袜足j| 亚洲精品美女久久久久99蜜臀| 女人精品久久久久毛片| 欧美成人午夜精品| 国产伦人伦偷精品视频| 日韩中文字幕视频在线看片| 国产精品1区2区在线观看. | 首页视频小说图片口味搜索| 久久久精品区二区三区| 狠狠狠狠99中文字幕| 欧美大码av| 在线观看人妻少妇| 91国产中文字幕| 国产成+人综合+亚洲专区| 亚洲男人天堂网一区| 精品欧美一区二区三区在线| 天天躁日日躁夜夜躁夜夜| 啦啦啦在线免费观看视频4| 狂野欧美激情性bbbbbb| 免费女性裸体啪啪无遮挡网站| 少妇猛男粗大的猛烈进出视频| 亚洲精品美女久久久久99蜜臀| 18禁观看日本| 欧美在线黄色| 女警被强在线播放| 精品福利观看| 俄罗斯特黄特色一大片| 啦啦啦中文免费视频观看日本| 国产av一区二区精品久久| 久久这里只有精品19| 国产日韩一区二区三区精品不卡| 久久久久久久久免费视频了| 啦啦啦免费观看视频1| 99久久国产精品久久久| 男人舔女人的私密视频| 欧美精品一区二区免费开放| 水蜜桃什么品种好| 国产在线免费精品| 国产高清国产精品国产三级| 精品视频人人做人人爽| 久久久国产成人免费| 飞空精品影院首页| 亚洲精华国产精华精| 高清欧美精品videossex| 女人久久www免费人成看片| 国精品久久久久久国模美| 国产真人三级小视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 动漫黄色视频在线观看| 电影成人av| 无限看片的www在线观看| 国产伦人伦偷精品视频| 又黄又粗又硬又大视频| 国产亚洲欧美在线一区二区| 亚洲国产精品一区三区| 久久久欧美国产精品| 久久久久国产一级毛片高清牌| 啦啦啦啦在线视频资源| 日韩大码丰满熟妇| 丝袜脚勾引网站| 国产精品久久久久久人妻精品电影 | 青春草视频在线免费观看| 国产一区二区在线观看av| 性少妇av在线| 亚洲国产成人一精品久久久| 黄频高清免费视频| 日日爽夜夜爽网站| 国产伦理片在线播放av一区| 久久人人爽av亚洲精品天堂| 免费在线观看完整版高清| 久久午夜综合久久蜜桃| 国产欧美日韩一区二区三 | 欧美国产精品va在线观看不卡| 国产亚洲精品久久久久5区| 国产精品熟女久久久久浪| 日本a在线网址| 欧美人与性动交α欧美软件| 免费女性裸体啪啪无遮挡网站| 亚洲精品国产av成人精品| 天天影视国产精品| 国产成人一区二区三区免费视频网站| 国产高清视频在线播放一区 | 久久久久国产精品人妻一区二区| 91av网站免费观看| 久久热在线av| 新久久久久国产一级毛片| 制服诱惑二区| 建设人人有责人人尽责人人享有的| 丝袜人妻中文字幕| 水蜜桃什么品种好| 亚洲精华国产精华精| 久久久久国产精品人妻一区二区| 1024视频免费在线观看| 亚洲国产精品成人久久小说| 美女大奶头黄色视频| 美国免费a级毛片| 黄片小视频在线播放| 欧美大码av| 国产伦理片在线播放av一区| 亚洲精品国产色婷婷电影| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲熟女精品中文字幕| 少妇粗大呻吟视频| 亚洲精品日韩在线中文字幕| 午夜福利视频精品| 久热这里只有精品99| 亚洲激情五月婷婷啪啪| 美女主播在线视频| 丝袜脚勾引网站| 欧美激情高清一区二区三区| 淫妇啪啪啪对白视频 | 亚洲精品国产区一区二| 亚洲av日韩精品久久久久久密| 久久午夜综合久久蜜桃| 他把我摸到了高潮在线观看 | 精品国产乱子伦一区二区三区 | 亚洲欧美日韩高清在线视频 | 国产精品久久久人人做人人爽| 亚洲一卡2卡3卡4卡5卡精品中文| 999久久久精品免费观看国产| 交换朋友夫妻互换小说| 黄色怎么调成土黄色| 日本欧美视频一区| 日本撒尿小便嘘嘘汇集6| 秋霞在线观看毛片| 亚洲欧美一区二区三区黑人| 2018国产大陆天天弄谢| 另类精品久久| 又大又爽又粗| 咕卡用的链子| 欧美老熟妇乱子伦牲交| 99香蕉大伊视频| a级毛片黄视频| 免费女性裸体啪啪无遮挡网站| 久久国产亚洲av麻豆专区| 美女午夜性视频免费| 99精品久久久久人妻精品| 美女国产高潮福利片在线看| 黑丝袜美女国产一区| 热99re8久久精品国产| 日韩中文字幕欧美一区二区| 中亚洲国语对白在线视频| 欧美激情久久久久久爽电影 | 王馨瑶露胸无遮挡在线观看| 国产欧美日韩精品亚洲av| 亚洲国产精品一区三区| 午夜福利,免费看| 国产亚洲午夜精品一区二区久久| tube8黄色片| 性少妇av在线| 在线亚洲精品国产二区图片欧美| 欧美在线一区亚洲| 精品国产国语对白av| 岛国毛片在线播放| 一级毛片电影观看| 午夜影院在线不卡| 黄色片一级片一级黄色片| 一区二区三区激情视频| 国产成人精品无人区| 91精品伊人久久大香线蕉| 一二三四社区在线视频社区8| 操美女的视频在线观看| 成年人午夜在线观看视频| 欧美激情极品国产一区二区三区| 搡老乐熟女国产| 成年动漫av网址| 日本一区二区免费在线视频| 一区二区三区激情视频| 桃红色精品国产亚洲av| 亚洲va日本ⅴa欧美va伊人久久 | 视频在线观看一区二区三区| 久久久久网色| 狠狠狠狠99中文字幕| 中文字幕高清在线视频| 欧美黑人欧美精品刺激| 国产激情久久老熟女| 波多野结衣av一区二区av| 国产成人一区二区三区免费视频网站| 老熟妇仑乱视频hdxx| 黄片大片在线免费观看| 国产精品99久久99久久久不卡| 一区二区日韩欧美中文字幕| 桃花免费在线播放| 丝瓜视频免费看黄片| 国产成人精品无人区| 不卡av一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 国产在线视频一区二区| 黑人欧美特级aaaaaa片| 国产不卡av网站在线观看| 伦理电影免费视频| 黑人巨大精品欧美一区二区蜜桃| 在线观看免费日韩欧美大片| 亚洲精品成人av观看孕妇| 中国美女看黄片| 亚洲欧美日韩另类电影网站| 国产成人精品无人区| 一二三四在线观看免费中文在| 国产黄色免费在线视频| 亚洲熟女毛片儿| 国产色视频综合|