• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption

    2017-12-21 09:09:06YAOChanLIGuoYanXUYanHong
    物理化學(xué)學(xué)報(bào) 2017年9期
    關(guān)鍵詞:共軛羧酸基團(tuán)

    YAO Chan LI Guo-Yan XU Yan-Hong,2,*

    ?

    Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption

    YAO Chan1LI Guo-Yan1XU Yan-Hong1,2,*

    (1;2)

    Polar groups in the skeletons of conjugated microporous polymers (CMPs) play an important role in determining their porosity and gas sorption performance. Understanding the effect of the polar group on the properties of CMPs is essential for further advances in this field. To address this fundamental issue, we used benzene, the simplest aromatic system, as a monomer for the construction of two novel CMPs with multi-carboxylic acid groups in their skeletons (CMP-COOH@1 and CMP-COOH@2). We then explored the profound effect the amount of free carboxylic acid in each polymer had on their porosity, isosteric heat, gas adsorption, and gas selectivity. CMP-COOH@1 and CMP-COOH@2 showed Brunauer-Emmett-Teller (BET) surface areas of 835 and 765 m2?g?1, respectively, displaying high potential for carbon dioxide storage applications. CMP-COOH@1 and CMP-COOH@2exhibited CO2capture capabilities of 2.17 and 2.63 mmol?g?1(at 273 K and 1.05 × 105Pa), respectively, which were higher than those of their counterpart polymers, CMP-1 and CMP-2, which showed CO2capture capabilities of 1.66 and2.28mmol?g?1, respectively. Our results revealed that increasing the number of carboxylic acid groups in polymers could improve their adsorption capacity and selectivity.

    Conjugated microporous polymers; Carboxylic acid; Pore; Gas adsorption;selectivity

    1 Introduction

    Carbon dioxide is one of the main greenhouse gases that cause global issues, such as climate warming and increases in sea level and ocean acidity. Modern climate science predicts that the accumulation of greenhouse gases in the atmosphere will contribute to an increase in surface air temperature of 5.2 °C between the years 1861 and 2100. Carbon capture and sequestration (CCS), a process of CO2separation and concentration can contribute to solve. For this aim, the use of porous materials tailored for selective CO2absorption is energetically efficient and technically feasible. Among the numerous and diversified examples of novel porous materials, such as metal-organic frameworks1,2, zeolites3,4, and purely organic materials5,6are a class of porous organic materials that allow an elaborate design of molecular skeletons and a fine control of nanopores.

    Conjugated microporous polymers (CMPs) are a unique class of porous organic materials that combine π-conjugated skeletons with permanent nanopores7–10, which is rarely observed in other porous polymers. CMPs have emerged as a powerful platform for synthesizing functional materials that exhibit excellent functional applications, such as heterogeneous catalysts11,12, guest encapsulation13–15, super-capacitive energy storage devices16,17, light-emitting materials18,19, and fluorescent sensors20,21and so on. Recently, CMPs have emerged as a designable material for the adsorption of gases, such as hydrogen, carbon dioxide, and methane22–24. Although great achievements in synthesizing CMPs have been realized, extremely high Brunauer-Emmet-Teller specific surface areas as high as 6461 m2·g?125, the other pore parameters, such as pore volume, pore size, and pore size distribution, are important in determining the gas sorption performance26,27. Moreover, previous work has shown the surface modification of porous polymers with polar group can significantly enhance their CO2binding energy, resulting in enhancement in CO2uptake and/or CO2selectivity28–30. Carboxylic-rich framework interaction is expected due to hydrogen bonding and/or dipole-quadrupole interactions between CO2and the functional groups of porous polymers31,32. Cooper.33,34reported increasing the heat of adsorption through the introduction of tailored binding functionalities could have more potential to increase the amount of gas adsorbed. Their results demonstrated that carboxylic groups functionalised polymer showed the higher isosteric heat of sorption for CO2. Torrisi35predicted that the incorporation of carboxylic groups would lead to the higher isosteric heat, challenging the current research emphasis in the literature regarding amine groups for CO2capture.

    Herein, we report the synthesis and characterization two high carboxylic groups of porous polymers and investigate their performances in CO2storage application under high pressure and cryogenic conditions (Scheme 1, CMP-COOH@1 and CMP-COOH@2). The CMPs are highly efficient in the uptake of CO2by virtue of a synergistic structural effect, and that the carboxylic units improve the uptake, the high porosity provides a large interface, and the swellable skeleton boosts the capacity.

    2 Experimental and computational section

    2.1 Materials and Measurements

    1,3,5-Triethynylbenzene (98%) was purchased from TCI, 2,5-dibromobenzoic-3-carboxylic acid (97%) and 2,5-dibromoterephthalicacid(97%) were purchased from Alfa. Tetrakis(4-ethynylphenyl)methane was synthesized according to the literature36. Tetrakis(triphenylphosphine)palladium(0), copper(I) iodide (CuI) and tetra(4-bromophenyl)methane (97%) were purchased from Aladdin.,-Dimethylformamide (DMF) (99.9%), triethylamine (99%), methanol (95%) and acetone (95%) were purchased from Aladdin.

    Scheme 1 Schematic representation of synthesis of carboxylic polymers.

    1H NMR spectra were recorded on Bruker Avance III models HD400 NMR spectrometers, where chemical shifts () were determined with a residual proton of the solventas standard.Fourier transform Infrared (FT-IR) spectra were recorded on a Perkin-Elmer spectrum one model FT-IR-frontier infrared spectrometer.The UV-visible analyzer was used for shimadzu UV-3600. Field-emission scanning electron microscopy (FE-SEM) images were performed on a JEOL model JSM-6700 operating at an accelerating voltage of 5.0 kV. The samples were prepared by drop-casting a tetrahydrofunan (THF) suspension onto mica substrate and then coated with gold.High-resolution transmission electron microscopy (HR-TEM) images were obtained on a JEOL model JEM-3200 microscopy.Powder X-ray diffraction (PXRD) data were recorded on a Rigaku model RINT Ultima III diffractometer by depositing powder on glass substrate, from 2= 1.5° up to 2= 60° with 0.02° increment. The elemental analysis was carried out on a EuroEA-3000. TGA analysis was carried out using a Q5000IR analyzer with an automated vertical overhead thermobalance. Before measurement, the samples were heated at a rate of 5 °C min?1under a nitrogen atmosphere. Nitrogen sorption isotherms were measured at 77 K with ASIQ (iQ-2) volumetric adsorption analyzer.Before measurement, the samples were degassed in vacuum at 150 °C for 12 h. The Brunauer-Emmett-Teller (BET) method was utilized to calculate the specific surface areas and pore volume. BET surface areas were calculated over the relative pressure (/0) range of 0.015–0.1. Nitrogen NLDFT pore size distributions were calculated from the nitrogen adsorption branch using a cylindrical pore size model. Carbon dioxide, methane and nitrogen sorption isothermswere measured at 298 or 273 K with a Bel Japan Inc. model BELSORP-max analyzer, respectively. In addition, carbon dioxide sorption isotherms were measured at 318 K and 5 × 106Pa with a iSorb HP2 analyzer. Before measurement, the samples were also degassed in vacuum at 120 °C for more than 10 h.

    2.2 Synthetic procedures

    2.2.1 Synthesis of CMP containing carboxylic groups

    All of the polymer networks containing multi-carboxylic groups were synthesized by palladium(0)-catalyzed cross-coupling polycondensation. All the reactions were carried out at a fixed reaction temperature and reaction time (120 °C/48 h).

    2.2.2 Synthesis of CMP-COOH@1 and CMP-COOH@2

    2,5-Dibromoterephthalic acid (107 mg, 0.33 mmol) and 1,3,5-triethynylbenzene (50 mg, 0.33 mmol) (CMP-COOH@1)/tetrakis(4-ethynylphenyl)methane (104 mg, 0.25 mmol) (CMP-COOH@2) were put into a 50 mL round-bottom flask, the flask exchanged three cycles under vacuum/N2. Then added to 2 mL,-dimethylformamide (DMF) and 2 mL triethylamine (Et3N), the flask was degassed by threefreeze-pump-thaw cycles, purged with N2. When the solution had reached reaction temperature, a slurry of tetrakis(triphenylphosphine)palladium(0) (23.11 mg, 0.02 mmol) in the 1 mL DMF and copper(I) iodide (4.8 mg, 0.025 mmol) in the 1 mL Et3N (CMP-COOH@1)/(CMP-COOH@2) was added respectively, and the reaction was stirred at 120 °C under nitrogen for 48 h. The solid product was collected by filtration and washed well with hot reaction solvent for 4 times with THF, methanol, acetone, and water, respectively. Further purification of the polymer was carried out by Soxhlet extraction with methanol, and THF for 24 h, respectively, to give CMP-COOH@1(claybank solid, 98 mg, 94% yield), CMP-COOH@2(olivine solid, 142 mg, 90% yield). Elemental Analysis (%) Calcd. (Actual value for an infinite 2D polymer), (CMP-COOH@1) C 67.61, H 2.35. Found: C 64.84, H 2.05. (CMP-COOH@2) C 73.03, H 3.02. Found: C 70.02, H 2.19.

    3 Results and discussion

    Carboxylic-CMP was synthesized by the Sonogashira- Higihara reaction of 1,3,5-triethynylbenzene, tetrakis(4- ethynylphenyl)methane and 2,5-dibromoterephthalic acid in the presence of Pd(0) as catalyst. These two samples were unambiguously characterized by elemental analysis confirmed that the weight percentages of C and H contents are close to the calculated values expected for an infinite 2D polymer. The CMPs were further characterized by infrared spectroscopy (Fig.1). Band soft he primary bromo and borate groups of 2,5-dibromoterephthalic acid at about 598 and 1368 cm?1are absent, respectively. From 2900 to 3200 cm?1aromatic C―H stretching bands appear. A C=C stretching mode at 1600 cm?1is also observed. All networks show the typical C≡C and COOH stretching mode at about 2200and 1700 cm?1, respectively, indicating the successful incorporation of the carboxylic and alkynyl groups into the polymer materials.

    Fig.1 FT-IR spectra of 2,5-dibromoterephthalic acid (blue), CMP-COOH@1 (green) and SCMP-COOH@2 (red).

    Fig.2 FE-SEM images of (a) CMP-COO H@1 and (b) CMP-COOH@2.

    Field-emission scanning electron microscopy (FE-SEM) displayed that the CMPs adopt a spherical shape with sizes of 100–500 nm (Fig.2). High-resolution transmission electron microscopy (HR-TEM) revealed the homogeneous distribution of nanometer-scale pores in the textures (Fig.S1 (Supporting Information)). Powder X-ray diffraction (PXRD) revealed no diffraction, implying that all the polymers are amorphous (Fig.S2 (Supporting Information)). The TGA results show that the polymers have a good thermal stability, and the thermal degradation temperature is up to ca. 300 °C (Fig.S3 (Supporting Information)). The weight loss below 100 °C is generally attributed to the evaporation of adsorbed water and gas molecules trapped in the micropores.

    The conjugated polymer networks were dispersed in THF to obtain UV/Vis spectra (Fig.S4 (Supporting Information)). The polymer CMP-COOH@1 shows mainly one wide absorption peak at about 396 nm. Compared to monomer 1,3,5-triethynylbenzene, with narrow absorption maxima at 305 nm, the polymer networks exhibit a large bathochromic shift of around 111 nm. CMP-COOH@2 show similar phenomenon, compared to tetrakis(4-ethynylphenyl)methane monomer, with absorption maxima at 325 and 345 nm, the polymer frameworks display a large bathochromic shift of around 68 and 48 nm, respectively. This indicates the effective enlargement of the-conjugated system through the polycondensation reaction.

    The porosity of the polymer networks was probed by nitrogen sorption at 77 K. According to the IUPAC classi?cation37, adsorption/desorption isotherms of two polymers showed mainly a type I isotherms. As seen in Fig.3(a), remarkably, the two polymer samples exhibit a steep uptake at a relative pressure of/0< 0.1, suggesting that these samples have micropores. There is a sharp rise in the isotherm for the CMP-COOH@1 at higher relative pressures (/0> 0.8), which indicates the presence of meso/macropores in the samples. These textural meso/macropores can be also found in the corresponding FE-SEM images (Fig.2(a)). However, the shape of the isotherm for the CMP-COOH@2 is significantly different from that of CMP-COOH@1, which displays a significant H2 type hysteresis loop in the desorption branch, characteristic of nanostructured materials with a mesoporous structure (Fig.3(a)). These meso/macropores can be ascribed mostly to interparticulate porosity that exists between the highly aggregated nanoparticles38.

    The pore size distribution calculated from nonlinear density functional theory (NLDFT) shows that the two polymer networks have relatively broad pore size distribution (Fig.3(b)). CMP-COOH@1 and CMP-COOH@2 showed apparent peaks in the size range 0–2 nm, whereas small fluctuations can be observed at 2–12 nm regions. The pore size distribution curves agree with the shape of the N2isotherms (Fig.3(a)) and imply the presence of both micropores and mesopores in the two polymers. The contribution of microporosity to the networks can be calculated as the ratio of the micropore volume (micro), over the total pore volume (total). The microporosities of CMP-COOH@1 and CMP-COOH@2 are around 50.8% and 52.3%, respectively. This result indicates that the two carboxylic networks are predominantly microporous. In addition, the BET surface area of CMP-COOH@1 and CMP-COOH@2 were calculated to be 835 and 765 m2·g?1in the relative pressure range 0.015–0.1, respectively. The decreased surface area of CMP-COOH@2 compared to CMP-COOH@1 could be due to the CMPs constructed with longer connecting struts have lower BET surface areas39,40.

    In view of the fact that the CMPs possess two key properties generally associated with high CO2uptake capacity, e.g., good porosity and abundant COOH sites, the CO2adsorption of the polymers were investigated up to 1.05 × 105Pa at both 298 K and 273 K (Fig.4(a, b)), respectively. Remarkably, CMP-COOH@1 and CMP-COOH@2 showed the CO2adsorption capacities of 1.61 and 1.92 mmol·g?1at 298 K and 1.05 × 105Pa, respectively (Fig.4(a)). When the temperature was elevated to 273 K, the polymers CMP-COOH@1 and CMP-COOH@2 displayed the higher CO2capture of 2.17 and 2.63 mmol·g?1(Fig.4(b)), respectively, which were comparable to that of other microporous hydrocarbon networks41. Despite CMP-COOH@2 with a lower surface area, but which adsorbed more CO2probably due to it has a higher pore volume. In addition, the isosteric heat of adsorption (st) of the polymers was calculated from the CO2uptake data at 273 K and 298 K by using Clausius-Clapeyron equation (Fig.4(c)). The two polymer networks show the isosteric heats of CO2adsorption around 35.5 and 30.9 kJ·mol?1. Because there is less carboxylic acid in the structural unit, the CO2stof CMP-COOH@2 is lower than that of CMP-COOH@1, which is consistent with that of the previous reported polymers33,34. Moreover, the high pressure CO2sorption properties of the two polymers were also investigated at 5 × 106Pa and 318 K. As seen in Fig.4(d), CMP-COOH@1 and CMP-COOH@2 show a nearly linear increase with the increasing pressure no obviously turning point. CMP-COOH@1 and CMP-COOH@2 show the higher CO2capture capacity of 498 and 434 mg·g?1at 318 K and 5 × 106Pa, respectively (Fig.4(d)). These results indicated that the CO2uptake in these networks at high pressures is not dependent solely on the surface area, pore volume or polar groups in the skeletons, but also the measuring pressure have a large effect on the uptake of gas.

    Fig.3 (a) Nitrogen sorption curves (filled circles: adsorption, open circles: desorption, STP=standard temperature pressure) and (b) pore size distribution.

    In order to investigate the amount of carboxylic group in the network whether affects CO2adsorption capacity of polymers. We synthesized another two carboxylic conjugated polymer with relatively low amount of carboxylic groups (scheme S1, CMP@1 and CMP@2 (Supporting Information)) based on 2,5-dibromobenzoic acid, 1,3,5-triethynylbenzene and tetrakis(4-ethynylphenyl)methane. They show the BET surface area of 979 and 876 m2·g?1(Fig.S5 (Supporting Information)), respectively, which is higher to that of counterpart CMP-COOH@1 and CMP-COOH@2. CMP@1 and CMP@2 showed the main pore size of 0.8–2.0 nm (Fig.S6 (Supporting Information)). The decreased surface area of CMP-COOH@1 compared to CMP@1 could be due to the volume of 2,5-dibromoterephthalic acid in CMP-COOH@1 is obviously larger than 2,5-dibromobenzoic acid in CMP@1, which made the bulky benzen–carboxylic moieties in CMP-COOH@1 occupy more cavity space. The similar phenomenon can be also observed in CMP-COOH@2 and CMP@2 system. As shown in Fig.4(b), at 273 K and 1.05 × 105Pa, polymers CMP@1 and CMP@2 show the CO2capture capacity of 1.66 and 2.28 mmol·g?1, respectively. The CO2uptake value of CMP-COOH@1 and CMP-COOH@2 is 1.31 and 1.15-times that of the counterpart CMP@1 and CMP@2, respectively, indicating that increasing amount of carboxylic groups in the CMP networks can improve CO2uptake. In addition, we calculated the isosteric heats of these polymers, they showed the following order (Fig.4(c)): CMP-COOH@1 > CMP-COOH@2 > CMP@1 > CMP@2. Because there is less carboxylic groups in the structural units of CMP@1 and CMP@2, the CO2stof CMP@1 and CMP@2 is lower than that of CMP-COOH@1 and CMP-COOH@2, respectively33,42. In addition, CMP-COOH@1 and CMP-COOH@2 show the higher CO2capture capacity than that of CMP@1 (447 mg·g?1) and CMP@2 (402 mg·g?1) at 318 K and 5 × 106Pa, respectively (Fig.4(d)). These results imply the amount of carboxylic groups effects BET surface area, pore volume and isosteric heats lead to different the uptake of gas.

    As for carbon dioxide capture, high separation properties towards CH4and N2are also necessary and important in gas separation applications. In order to investigate the gas adsorption selectivity of the microporous polymer networks, CO2, N2, and CH4sorption properties were measured by volumetric methods at 273 K and 1.05 × 105Pa. It was found that the two porous polymer networks show significantly higher CO2uptake ability than N2and CH4in the whole measurement pressure range (Fig.S7 (Supporting Information)). CO2/CH4and CO2/N2selectivity was first evaluated by using the initial slope ratios estimated from Henry′s law constants for single-component adsorption isotherms. The CO2/CH4selectivity of CMP-COOH@1 and CMP-COOH@2 are calculated to be 6.9 and 6.2, respectively (Table S1 and Fig.S8 (Supporting Information)). In addition, two polymers exhibited the CO2/N2adsorption selectivity is 48.2 and 39.5, respectively (Table S1 and Fig.S9 (Supporting Information)). Meanwhile, the gas selective capture was also supported by the results from the ideal adsorbed solution theory (IAST), which has been widely used to predict gas mixture adsorption behavior in the porous materials43,44. Under simulated natural gas conditions (CO2/CH4, 50/50), the experimental CO2and CH4isotherms collected at 273 K for carboxylic CMP were fitted to the dual-site Langmuir model and the single-site Langmuir model, respectively (Fig.S10 (Supporting Information)). The calculated IAST data for carboxylic CMP are shown in Table S1. At 273 K and 1.05 × 105Pa, CMP-COOH@1 and CMP-COOH@2 exhibit an appreciably high selectivity of CO2over CH4 under natural gas conditions (5.5 and 5.2) (Fig.S10 (Supporting Information)), which is comparable to some reported MOPs, such as A6CMP (5.1)45, SCMP (4.4–5.2)30, and P-G1-T (5)46. Furthermore, the CO2/N2adsorption selectivities for CMP-COOH@1 and CMP-COOH@2 are calculated to be 45.4 and 37.8 at 273 K and 1.05 × 105Pa (Table S1 and Fig.S11 (Supporting Information)), respectively, which is comparable to some reported MOPs, such as ALP-1(35)38, PCN-TA (33)47, and PCN-DC (48)47. These excellent CO2selective capture performance of carboxylic CMPs evaluated by IAST are consistent with the results calculated from the initial slopes method. In addition, in light of the amount of carboxylic group effect for the uptake of gas, we reasoned that it might be effective for CO2/CH4and CO2/N2separations. At 273 K and 1.05 × 105Pa, CMP@1 and CMP@2 exhibit the selectivities of CO2/CH4(4.7 and 4.1) and CO2/N2(32.1 and 30.5) under natural gas conditions via the IAST method (Figs.S10 and S11 (Supporting Information)), respectively, which are lower that of counterpart CMP- COOH@1 and CMP-COOH@2. This result indicates that the amount of carboxylic groups effects selectivity of polymers. These data implys that increasing the amount of carboxylic unit of polymers can improve the adsorption capacity and selectivity of the materials, which suggested the possibility for the surface properties of microporous polymers to be controlled to interact with a specific gas by post-modification.

    Fig.4 CO2 adsorption isotherms of CMP-COOH polymers collected at 298 K (a) and (b) 273 K, (c) Isosteric heats of adsorption of the CMP-COOH polymers, (d) CO2 adsorption isotherms of CMP-COOH polymers collected at 318 K at 5 × 106 Pa.

    4 Conclusions

    In summary, two carboxylic CMPs with relatively high surface area have been synthesized. The clean energy applications of the polymers have also been investigated and it was found that CMP-COOH@1 and CMP-COOH@2 can adsorb 2.17 and 2.63 mg·g?1of carbon dioxide at 1.05 × 105Pa and 273 K, respectively, which can be competitive with the reported results for porous organic polymers under the same conditions. The free carboxylicacid functionalized polymers show that increasing the amount of carboxylic group of polymers can improve the adsorption capacity and selectivity of the materials under the same conditions, which is a promising candidate for the separation and purification of CO2from various CO2/CH4mixtures such as natural gas and land-fill gas by adsorptive processes.

    Supporting Information: available free of chargethe internet at http://www.whxb.pku.edu.cn.

    (1) Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Baeand, T. H.; Long, J. R.2012,, 724. doi: 10.1021/cr2003272

    (2) Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D. W.2012,, 782. doi: 10.1021/cr200274s

    (3) Coudert, F. X.; Kohen, D.2017,, 2724. doi: 10.1021/acs.chemmater.6b03837

    (4) Jensen, N. K.; Rufford, T. E.; Watson, G.; Zhang, D. K.; Chan, K. I.; May, E. F.2012,, 106. doi: 10.1021/je200817w

    (5) Tan, L.; Tan, B.2017, doi: 10.1039/C6CS00851H

    (6) Ghanem, B.S.; Hashem, M.; Harris, K. D. M.; Msayib, K. J.; Xu, M.; Budd, P. M.; Chaukura, N.; Book, D.; Tedds, S.; Walton, A.; McKeown, N. B.2010,, 5287. doi: 10.1021/ma100640m

    (7) Xu, Y. H.; Jin, S. B.; Xu, H.; Nagai, A.; Jiang, D.2013,, 8012. doi:10.1039/C3CS60160A

    (8) Cooper, A. I.2009,, 1291. doi: 10.1002/adma.200801971

    (9) Thomas, A.; Kuhn, P.; Weber, J.; Titirici, M. M.; Antonietti, M.2009,, 221. doi: 10.1002/marc.200800642

    (10) Dawson, R.; Cooper, A. I.; Adams, D. J.. 2012,, 530. doi:10.1016/j.progpolymsci.2011.09.002

    (11) Zhang, K.; Kopetzki, D.; Seeberger, P. H.; Antonietti, M.; Vilela, F.2013,, 1432. doi: 10.1002/anie.201207163

    (12) Xie, Z.; Wang, C.; deKrafft, K. E.; Lin, W.2011,, 2056. doi:10.1021/ja109166b

    (13) Li, A.; Sun, H. X.; Tan, D. Z.; Fan, W. J.; Wen, S. H.; Qing, X. J.; Li, G. X.; Li, S. Y.; Deng, W. Q.2011,, 2062. doi: 10.1039/C1EE01092A

    (14) Wang, X. S.; Liu, J.; Bonefont, J. M.; Yuan, D. Q.; Thallapally, P. K.; Ma, S. Q.2013,, 1533. doi: 10.1039/C2CC38067F

    (15) Bhunia, A.; Vasylyeva, V.; Janiak, C.2013,, 3961. doi: 10.1039/C3CC41382A

    (16) Kou, Y.; Xu, Y.; Guo, Z.; Jiang, D.2011,, 8753. doi: 10.1002/anie.201103493

    (17) Zhuang, X.; Zhang, F.; Wu, D.; Forler, N.; Liang, H.; Wagner, M.; Gehrig, D.; Hansen, M. R.; Laquai, F.; Feng, X.2013,, 9668. doi: 10.1002/anie.201304496

    (18) Xu, Y.; Nagai, A.; Jiang, D.2013,, 1591. doi: 10.1039/C2CC38211C

    (19) Xu, Y.; Chen, L.; Guo, Z.; Nagai, A.; Jiang, D.2011,, 17622. doi: 10.1021/ja208284t

    (20) Liu, X.; Xu, Y.; Jiang, D.2012,, 8738. doi: 10.1021/ja303448r

    (21) Gu, C.; Huang, N.; Gao, J.; Xu, F.; Xu, Y.; Jiang, D.2014,, 4850. doi: 10.1002/anie.201402141

    (22) Liao, Y.; Weber, J.; aul, C. F. J.2014,, 8002. doi: 10.1039/C4CC03026E

    (23) Lu, W.; Sculley, J. P.; Yuan, D.; Krishna, R.; Wei, Z.; Zhou, H. C.2012,, 7480. doi: 10.1002/anie.201202176

    (24) Xiang, Z.; Cao, D.; Wang, W.; Yang, W.; Han, B.; Lu, J.2012,, 5974. doi: 10.1021/jp300137e

    (25) Yuan, D.; Lu, W.; Zhan, D.; Zhou, H.2011,, 3723. doi: 10.1002/adma.201101759

    (26) Pu, L.; Sun, Y.; Zhang, Z.2010,, 10842. doi: 10.1021/jp103331a

    (27) Babarao, R.; Jiang, J. W.2008,, 6270. doi; 10.1021/la800369s

    (28) Islamoglu, T.; Rabbani, M. G.; El-Kaderi, H. M.2013,, 10259. doi: 10.1039/C3TA12305G

    (29) Hasmukh, A. P.; Ferdi, K.; Ali, C.; Joonho, P.; Erhan, D.; Yousung, J.; Mert, A.; Cafer, T. Y.2012,, 8431. doi: 10.1039/c2jm30761h

    (30) Qin, L.; Xu, G.; Yao, C.; Xu, Y.2016,, 4599. doi: 10.1039/C6PY00666C

    (31) Rabbani, M. G.; El-Kaderi, H.2011,, 1650. doi: 10.1021/cm200411p

    (32) Arab, P.; Rabbani, M. G.; Sekizkardes, A. K.; ?sllamo?lu, T.; El-Kaderi, H. M.2014,, 1385. doi: 10.1021/cm403161e

    (33) Dawson, R.; Adams, D. J.; Cooper, A. I.2011,, 1173. doi: 10.1039/C1SC00100K

    (34) Dawson, R.; Cooper, A. I.; Adams, D.2013,, 345. doi:10.1002/pi.4407

    (35) Torrisi, A.; Mellot-Draznieks, C.; Bell, R. G.2010,, 044705. doi: 10.1063/1.3276105

    (36) Li, P. Z.; Wang, X. J.; Liu, J.; Lim, J. S.; Zou, R.; Zhao, Y.2016,, 2142. doi: 10.1021/jacs.5b13335

    (37) Rose, M.; Klein, N.; Bohlmann, W.; Bohringer, B.; Fichtner, S.; Kaskel, S.2010,, 3918. doi: 10.1039/C003130E

    (38) Chen, Q.; Luo, M.; Hammershoj, P.; Zhou, D.; Han, Y.; Laursen, B. W.; Yan, C. G.; Han, B. H.2012,, 6084. doi: 10.1021/ja300438w

    (39) Jiang, J. X.; Su, F. B.; Trewin, A.; Wood, C. D.; Niu, H. J.; Jones, J. T. A.; Khimyak, Y. Z.; Cooper, A. I.2008,, 7710.doi: 10.1021/ja8010176

    (40) Jiang, J. X.; Trewin, A.; Adams, D. J.; Cooper, A. I.2011,, 1777. doi: 10.1039/C1SC00329A

    (41) Meng, B.; Li, H.; Mahurin, S. M.; Liu, H.; Dai, S.2016,, 110307. doi: 10.1039/C6RA18307G

    (42) Ma, H.; Ren, H.; Zou, X.; Meng, S.; Sun, F.; Zhu, G.2014,, 144. doi; 10.1039/C3PY00647F

    (43) Obrien, J. A.; Myers, A. L.1988,, 2085. doi: 10.1039/C3PY00647F

    (44) Wang, K.; Qiao, S. Z.; Hu, X. J.2000,, 243. doi: 10.1016/S1383-5866(00)00087-3

    (45) Qin, L.; Xu, G.; Yao, C.; Xu, Y.2016,, 12602. doi: 10.1039/C6CC05097B

    (46) Qiao, S.; Wang, T.; Huang, W.; Jiang, J. X.; Du, Z.; Shieh, F.; Yang, R.2016,, 1281. doi: 10.1039/C5PY01767J

    (47) Shen, C.; Yan, J.; Deng, G.; Zhang, B.; Wang, Z.2017,, 1074. doi: 10.1039/C6PY02050J

    富羧酸基團(tuán)的共軛微孔聚合物:結(jié)構(gòu)單元對(duì)孔隙和氣體吸附性能的影響

    姚 嬋1李國(guó)艷1許彥紅1,2,*

    (1吉林師范大學(xué),環(huán)境友好材料制備和應(yīng)用教育部重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)春 130103;2吉林師范大學(xué),功能材料物理與化學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,吉林 四平 136000)

    共軛微孔聚合物(CMPs)骨架中的孔和極性基團(tuán)對(duì)聚合物的氣體吸附性能起著重要作用。闡明聚合物中極性基團(tuán)的效果對(duì)該領(lǐng)域的進(jìn)一步發(fā)展是必不可少的。為了解決這個(gè)根本問(wèn)題,我們使用最簡(jiǎn)單的芳香系統(tǒng)-苯作為建筑單體,構(gòu)筑了兩個(gè)新穎的富羧酸基團(tuán)的CMPs (CMP-COOH@1,CMP-COOH@2),并探討了CMPs中游離羧酸基團(tuán)的量對(duì)其孔隙、吸附焓、氣體吸附和選擇性的深遠(yuǎn)影響。CMP-COOH@1和CMP-COOH@2顯示的BET比表面積分別為835和765 m2?g?1。這兩種聚合物在二氧化碳存儲(chǔ)方面顯示了高潛力。在273 K和1.05 × 105Pa條件下,CMP-COOH@1和CMP-COOH@2的CO2吸附值分別為2.17和2.63 mmol?g?1。我們的研究結(jié)果表明,在相同的條件下增加聚合物中羧基基團(tuán)的含量可以提高材料對(duì)氣體的吸附容量和選擇性。

    共軛微孔聚合物;羧酸;孔;氣體吸附;選擇性

    O647

    10.3866/PKU.WHXB201705112

    April 6, 2017;

    May 3, 2017;

    May 11, 2017.

    . Email: xuyh@jlnu.edu.cn; Tel: +86-431-81765151.

    The project was supported by the National Natural Science Foundation of China (21501065), Science and Technology Program of Jilin Province, China (20160101319JC), Science and Technology Research Program of the Education Department of Jilin Province (2015229), and Science and Technology Program of Siping City (2015057).

    國(guó)家自然科學(xué)基金(21501065),吉林省科技發(fā)展計(jì)劃(20160101319JC),吉林省教育廳科學(xué)技術(shù)研究項(xiàng)目 (2015229),四平市科技發(fā)展計(jì)劃項(xiàng)目(2015057)資助項(xiàng)目

    猜你喜歡
    共軛羧酸基團(tuán)
    一個(gè)帶重啟步的改進(jìn)PRP型譜共軛梯度法
    吡啶-2-羧酸鉻的制備研究
    云南化工(2021年10期)2021-12-21 07:33:28
    一個(gè)改進(jìn)的WYL型三項(xiàng)共軛梯度法
    攪拌對(duì)聚羧酸減水劑分散性的影響
    巧用共軛妙解題
    一種自適應(yīng)Dai-Liao共軛梯度法
    R基團(tuán)篩選技術(shù)用于HDACIs的分子設(shè)計(jì)
    芳烴ArCOR的構(gòu)象分析和基團(tuán)對(duì)親電取代反應(yīng)的定位作用
    內(nèi)含雙二氯均三嗪基團(tuán)的真絲織物抗皺劑的合成
    復(fù)合羧酸鑭對(duì)PVC熱穩(wěn)定作用研究
    亚洲 欧美一区二区三区| 9热在线视频观看99| 黑人猛操日本美女一级片| 国产伦一二天堂av在线观看| 天天躁夜夜躁狠狠躁躁| 午夜免费观看网址| 欧美日韩乱码在线| 午夜老司机福利片| 国产成人免费无遮挡视频| 国产精品免费视频内射| 国产高清激情床上av| 中文字幕另类日韩欧美亚洲嫩草| 国产区一区二久久| 亚洲精品av麻豆狂野| 黄网站色视频无遮挡免费观看| 黄色成人免费大全| 悠悠久久av| 亚洲精品在线观看二区| 亚洲精品中文字幕在线视频| 激情视频va一区二区三区| 欧美精品亚洲一区二区| 精品卡一卡二卡四卡免费| 97人妻天天添夜夜摸| 丝袜在线中文字幕| 97碰自拍视频| 丰满的人妻完整版| 国产亚洲欧美在线一区二区| 精品免费久久久久久久清纯| 成人黄色视频免费在线看| 中文字幕色久视频| 亚洲欧美精品综合久久99| 女人精品久久久久毛片| 精品欧美一区二区三区在线| 搡老乐熟女国产| 夜夜躁狠狠躁天天躁| 午夜91福利影院| 国产无遮挡羞羞视频在线观看| 日韩欧美国产一区二区入口| 在线视频色国产色| 久久精品aⅴ一区二区三区四区| 在线观看免费视频网站a站| 亚洲精品成人av观看孕妇| 中文字幕精品免费在线观看视频| 久久久国产一区二区| 久久久久国内视频| 亚洲成av片中文字幕在线观看| 波多野结衣av一区二区av| 老熟妇仑乱视频hdxx| 女人爽到高潮嗷嗷叫在线视频| 成人影院久久| 丝袜人妻中文字幕| 亚洲av电影在线进入| 亚洲美女黄片视频| 九色亚洲精品在线播放| 99精品在免费线老司机午夜| 窝窝影院91人妻| 最近最新中文字幕大全电影3 | 在线天堂中文资源库| 在线观看www视频免费| 看免费av毛片| 欧洲精品卡2卡3卡4卡5卡区| 免费不卡黄色视频| 欧美人与性动交α欧美精品济南到| 午夜福利在线观看吧| 在线天堂中文资源库| 久久久久久久午夜电影 | 久久影院123| 99久久综合精品五月天人人| 欧美日韩亚洲国产一区二区在线观看| 黑人猛操日本美女一级片| 国产av一区在线观看免费| 黄色丝袜av网址大全| 美女高潮喷水抽搐中文字幕| 天堂√8在线中文| 性色av乱码一区二区三区2| 成人手机av| 免费不卡黄色视频| 在线播放国产精品三级| 国产激情欧美一区二区| 成人18禁在线播放| 高清av免费在线| 如日韩欧美国产精品一区二区三区| 老鸭窝网址在线观看| 国内毛片毛片毛片毛片毛片| 免费高清视频大片| 欧美日本中文国产一区发布| 亚洲精品美女久久久久99蜜臀| 精品乱码久久久久久99久播| 国产精品国产av在线观看| 欧美黑人欧美精品刺激| av在线天堂中文字幕 | 欧美人与性动交α欧美精品济南到| 久久国产精品人妻蜜桃| 亚洲国产欧美日韩在线播放| 国产精品九九99| 亚洲人成电影免费在线| 咕卡用的链子| 无遮挡黄片免费观看| 91成年电影在线观看| 久久九九热精品免费| 无人区码免费观看不卡| 亚洲自偷自拍图片 自拍| 日本五十路高清| 亚洲九九香蕉| 亚洲男人的天堂狠狠| 精品福利观看| 亚洲精品久久成人aⅴ小说| 一级片免费观看大全| 日本欧美视频一区| 国产成人精品无人区| 国产精品久久电影中文字幕| 国产精品一区二区精品视频观看| 一区二区日韩欧美中文字幕| 18禁裸乳无遮挡免费网站照片 | 精品久久久久久久毛片微露脸| 亚洲成a人片在线一区二区| 一区二区三区国产精品乱码| 精品一区二区三卡| 国产精华一区二区三区| 黄色a级毛片大全视频| 老司机靠b影院| 成年人免费黄色播放视频| 精品熟女少妇八av免费久了| 咕卡用的链子| 一进一出好大好爽视频| 操出白浆在线播放| 国产精品乱码一区二三区的特点 | 久久精品91无色码中文字幕| 精品一区二区三区av网在线观看| www.自偷自拍.com| 一级片免费观看大全| 久久国产精品人妻蜜桃| 女人高潮潮喷娇喘18禁视频| 最近最新免费中文字幕在线| 国产在线精品亚洲第一网站| 亚洲 欧美 日韩 在线 免费| 三上悠亚av全集在线观看| 国产成人欧美在线观看| 国产成人av教育| 亚洲色图 男人天堂 中文字幕| 欧美色视频一区免费| 国产成人一区二区三区免费视频网站| 人妻久久中文字幕网| 欧美日韩亚洲国产一区二区在线观看| 国产av一区在线观看免费| 国产精品永久免费网站| 日韩大尺度精品在线看网址 | 人人妻人人添人人爽欧美一区卜| 一区二区三区国产精品乱码| 一边摸一边抽搐一进一出视频| 中文亚洲av片在线观看爽| 久久国产乱子伦精品免费另类| 精品乱码久久久久久99久播| 精品久久久久久电影网| 亚洲欧美日韩另类电影网站| 女性生殖器流出的白浆| 法律面前人人平等表现在哪些方面| 女同久久另类99精品国产91| 成在线人永久免费视频| 黑人猛操日本美女一级片| 老汉色∧v一级毛片| 午夜福利在线免费观看网站| 精品久久久久久成人av| ponron亚洲| 叶爱在线成人免费视频播放| 国产单亲对白刺激| 咕卡用的链子| 亚洲第一青青草原| 三级毛片av免费| 国产亚洲精品一区二区www| 亚洲欧美激情在线| 91麻豆精品激情在线观看国产 | 国产成人免费无遮挡视频| 亚洲欧美日韩另类电影网站| 琪琪午夜伦伦电影理论片6080| 无人区码免费观看不卡| 久久精品亚洲熟妇少妇任你| 精品乱码久久久久久99久播| 久久这里只有精品19| 国产成人精品久久二区二区免费| 国产又色又爽无遮挡免费看| 69av精品久久久久久| 男女高潮啪啪啪动态图| 亚洲专区中文字幕在线| 丝袜美腿诱惑在线| 在线播放国产精品三级| 人人妻,人人澡人人爽秒播| 香蕉丝袜av| 大码成人一级视频| 动漫黄色视频在线观看| 俄罗斯特黄特色一大片| www.精华液| 国产精品1区2区在线观看.| 国产av一区二区精品久久| 久久久久九九精品影院| 看免费av毛片| 一级a爱片免费观看的视频| 最近最新免费中文字幕在线| 丝袜美足系列| 欧美午夜高清在线| 中文字幕人妻熟女乱码| 色综合婷婷激情| 亚洲国产精品999在线| 久久久久久久精品吃奶| 国产1区2区3区精品| 搡老岳熟女国产| 日韩高清综合在线| 丝袜美足系列| 在线免费观看的www视频| 亚洲人成电影免费在线| 黄色成人免费大全| 极品教师在线免费播放| 免费观看精品视频网站| 在线观看一区二区三区| 久久这里只有精品19| 亚洲一区中文字幕在线| 亚洲精品粉嫩美女一区| 中出人妻视频一区二区| 久久婷婷成人综合色麻豆| 丝袜美腿诱惑在线| 久久国产精品人妻蜜桃| 欧美在线黄色| 在线观看免费午夜福利视频| 亚洲人成网站在线播放欧美日韩| 亚洲狠狠婷婷综合久久图片| 人妻丰满熟妇av一区二区三区| 波多野结衣av一区二区av| 中文欧美无线码| 国产成+人综合+亚洲专区| 黄片小视频在线播放| 国产精品秋霞免费鲁丝片| 一级黄色大片毛片| 欧美激情高清一区二区三区| 免费一级毛片在线播放高清视频 | 老鸭窝网址在线观看| 国产成人免费无遮挡视频| 欧美在线黄色| 人人妻人人澡人人看| 久久国产精品影院| 天堂中文最新版在线下载| 午夜免费鲁丝| 亚洲片人在线观看| 国产成人欧美在线观看| 久久欧美精品欧美久久欧美| 国产欧美日韩一区二区精品| 一边摸一边抽搐一进一出视频| 操美女的视频在线观看| 一进一出抽搐gif免费好疼 | 老司机靠b影院| 亚洲黑人精品在线| 午夜日韩欧美国产| 在线免费观看的www视频| 可以免费在线观看a视频的电影网站| 久热爱精品视频在线9| 国产免费现黄频在线看| xxxhd国产人妻xxx| 国产欧美日韩综合在线一区二区| 法律面前人人平等表现在哪些方面| 久久精品91蜜桃| 嫩草影院精品99| 精品久久久久久久久久免费视频 | 岛国视频午夜一区免费看| 精品国产乱码久久久久久男人| 最近最新中文字幕大全电影3 | av视频免费观看在线观看| 丝袜美腿诱惑在线| 黄色视频,在线免费观看| 嫩草影院精品99| 两个人免费观看高清视频| 人人妻,人人澡人人爽秒播| 久久国产精品影院| 黄色a级毛片大全视频| 成熟少妇高潮喷水视频| 99精品久久久久人妻精品| 俄罗斯特黄特色一大片| 国产蜜桃级精品一区二区三区| 国产男靠女视频免费网站| 国产亚洲精品久久久久久毛片| 91在线观看av| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美久久黑人一区二区| 日韩免费av在线播放| 免费女性裸体啪啪无遮挡网站| 国产成人免费无遮挡视频| 99re在线观看精品视频| 午夜老司机福利片| 女性被躁到高潮视频| 露出奶头的视频| 免费av中文字幕在线| 18禁观看日本| 久久99一区二区三区| 两个人看的免费小视频| 国产亚洲精品第一综合不卡| 久久性视频一级片| 免费日韩欧美在线观看| 亚洲av第一区精品v没综合| 国产成人av激情在线播放| 精品人妻1区二区| 亚洲黑人精品在线| 一本大道久久a久久精品| 欧美激情 高清一区二区三区| 国产亚洲欧美98| 亚洲专区国产一区二区| 日韩av在线大香蕉| 亚洲欧美一区二区三区久久| 欧美黄色片欧美黄色片| 成人影院久久| av在线播放免费不卡| 国产麻豆69| 亚洲欧美日韩另类电影网站| 天堂中文最新版在线下载| 午夜免费鲁丝| 欧美激情 高清一区二区三区| 亚洲免费av在线视频| 天堂俺去俺来也www色官网| 中亚洲国语对白在线视频| 丝袜美足系列| 亚洲久久久国产精品| 精品一区二区三区四区五区乱码| 丝袜在线中文字幕| 免费看十八禁软件| 岛国在线观看网站| 免费观看人在逋| 久久国产精品人妻蜜桃| 啦啦啦免费观看视频1| 桃色一区二区三区在线观看| 黄色 视频免费看| 亚洲aⅴ乱码一区二区在线播放 | 国产真人三级小视频在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲精品成人av观看孕妇| 国内毛片毛片毛片毛片毛片| av电影中文网址| 91精品三级在线观看| 熟女少妇亚洲综合色aaa.| 国产成人欧美| 精品福利永久在线观看| 99国产精品一区二区三区| 亚洲精品美女久久av网站| 欧美另类亚洲清纯唯美| av天堂在线播放| 黄色片一级片一级黄色片| 手机成人av网站| 狠狠狠狠99中文字幕| 国产精品野战在线观看 | 亚洲在线自拍视频| 韩国精品一区二区三区| 亚洲五月婷婷丁香| 九色亚洲精品在线播放| av网站免费在线观看视频| 99国产精品99久久久久| 深夜精品福利| 日韩大尺度精品在线看网址 | 亚洲全国av大片| 一级,二级,三级黄色视频| 亚洲一区中文字幕在线| 精品国产乱码久久久久久男人| 精品久久久久久成人av| 午夜福利欧美成人| 亚洲一区高清亚洲精品| 国产深夜福利视频在线观看| 一进一出抽搐动态| 亚洲精品国产区一区二| 又大又爽又粗| 黑人巨大精品欧美一区二区mp4| 免费观看人在逋| 丁香六月欧美| 一二三四社区在线视频社区8| 最近最新中文字幕大全电影3 | 黄色丝袜av网址大全| 男女做爰动态图高潮gif福利片 | 女人高潮潮喷娇喘18禁视频| 久久这里只有精品19| 妹子高潮喷水视频| 在线国产一区二区在线| 亚洲成av片中文字幕在线观看| 久久久久久久久免费视频了| 国产精品国产av在线观看| 中文字幕色久视频| 亚洲第一av免费看| 十分钟在线观看高清视频www| 黑人操中国人逼视频| 宅男免费午夜| 精品久久久久久电影网| 国产野战对白在线观看| 国产国语露脸激情在线看| 12—13女人毛片做爰片一| 亚洲五月婷婷丁香| 亚洲欧美日韩另类电影网站| 成在线人永久免费视频| 欧美日韩国产mv在线观看视频| 亚洲熟妇中文字幕五十中出 | 长腿黑丝高跟| 久久影院123| 欧美黄色片欧美黄色片| 亚洲精品国产色婷婷电影| 婷婷精品国产亚洲av在线| 91国产中文字幕| 老汉色∧v一级毛片| 又大又爽又粗| 在线观看免费视频日本深夜| 欧美成狂野欧美在线观看| av免费在线观看网站| 91av网站免费观看| 激情在线观看视频在线高清| 在线看a的网站| 亚洲午夜理论影院| 男女之事视频高清在线观看| 国产精品久久久久成人av| 老汉色av国产亚洲站长工具| 淫妇啪啪啪对白视频| 91成人精品电影| 中文字幕人妻丝袜制服| 久久草成人影院| 国产精品国产高清国产av| 国产精品免费一区二区三区在线| 一区在线观看完整版| 久久久久久久久免费视频了| 午夜精品国产一区二区电影| 人人妻人人爽人人添夜夜欢视频| 成年人黄色毛片网站| 黄色毛片三级朝国网站| 国产男靠女视频免费网站| 免费人成视频x8x8入口观看| av网站在线播放免费| 日本黄色视频三级网站网址| 亚洲精品美女久久av网站| 午夜精品久久久久久毛片777| 久久 成人 亚洲| av免费在线观看网站| 日韩欧美三级三区| 色婷婷av一区二区三区视频| 国产精品乱码一区二三区的特点 | 国产有黄有色有爽视频| 高清欧美精品videossex| 国产av精品麻豆| 久久精品亚洲熟妇少妇任你| 高清黄色对白视频在线免费看| 热99国产精品久久久久久7| a级毛片在线看网站| 曰老女人黄片| 性色av乱码一区二区三区2| 亚洲片人在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲专区中文字幕在线| 国产精品亚洲av一区麻豆| 国产男靠女视频免费网站| 热99re8久久精品国产| 久久久国产欧美日韩av| 在线av久久热| 国产在线观看jvid| 丰满人妻熟妇乱又伦精品不卡| 80岁老熟妇乱子伦牲交| 中文字幕最新亚洲高清| 国产一区二区三区综合在线观看| 丁香六月欧美| 亚洲中文av在线| 午夜福利影视在线免费观看| 欧美激情高清一区二区三区| 一级黄色大片毛片| 男人的好看免费观看在线视频 | 80岁老熟妇乱子伦牲交| svipshipincom国产片| 亚洲,欧美精品.| 黑人欧美特级aaaaaa片| 人人妻人人爽人人添夜夜欢视频| 91在线观看av| 中文字幕另类日韩欧美亚洲嫩草| 久久精品亚洲熟妇少妇任你| 国产精华一区二区三区| 老司机靠b影院| 如日韩欧美国产精品一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 性少妇av在线| 村上凉子中文字幕在线| svipshipincom国产片| 两个人免费观看高清视频| 欧洲精品卡2卡3卡4卡5卡区| 国产精品二区激情视频| 一级毛片女人18水好多| 久久人妻熟女aⅴ| 欧美性长视频在线观看| 一个人观看的视频www高清免费观看 | 国产精品偷伦视频观看了| 久久精品国产清高在天天线| 久久久久久亚洲精品国产蜜桃av| 国产野战对白在线观看| 99久久综合精品五月天人人| 国产高清激情床上av| 久久青草综合色| 久久久水蜜桃国产精品网| 国产精品 欧美亚洲| 成年人免费黄色播放视频| 一级毛片高清免费大全| 久久久国产精品麻豆| 亚洲一区中文字幕在线| 国产精品久久视频播放| 亚洲全国av大片| 免费在线观看亚洲国产| 国产精品久久久av美女十八| 最新美女视频免费是黄的| 男女床上黄色一级片免费看| 日韩免费高清中文字幕av| 一夜夜www| 午夜激情av网站| 精品熟女少妇八av免费久了| 久久久久亚洲av毛片大全| 老司机福利观看| 免费av毛片视频| 国产av一区在线观看免费| 成年人免费黄色播放视频| 在线国产一区二区在线| 国产伦人伦偷精品视频| 国产无遮挡羞羞视频在线观看| 在线观看免费午夜福利视频| 欧美日本亚洲视频在线播放| 成人18禁高潮啪啪吃奶动态图| 人人妻人人爽人人添夜夜欢视频| 一级毛片女人18水好多| 欧美成人性av电影在线观看| 亚洲欧美激情在线| 国产区一区二久久| 国产不卡一卡二| 精品国产乱子伦一区二区三区| 亚洲av日韩精品久久久久久密| 精品国产国语对白av| 嫩草影院精品99| 老司机深夜福利视频在线观看| 最近最新免费中文字幕在线| www.自偷自拍.com| 大码成人一级视频| 国产一区二区三区综合在线观看| 一级毛片高清免费大全| 精品免费久久久久久久清纯| 亚洲精品中文字幕在线视频| 久久这里只有精品19| 国产精品久久久人人做人人爽| 搡老乐熟女国产| 99国产综合亚洲精品| 国产精品亚洲一级av第二区| 国产亚洲欧美98| 国产91精品成人一区二区三区| 久久青草综合色| 亚洲av电影在线进入| 亚洲五月色婷婷综合| 亚洲五月婷婷丁香| av中文乱码字幕在线| 国产激情久久老熟女| 久久国产精品男人的天堂亚洲| 久久热在线av| 国产免费现黄频在线看| 国产精品一区二区精品视频观看| 国产av又大| 天天躁夜夜躁狠狠躁躁| e午夜精品久久久久久久| 大型黄色视频在线免费观看| 精品日产1卡2卡| 男女做爰动态图高潮gif福利片 | 色尼玛亚洲综合影院| 宅男免费午夜| 一级毛片高清免费大全| 51午夜福利影视在线观看| 每晚都被弄得嗷嗷叫到高潮| 很黄的视频免费| 国产精品免费一区二区三区在线| 中文字幕高清在线视频| 亚洲九九香蕉| 999精品在线视频| 久久久精品国产亚洲av高清涩受| 91麻豆精品激情在线观看国产 | 99热只有精品国产| 一本大道久久a久久精品| 母亲3免费完整高清在线观看| 亚洲av成人不卡在线观看播放网| 婷婷丁香在线五月| 国产精品免费一区二区三区在线| 两性午夜刺激爽爽歪歪视频在线观看 | 91国产中文字幕| 亚洲国产精品999在线| 视频区图区小说| 老熟妇仑乱视频hdxx| bbb黄色大片| 丰满饥渴人妻一区二区三| 国产欧美日韩精品亚洲av| 校园春色视频在线观看| 99久久人妻综合| 亚洲人成电影观看| 欧美日韩av久久| 久久久久九九精品影院| 国产欧美日韩一区二区三区在线| 国产区一区二久久| av欧美777| 黄片播放在线免费| 国产免费现黄频在线看| 中文字幕精品免费在线观看视频| 大型av网站在线播放| 精品少妇一区二区三区视频日本电影| 欧美成狂野欧美在线观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧美精品综合久久99| 久久天堂一区二区三区四区| 亚洲精品久久午夜乱码| 久久中文字幕人妻熟女| 手机成人av网站| 香蕉国产在线看| 乱人伦中国视频| 美女扒开内裤让男人捅视频| 日韩欧美三级三区| 丝袜美足系列| 国产成人精品无人区| 久久久久久免费高清国产稀缺| 国产欧美日韩综合在线一区二区| 一级a爱片免费观看的视频| 9色porny在线观看| 国产有黄有色有爽视频|